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Abstract—The increasing complexity of High Performance
Computing (HPC) systems has created a growing need for
facilitating insight into system performance and utilization for
administrators and users. The strides made in HPC system
monitoring data collection have produced terabyte/day sized time-
series data sets rich with critical information, but it is onerous to
extract and construe meaningful information from these metrics.
We have designed and developed an architecture that en-

ables flexible, as-needed, run-time analysis and presentation
capabilities for HPC monitoring data. Our architecture enables
quick and efficient data filtration and analysis. Complex run-
time or historical analyses can be expressed as Python-based
computations. Results of analyses and a variety of HPC oriented
summaries are displayed in a Grafana front-end interface. To
demonstrate our architecture, we have deployed it in production
for a 1500-node HPC system and have developed analyses and
visualizations requested by system administrators, and later
employed by users, to track key metrics about the cluster at
a job, user, and system level.
Our architecture is generic, applicable to any *-nix based

system, and it is extensible to supporting multi-cluster HPC
centers. We structure it with easily replaced modules that allow
unique customization across clusters and centers. In this paper,
we describe the data collection and storage infrastructure, the
application created to query and analyze data from a custom
database, and the visual displays created to provide clear insights
into HPC system behavior.

Index Terms—HPC monitoring, Grafana, visualization, opera-
tional data analytics

I. INTRODUCTION

As the High Performance Computing (HPC) industry moves
towards exascale, monitoring HPC systems is becoming
increasingly important and simultaneously more complex.
Even today, HPC systems have millions of compute cores,
petabytes of memory, and sophisticated network interconnects.
System administrators must maintain the performance of these
complex systems to enable important simulations. However,
complications such as hardware failures, network congestion,
filesystem contention, and orphaned processes create appli-
cation performance variation up to 100% [1]. When these
issues arise on systems of this size, detection and alleviation
of problems is challenging.
To better understand system issues, significant strides have

been made in the HPC monitoring community to gather
high-fidelity system and application metrics [2]—[5]. These
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tools can return several terabytes of data per day that is
useful for solving system issues and understanding application
performance variation. Extracting meaningful insights from
these enormous datasets requires both domain expertise and
intelligent data management and analysis techniques.
To meet these challenges in a production setting, we devel-

oped a data pipeline architecture for the collection and storage
of data from HPC systems and for the run-time presentation
of visualizations of derived statistics. The architecture supports
queries with or without additional analyses which come in
the form of Python modules. These analyses can be accessed
through a common interface and can be added or changed
dynamically. Executing analyses in-line with queries reduces
memory and storage demands and enables more complex
insights for terabyte-sized datasets typical of HPC installations.
We demonstrate the utility of our design and implementation
on a production 1500-node HPC system. The analyses and
visualizations presented are based on requirements of the
system administrators and have also proven useful to users.
The main contributions of this paper are:

• A design that enables flexible, as-needed, run-time analysis
and presentation capabilities for HPC data.

• Analyses tailored to users and administrators.
• A generalized architecture that is demonstrated on a large

production HPC system.

Section II describes the architecture of the pipeline, including
specific design features to enable the support of flexible,
run-time analyses. Section III describes deployment details
on a production HPC system. Section IV describes the
dashboards and the underlying analyses to provide derived
metrics. Section V describes related work. Section VI presents
conclusions and future work.

II. ARCHITECTURE

In this section, we present the architecture for the data
pipeline. We emphasize design aspects that were specifically
created for this pipeline and describe others that were com-
plimentary pieces to complete the design. The architecture of
the data storage and analysis components and connectivity to
display host(s) are shown in Fig. 1.

A. Data Collection

In the Sandia National Laboratories (SNL) production system
environment, data is collected using the Lightweight Distributed
Metric Service (LDMS) [3]. LDMS is a data collection and
transport system that provides low overhead monitoring of
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HPC systems with high scalability. A key feature of LDMS
is its ability to collect data at the same time (relative to each
component's clock) for each component across the whole
system. This enables coherent multi-component analyses across
specific jobs or across the entire system.

B. Data Storage

Enabling run-time analyses over arbitrary data at the targeted
data sizes places particular demands on the data management
infrastructure. Our data storage architecture must be capable
of ingesting data at the rates described in Section III-A while
simultaneously supporting fast search of arbitrary data and data
relationships from multiple query instances and returning that
data in forms suitable for run-time analysis.
A variety of databases have been explored for supporting

HPC monitoring data, with various tradeoffs in insertion rate,
support for relational data, ability to handle timeseries data,
ease of query, etc., with no one database excelling in all aspects.
For our architecture we have chosen the Scalable Object Store
(SOS) database [12]. SOS is a high-performance, indexed,
object-oriented database created to efficiently manage structured
data, including time-series.
SOS provides interfaces for C, C++ and Python. The

SOS Python interfaces to NumPy and pandas provide high
performance, zero copy access to large generally available
analysis libraries. Much of the overhead in processing data
of this magnitude is spent iterating over billions of records to
filter the results. To speed up this iteration, SOS has a unique
compound-key index that enables querying time series data
across multiple attribute values with the same performance as
a single attribute-value index. The compound-key indices used
in this deployment are the six permutations of timestamp, node
id, and job number (e.g. time_node_job, node_time _job, etc.).
These compound-key indices support many of the queries of
interest in HPC monitoring data analysis (see Section II-C).

