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Introduction () e,

Tremendous recent surge in the development and application of
machine learning models in recent years due to their flexibility and
capability to represent trends in complex systems.

In many scientific applications a large amount of data may not be
available for training.

Unlike data from internet or text searches, computational and
physical experiments are typically extremely expensive.

Moreover, even if ample data exists, the machine learning model may
yield behaviors that are inconsistent with what is expected
physically when queried in an extrapolatory regime.

To aid and improve the process of building machine learning models
for scientific applications, it is desirable to have a framework that
allows the incorporation of physical principles and other a priori
information to supplement the limited data and regularize the
behavior of the model.
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Introduction () &,

= Within the Bayesian regression framework, Gaussian processes
(GPs) are popular for constructing “surrogates” or “emulators” of
data sources that are very expensive to query.

= An accurate Gaussian process regression (GPR) can often be used
constructed using only a relatively small number of training data
(e.g. tens to hundreds), which consists of pairs of input parameters
and corresponding response values.

= The GPR can be thought of as a machine-learned metamodel and
used to provide fast, cheap function evaluations for the purposes of
prediction, sensitivity analysis, uncertainty quantification,
calibration, and optimization.
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GP Regression: Concept ()

= A Gaussian process can be viewed as a distribution over a set of
functions. A random draw or sample f from a GP is a realization
from the set of admissible functions.

= Specifically, a Gaussian process is a collection of random variables
{f(x) | x € X} for which, given any finite set of N inputs
X ={x1,%2, ... xn}, xi € RY, the collection f(x1), f(x2), ..., f(xn) has a
joint multivariate Gaussian distribution.

= A GP is completely defined by its mean and covariance functions
which generate the mean vectors and covariances matrices of these
finite-dimensional multivariate normals.

= Assumptions such as smoothness of samples f, stationarity, and
sparsity are used to construct the mean and covariance of the GP
prior and then Bayes’ rule is used to constrain the prior with
observational /simulation data.
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GP Regression: Definition @ Es.
= The prediction f = [f(x1), f(x2), ...f(xn)] T of a Gaussian process with

mean function m(x) and a covariance function k(x, x’) is a random
variable such that

p(fIX) = N(f; m(X), k(X, X)), (1)
where m(X) denotes the vector [m(x1), ..., m(xn)] " and k(X, X)
denotes the matrix with entries [k(Xi, Xj )]lgi,jgN .

= The multivariate normal probability distribution N(f; m, K) with
mean vector m and covariance matrix K has the form
; _ 1 1 Ty—1

= The covariance kernel function k of a Gaussian process must be
symmetric and positive semidefinite, e.g., the squared exponential

kernel
2 1 Xie = Xje 2
k(xi, xj) =n"exp ) Z o )| (2)

(=1
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GP Regression: Likelihood @) ..

= The distribution (1) for p(f|X), determined by covariance kernel k
and the mean m, is referred to as a prior for the GP.

= If the error or noise relating the actual observations
y = [y(x1), y(x2), ..., y(xn)] " collected at the set of inputs X = {><-L}iN:1
to the GP prediction f is assumed to be Gaussian, then the
probability of observing data y given the GP prior is given by

plyIX, f) = N(f, 0®In). (3)

= Here, Iy denotes the N x N identity matrix. The distribution
p(ylX, f) is referred to the likelihood of the GP, and the Gaussian
likelihood (3) is by far the most common. Specific non-Gaussian
likelihood functions can be used to enforce certain types of
constraints.
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GP Regression: MLE @&,

= The parameters in the covariance kernel function of a GP are
referred to as hyperparameters of the GP. We denote them by 6. For
the squared exponential kernel (2), the aggregate vector of
hyperparameters is © = [1], p1, ..., Pa, 0], where we have included the
likelihood /noise parameter o from (3) as a hyperparameter.

= The marginal likelihood is given by

plylX, 8) = jp(wx, f,0)p(FX, 0)df

and the log-marginal-likelihood for a GP with a zero-mean prior
(m = 0) can be written as

1 = 1 N
logp(ylX,0) = nyT(K(X, X)+0°In) ty— 5 log [K(X, X) + o®In|— 5 log 27t

» This can be optimized to give the most likely values of the
hyperparameters given data. This is known as maximum likelihood
estimation (MLE) of the hyperparameters.
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GP Regression: Posterior @) ..

= Once the hyperparameters of the GPR have been chosen, the
posterior of the GP is given by Bayes’ rule,

p(fIX, 0)p(ylX,f, 6)

PIX. 8) )

p(flX,y. 8) =

= Given the prior p(f|X, 0) (1) and the Gaussian likelihood p(y|X, f, ©)
(3), the prediction f* of a GPR at a new point x* can be calculated
as

P(Fly, X, x*, 0) = N(k(x*,X)(K(x, X) + 02In) Ly,
k(x*, x*) — k(x*, X) (K(X, X) + 0?In) 7T [k(x*, X)]T>
= Note that the mean of this Gaussian posterior is the mean estimate

E[f(x*)] of the predicted function value f* at x* and the variance is
the estimated prediction variance of the same quantity.
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GP: Complete Example )

—f(x)

+20 training data Figure: Noise is added

—F(x) to some locations on
B Two standard deviations the black curve to
2.5 —Two standard deviations 420,
generate data (black
4 crosses). GPR fits a
1.5 mean posterior to the
1 data after filtering out
= some noise with a
s~ 0.5 Gaussian likelihood,
E o0 with the posterior
- 05 variance giving an
esimate of uncertainty
-1 in the prediction. The
.15 Gaussian likelihood
: : ) allows us to infer white
-2 -1 0 1 2 fen d h
. noise in the data.
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Strategies & Differences to look for @&z

= Each step of GPR — sample space/prior, likelihood, posterior —
reviewed above gives opportunities to enforce constraints.

= The difficulty with applying constraints to a GP is that a constraint
typically calls for a condition to hold globally — that is, for all points
X in an interval I — for all realizations or predictions of the process.
A priori, this amounts to an infinite set of point constraints for an
infinite dimensional sample space of functions. This raises a
numerical feasibility issue, which each method circumvents.

= Some methods relax the global constraints to constraints at a finite
set of “virtual” points; others transform the output of the GP to
guarantee the predictions satisfy constraints, or construct a sample
space of predictions in which every realization satisfies the
constraints. This distinction between should be kept in mind when
surveying constrained GPs.
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Bounds: Warped Output s
= Bound constraints of the form a < f(x) < b over some region of
interest arise naturally in many applications, such as chemical
concentration data.

= Warping functions are used to transform bounded observations z; to
unbounded observations u; which can be treated with unconstrained
GPR, then transformed back.

= E.g., the probit function (the inverse of the CDF @ of a standard
normal random variable) transforms bounded values z € [0, 1] to
unbounded values 1 € (—o00, 00) via uw = O~ (z).

b5 T o7 07 1 05 05 07 0F 93 Lo
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Bounds: Transformed Likelihood (D=

= In addition to using warping functions, bound constraints can also
be enforced using non-Gaussian likelihood functions p(y|X, f, 8) that
are constructed to produce GP observations which satisfy the
constraints.

= There are a number of parametric distribution functions with finite
support that can be used for the likelihood function to constrain the
GP model, such as the truncated Gaussian or the beta distribution

= Unlike the warping method, the posterior (4) is not analytically
tractable; Laplace approximation and expectation propagation can
be used for approximate inference with the posterior.

probability density

000 005 010 015 020

1

L
1
1%
1

PhILMs Webinar, August 17 2020.




Sandia
Bounds: Truncated MVN s,
= Since a Gaussian process is always trained and evaluated at a finite
set of points X, a “global” of the form a < f(x) <b Vx €1 can be
approximated by constraints at a finite set of N, auxiliary or
“virtual” points xi, ...,xn, € L.
» This requires constructing an unconstrained GP and then, over the
virtual points, transforming this GP to a truncated multivariate
Gaussian distribution

N(z;u,X)
‘J’N(z; i, T a, b) — {P(aézéb]v fora<z<b

1

otherwise

® The unconstrained mean predictor is conditioned on the data (X, y):
E [f(x*) | f(X) =y]. (5)

This setup is augmented by a fixed, finite set of discrete points
{xi}iN:CI, and the predictor (5) is replaced by the predictor

E [f(x*) | f(X) =y and a < f(x;) <bforalli=1,2,.Nc]. (6)
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Bounds: Truncated M VN @ &

= In general, sampling and computing the moments of TN(z; u, X, a, b)
is computationally demanding — rejection sampling becomes very
expensive as the dimension increases. We survey this problem at
length in our article.

= In contrast to the warping approaches or the spline approach below,
which maintain a global enforcement of the constraints, the bounds
in (6) can depend on the location: a; < f(xi) < by, representing
different bounds in different regions of I.

= A downside of using the approach described here is that it is unclear
how many virtual points x; are needed to approximately constrain
the GP globally with a prespecified level of confidence; some studies
with increasing N, are presented by Da Veiga et al. However, if the
number of points can be chosen adequately, this approach can be
used to enforce not only bound constraints but also monotonicity
and convexity constraints.
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Bounds: Splines (D=

= Assume that a 1D process being modeled is restricted to the domain
[0,1]. Let h(x) be the standard tent function, i.e., the piecewise
linear spline function defined by

h(x) = max(1 — |x|, 0)

and define the locations of the knots to be x; = i/M for
1=0,1,..M, with M + 1 total spline functions.

= For any set of spline basis coefficients &;, the function representation

is given by
M M
fx) =) Eh(Mx—x)) =D Ehi(x).
i=0 i=0

This function representation gives a C° piecewise linear interpolant
of the point values (xi, &;) for alli=0,1,..., M.

g <f(x) <bif a <& <Db - a finite-dimensional constraint.
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Bounds: Splines (D=

= Suppose we are given a set of N data points at unique locations
(x5,Yj). Define the matrix A such that

Ay = hi(x;).
Then any set of spline coefficients & that satisfy the equation
A=y

will interpolate the data exactly. Solutions to this system of
equations will exist only if the rank of A is greater than N.

= We now assume the knot values & to be governed by a Gaussian
process with covariance function K. Because a linear function of a
GP is also a GP, the values of & and y are governed jointly by a GP

prior in the form
Y| o 0] [AKAT KAT
3 0]"| AK K

where each entry of the covariance matrix is understood to be a
matrix.
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Nation:
Lah

Bounds: Splines & Example @&z

= Upon observation of the data y, the conditional distribution of the knot
values subject to y = A§ is given by

p(& |y =AE) = N(E,; KAT(AKAT) 1y, K — KAT(AKAT)*AK)

= In this case, we are now interested in evaluating the distribution further
conditioned on the inequality constraints & € C given by

plE|y=AEEce) = er(a; KAT(AKAT) 1y, K — KAT(AKAT)AK, e)

® Again, we need to sample from the truncated multinormal distribution.

— Constrained GP 12 — Constrained GP

30 3
= Unconstrained GP = Unconstrained GP

20

10

-10

-20
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Monotonicity: Derivative Likelihood .
= Monotonicity constraints are an important class of “shape constraints”,
e.g., the output of the Los Alamos National Laboratory “Lady Godiva”
nuclear reactor is known to be monotonic with respect to the density and
radius of the spherical uranium core.

= To enforce

of
———(xi) =20,
axdi (x4)
at a set of finite “operating” or virtual points Xy, = {x;}I, we use the
shorthand
of ar of T T
f{: aXdi (Xi), and f' = [axdl (Xl)--- Xdm (Xm)] = [f{ffn]

and denote an observation of f{ = 9f/0xq, (x;) by yi.
= We use a likelihood

p(uilr) = (13). @

Here ®@(z) is the CDF of the standard normal distribution and approaches
a step function as v — 0.
= Note that the likelihood function in (7) forces the likelihood to be zero
(for non-monotonicity) or one (for monotonicity) in most cases.
PhILMs Webinar, August 17 2020. 18
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Monotonicity: Derivative Likelihood .
= The joint prior is now given by:
P(fy f/|X, Xm) = N(fjoint|0v Kjoint)
where

_|f | K K
fjoint = |:f/:| and Kjoint = |:Kfl4f Kf/’f/ . (8)
Here, K¢ = Kk(X, X) where k denotes the covariance function of f. The
m x m matrix K¢ ¢ in (8) denotes the covariance matrix between the

values of the specified partial derivatives of f at the operational points X,:

Ker o]y = [cov (f{,f])] = [cov( of (x1), i(x]))} ;o 1<ij<m,

aXdi ade

= By linearity, af; is a GP with covariance matrix
0 0
—Xk(x,x'),
Oxq; axdj
so that
0%k ; 5 %
Ker o]y = s (xi %), 1<ij<m
b Oxq,0%x].
)
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Monotonicity: Derivative Likelihood @&z
® The n X m matrix K¢/ represents the covariance between f and f’, and is
given by
ok

[Kf,f’]i]' = W
j

(x,%), 1<ign,1<jg<m,
with K¢ ¢ = Kg}, representing the covariance between f’ and f.
® The posterior probability of the joint distribution is

’ ! 1 (4 / 4
pf.fly.y") = Zp(f,f IX, X )p(ylf)p(y'If')

where 1/Z is a normalizing constant. This distribution is analytically
intractable because of the non-Gaussian likelihood for the derivative
components; MCMC, Laplace approximation, and expectation
propagation can be applied.

==+ Constrained GP prediction E === plain GP prediction
« training data * training data

02 04 06 08 - 02 04 06 08
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Monotonicity: Other Approaches @&

= Roughly speaking, given a method to enforce bound constraints,
monotonicity constraints can be enforced by utilizing this method to
enforce f’ > 0 on the derivative of the Gaussian process in a
“co-kriging” setup for the joint GP [f;f'].

= Since monotonicity constraints are positivity (bound) constraints on
the derivative part of such a joint GP, the “co-kriging” setup can be
combined with methods for bound constraints to implement
monotonicity constraints.

= The spline approach and truncated multivariate normal approach we
reviewed for bound constraints have both been applied to
monotonicity constraints.

= The story is similar for convexity constraints in one dimension,
which can be expressed as f” > 0, but more complicated in higher
dimensions, where convexity becomes a nonlinear constraint between
the second partials of a GP.
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Linear PDE Constraints @ &

® Gaussian processes may be constrained to satisfy linear operator

constraints of the form
Lu=f )

given data on f and u. When £ is a linear partial differential operator of
the form

acx aocl aocz a(xd

acx
L=y Calzz a=(u, . aa) 5= T x2S

the equation (9) can be used to constrain GP predictions to satisfy known
physical laws expressed as linear partial differential equations.

= If u(x) is a GP with mean function m(x) and covariance kernel k(x, x’),
u~ GP(m(x), k(x,x"))

and if m(-) and k(-,x’) belong to the domain of £, then £,L,/k(x,x’")
defines a valid covariance kernel for a GP with mean function £,m(x).
This Gaussian process is denoted Lu:

Lu~ GP(L,m(x), Ly Ly k(x, x)).

PhILMs Webinar, August 17 2020. 22




Linear PDE Constraints @ &

= The notation “Lu” for the GP GP(L,m(x), L, L k(x,x)) is
suggested by noting that if one could apply £ to the samples of the
GP u, then the mean of the resulting stochastic process £[u] would
indeed be given by

mean (L[ul(x)) = E [L[u](x)] = LE [u(x)] = Lm(x).
® The covariance would be given by
cov (LTul(x), L[] (x)) = E [Lxu(x)]Lw fu(x)]]
=E [£, Ly [u(x)u(x)]]
= L,E Ly u(x)u(x')]]
= LxﬁxflE[ OJu(x)]
= L, Ly [cov (u(x), u(x"))]
= L, L0k(x,x).
» This justification is formal, as in general the samples of the process
Lu~ GP(L,m(x), LiLy k(x,x")) cannot be identified as £ applied to

the samples of u.
PhILMs Webinar, August 17 2020. 23
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Linear PDE Constraints () =

= If scattered measurements y¢ on the source term f in (9) are
available at domain points X¢, then this can be used to train and
obtain predictions for Lu in the standard way.

= If, in addition, measurements y,, of u are available at domain points
Xy a GP co-kriging procedure can be used, forming the joint
Gaussian process [u; f].

= Given the covariance kernel k(x,x’) for u, the covariance kernel of
this joint GP is

W ([ x|\ | klx1,x7) Lok(xy,x3)|  [Kin Ko
x2| " |x5] ) | Lxklx2,x1) LxLyxk(xz2,x5)|  |Kox Koo~
= In this notation, the joint Gaussian process for [u; f] is then

|:U(X1):| Ng(};([ m(Xl):| [Kll(XLXl) K12(X1,X2)]>
f(Xz2) Lm(Xo)| " [Kar(X2, X1)  Kaa(X2, X2)] )
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Linear PDE Example .
Comparison of unconstrained and PDE constrained GP. The PDE is
—1 = d?u/dx? on the interval [0, 1]. Data is generated from sampling the
solution u = 3[(2x —1)2 —1].

-—= foplx)
— flx)

=== ucp(x)
— ulx)

=== Ucp(x)
— ulx)

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure: Left: Reconstruction of u (red line) with an unconstrained GP
(black line) using 10 data points (red dots) in [0.2,0.8].

Center: Reconstruction of u (red line) with a PDE constrained GP
(black line) using the same 10 data points (red dots) in [0.2,0.8].
Right: Right-hand side f of the PDE, with 10 additional data points in
[0, 1] used for the PDE constraint. Note the improved accuracy of the
constrained GP outside [0.2,0.8] due to this constraint data.

PhILMs Webinar, August 17 2020. 25




Sandia
National

PDEs: Transformed covariance Ui

= Given a linear operator £, and a vector-valued GP f described using
a matrix-valued covariance kernel function that encodes the
covariance between the entries of the vector f, the constraint

Lf=0

is satisfied if f can be represented as

f= 9xgy
for a transformation G, such that
Lxgx =0.

= In other words, the range of the operator Gy lies in the nullspace of
the operator L. Further, provided that G, is also a linear operator,
if g is a GP with covariance kernel kg, then f is also a GP with
covariance kernel

ke = GxkgS,.
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Constraints for vector-valued GPs @&

s Curl-free constraint £,f =V x f =0 for a vector field f : R3 — R3. A
curl-free vector field can be written f = Vg.

= In a similar way, one can enforce a divergence-free condition V -f =0
for a vector-valued GP f by writing f = V x g and placing a GP
prior on a vector field g, as V- (V x g) = 0.

= When appropriate square-exponential covariance kernel is used for
the GP g, curl-free and div-free covariance kernels for the GP f can
be derived analytically.

Figure: Curl-free (left) and div-free (right) GP vector field regression, from
Macedo and Castro.
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PDEs: Empirical Covariance @ &=
= Given an ensemble of realizations of a random field Y on a set of grid
points and a smaller set of high-fidelity data on a subset of the
low-fidelity grid points, Yang et al. build a Gaussian process for the
unknown field over the unstructured grid which also passes through
the high-fidelity data, at the same time ensuring that the GP
satisfies the PDE used to generate the low-fidelity ensemble.

= The idea is to compute the mean and covariance of the GP
empirically on the grid from these realizations of the random field Y.
We assume that we have M realizations Y™(x) of the output field
Y(x) for x in the d-dimensional grid {x;}}\ ; (the low-fidelity data).
Then the mean and covariance, respectively, are given by

1 M
RO~ e = 37 3~ V™)
m=1
M

k(x,x") ~ kmc(x,x') = M% (Y™ (%) = paac () (Y™ (x7) — pare (x)).

[y

m=1
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PDEs: Empirical Covariance .

= Yang et al. have shown that physical constraints in the form of a
deterministic linear operator are guaranteed to be satisfied within a
certain error in the resulting prediction when using this approach.

= As the method uses an empirical mean and covariance, there is no
need to infer the hyperparameters of a covariance function. However,
it cannot interpolate for the field between the points where the
stochastic realizations are available. The step of GPR for prediction
at an arbitrary point x* is not available, as the covariance kernel
function is bypassed entirely.

® This is an example of an “implicit constraint” — proving that if the
data used in GPR satisfies a PDE, then the GPR must satisfy the
PDE as well (within a certain tolerance). Another example is the
work of Salzmann and Urtasun, who considered GPR for pose
estimation under rigid (constant angle and length) and
non-rigid(constant length) constraints between points. They proved
that if the data used in the GPR satisfies such constraints, the
posterior prediction of the GPR satisfies them as well.
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Boundary Value Constraints () =,

= In many experimental setups, measurements can be taken at the
boundaries of a system in a cheap and non-invasive way that permits
nearly complete knowledge of the boundary values.

= The work of Solin et al. introduced a method based on the spectral
expansion of a desired stationary isotropic covariance kernel
k(x, x’) = k(jx — x’|) in eigenfunctions of the Laplacian.

» For enforcing zero Dirichlet boundary values on a domain Q, we use
the spectral density (Fourier transform) of the kernel,

s(w) = JRd e 'K (Ix) dx.

= This enters into the approximation of the kernel:
m
kix,x') & 3 s(Adbe(be(x'), (10)
e=1

where A; and ¢; are the Dirichlet eigenvalues and eigenfunctions,
respectively, of the Laplacian on the domain Q.
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Boundary Value Constraints s

= s is available in closed form for many stationary kernels, such as the
squared exponential (SE) and Matérn (M, ) kernels.

= Given n data points {(xi,yi)}}* ;, the covariance matrix is
approximated using (10) as

m

Kij = k(xi, ) ~ Y delxi)s(Ae)delx;).

e=1
= Introducing the n x m matrix @,
Qi =Pe(xi), 1<ig<n, 1<l<m,

and the m x m matrix A = diag(s(A¢)), 1 < £ < m, this can be
written
K~ OADT.
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Boundary Value Constraints s

® Thus, the covariance matrix K is diagonalized and, for a point x*, we
can write the n x 1 vector

n

ke = k(" x )iy & | ) delxi)sM)belx") | = PAD,,
=1 i=1

where the m x 1 vector @, is defined by
[@.]; = de(x™), 1<L<m.

= The Woodbury formula can be used to obtain the following
expressions for the posterior mean and variance over a point x* given
a Gaussian likelihood y; = f(xi) + €i, €1 ~ N(0, 02):

E[f(x*)] = k! (K+ 0?7ty
=0 (0D + A ) DTy
VIF(x*)] = k(x*, x*) — k] (K4 °I) "k,
_ qu);r((DTq) + 02/\’1)*1@*.
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Implementation Challenges @) ..

Constraints introduce new practical challenges into the GPR framework:

= The analytical construction of sample spaces, transformations, or
covariance kernels that in-herently provide constraints

® the sampling of truncated multivariate normals or intractable
posterior distributions that arise when using non-Gaussian
likelihoods;

= increased data and covariance matrix size when enforcing constraints
with “virtual” data that leads to expanded “four-block” covariance;

= MLE (hyperparameter optimization) with likelihood functions that
implement the constraint;

= calculation of eigenvalues/eigenfunctions in bounded domains
withcomplex geometry.
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Truncated Multinormal (D=

= Given a positive-definite covariance matrix £ and a set S C R9, the
truncated normal distribution TN (u, Z, S) is the conditional
distribution of the random variable x ~ N (u, Z) given x € S:

1s(x)

IN(x;u, L, S) = NxuX).

= The normalization constant is given by

by (b ba
C:J J J N (x; 1, L) dxydxs...dxq

a; Jaz Qaq

1 b1 rbs ba 1 o
= —1J J “ J exp (_E(X_ u) P (X— l«l)) dx;dxs...dxq

(27'[)%|Z|5 ar Jap aq

= Calculating values of the distribution TN is called for in constrained
maximum likelihood estimation of the GPR hyperparameters.

= Sampling TN is needed for posterior prediction in several approaches
discussed above.
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TN & Constrained MLE () s,

= Naive Monte Carlo methods (like rejection sampling from the mode)
scale poorly to higher dimensions.

= Several Markov Chain Monte Carlo (MCMC) methods were studied
by Lopez-Lopera et al; comparison of expected sample size metrics
suggested that Hamiltonian Monte Carlo (HMC) is the most efficient
sampler in the setting of that article.

® For maximum likelihood estimation of hyperparameters within the
spline approach, Bayes’ rule yields the following constrained
log-marginal-likelihood function:

Lemie = logpe(ylE € C)
= logpe(y) + log Pe(& € ClOE =y) —logPe (& € C) (11)
= Lae + log P (& € ClDE =y) — logPe (& € C).
= Unlike the sampling of TN, for which computing such integrals can
be avoided with MCMC, calculation of Gaussian orthant
probabilities is unavoidable if the user wants to train the

hyperparameters with a constrained likelihood function.
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Constrained MLE () &,

= A thorough discussion of numerical approaches to truncated
Gaussian integrals is Genz et al.; Lopez-Lopera utilize the minimax
exponential tilting method of Botev, reported to be feasible for
quadrature of Gaussian integrals in dimensions as high as 100, to
compute the Gaussian orthant probabilities in (11) and compare
cMLE with MLE.

® Another current drawback of cMLE is that the gradient of Lok is
not available in closed form, unlike the gradient of Lyrg. Thus, in
Lopez-Lopera, MLE was performed using a L-BFGS optimizer, while
cMLE was performed using the method of moving asymptotes.

= Lopez-Lopera et al. also studied under which conditions MLE and
c¢MLE yield consistent predictions of certain hyperparameters for
fixed-domain asymptotics; they show that MLE and cMLE yield
consistent hyperparameters in this limit for the case of boundedness,
monotonicity, and convexity constraints, and suggest quantitative
tests to determine if the number of data points is sufficient to suggest
unconstrained MLE as opposed to the more expensive cMLE.
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Scalable Inference () B,

= Inference in GPR using the entire training dataset (of size N) scales
as N3 due to covariance matrix inversion.

= This is exacerbated by certain methods to enforce constraints, such
as the linear PDE constraints, which require the inclusion of
“virtual” constraint points in the training data.

= There have been few studies on improving scalability of constrained
GPs. We mention several promising approaches and possible
applications to constrained GPs.

= Some strategies, including thesubset of data approach, the inducing
point approach, and the spectral expansion approach, are specific to
covariance matrices of GPs. Other methods are based on general
linear algebra techniques.
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Scalable Inference () B,

One notable feature of increasing the density of training data is that
the covariance matrixtends to become more ill-conditioned, the
result of partially redundant information being added to the matrix.
In such situations it is worthwhile to identify a subset of data that
minimizes prediction error subject to a maximum dataset size
constraint.

Subset-of-data approaches can be based on greedy methods or local
approximation.

Inducing point methods model the data as being conditionally
dependent on a few inducing points

More generic linear algebra methods that can be applied include
singular value decompositions, hierarchical matrices, optimization
with ! regularization, and Gaussian Markov random fields.

Hierarchical decompositions have been applied for GPR with
non-Gaussian likelihoods in tensor-product grids.
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Summary bt
= In addition to supplementing limited or expensive scientific data,

constraints help improve the generalizability of the model in ways
that simply increasing dataset size may not.

= QOur survey focused on several important classes of constraints for
Gaussian processes. These included positivity or bound constraints,
monotonicity and convexity constraints, linear differential equation
constraints, and boundary value constraints.

= Constraints can be enforced in an implicit way through data that
satisfies the constraint, by construction of a tailored sample space,
by derivation of a constrained covariance kernel, or by modifying the
output or likelihood of the Gaussian process.

= The constraints may be enforced in a “global sense”, at a finite set of
“virtual” or “auxiliary” points, or only in an approximate sense. We
have pointed to these aspects as key features distinguishing the
constraints in this survey.

= Some theoretical properties are not fully understood.
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Future Directions (D=
= Constraints introduce new practical challenges into GPR.

= Construction of sample spaces, transformations, or covariance
kernels that inherently provide constraints; sampling of truncated
multivariate normals or intractable posterior distributions from
non-Gaussian likelihoods; increased data and covariance matrix size
when using “virtual” data that leads to expanded “four-block”
covariance; calculation of eigenvalues/eigenfunctions in bounded
domains with complex geometry; placement of virtual points or
construction of spline grids in higher dimensions; and MLE
(optimization) of hyperparameters.

= The adaptation of computational strategies to constrained GPR is a
relatively new field, and best practices have not yet been established;
constraints have not made their way into the most widely used
production codes for GPR.

= Establishing best practices and furthering these computational
aspects of constrained GPR is a promising area.
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m See our article https://arxiv.org/abs/2006.09319 for complete
discussion for all of the methods discussed in this presentation,
presented in roughly the same order as this presentation.

= Disclaimer 1: most of the strategies and claims presented here are
not original. The survey article provides provides extensive
references for each method discussed in this presentation.

= Disclaimer 2: Some works and types of constraints have been left out
to make the survey feasible. Physical constraints are highly varied
and may not fit into a taxonomy.
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