C. Data Analysis and Visualization

The components involved in the data analysis and visu-
alization through a Grafana front-end are shown in Fig. 1.
Grafana was chosen because it can easily plot timeseries data,
has a plethora of visualization options for presenting data,
and supports custom database plugins. Components developed
specifically as part of this work are colored green in Fig. 1
and described in this subsection. The remaining components
are existing tools that this work utilized, however they are not
considered a focus of this paper.

For this work, the flow of information begins with a request
from a client through a custom datasource plugin in Grafana.
The plugin is called SOS datasource (SosDS) and it constructs
an HTTP request and facilitates communication with our web
application. The request specifies an analysis Python module
and the data relevant to the query and needed to perform
the analysis. Our application, called sosdb-ui, is a Django
web application suite that handles the Apache request from a
client browser and then queries relevant data from the database
[13]. The sosdb-ui suite of software utilizes Apache, NumSOS,
and the SOS Python API to efficiently query, format, and
return data to a Grafana front-end. The sosdb-grafana module
adds to, and is dependent upon, sosdb-ui and was written
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Fig. 1: Block diagram of web architecture to query, analyze, and
render monitoring data. Green components were specifically made
for the architecture described in this work.

strictly to handle requests from a Grafana server [14]. The
sosdb-ui application handles Grafana requests and calls the
specified Analysis Module to query and perform operations on
the requested data.
To facilitate the transformation and storage of data sets from

the SOS database, Open Grid Computing (OGC) developed the
NumSOS application in conjunction with SOS [15]. NumSOS
contains a variety of functionalities, such as finding the
maximum value of a metric for each job, that make data
manipulation simple for the user. The Analysis Modules use
NumSOS to query the SOS database and perform numerical
operations as needed, the result of which is returned as a
pandas DataFrame to the module. After receiving a data object
from NumSOS, the requested Analysis Module performs some
defined computation and returns its output to sosdb-ui in the
format of a SOS DataSet Python object which is a Python data
object defined and used in NumSOS. Sosdb-ui then utilizes a
Formatter Module to format the data according to the panel
type specified in the original Grafana request. Grafana expects
data to be formatted differently depending on if the data is to
be displayed in a graph, table, etc. Finally, Grafana renders the
data received from sosdb-ui into the requested visualization
format for the user.
The sosdb-ui application was created so that system ad-

ministrators and users with unique implementations on their
clusters will be able to design custom-tuned as-needed Analysis
Modules. To do so, we created a Python class architecture
for NumSOS Python analyses that developers can use to
custom tune the default modules provided, or to create their
own Analysis Modules from scratch. The class architecture is
relatively simple and contains only an init and get data
function. The init function passes the container file location,
Grafana time-range, and schema into the class. The get_dat a
function passes metrics, job number, username, and additional
parameters that can be defined with the query and returns
the necessary data object. The NumSOS queries and specific
computation within the get data function is left to the



developer. Analytic modules in this paper can be found at [14].
These modules exist as Python scripts in a directory. The

framework also enables Python modules to be added, changed,
or removed as needed without re-computation across the
dataset. This plug-and-play nature expedites development and
deployment of analysis dashboards as it does not require a
root user to reinstall the entire application every time a new
module is created.
Our data analysis and visualization architecture presents

many advantages for analyzing HPC data. By doing as-needed
analyses, complex analyses do not need to be run across the
entirety of the database, which would be intractable for typical
HPC datasets. Doing so would consume a significant amount of
storage for saving analysis results and would increase load on
the CPU and memory which could take resources away from
the web server. One disadvantage to this strategy is that multiple
identical queries must perform redundant analyses as opposed
to doing an analysis once for all data. However, performing an
analysis across all datapoints would likely prove impractical
when generalizing this case study to a multi-terabyte dataset.

Additionally, the flexibility of the Analysis Modules allows
us to create nearly any desired analysis. Machine learning
models and statistical outlier calculations are just some of the
features that could be added with this architecture. Of course,
there are trade-offs to be made between intensity of analytic
computation and the return time of the query.

III. IMPLEMENTATION

To demonstrate the utility of our design, this section describes
its deployment for the monitoring and analysis of Eclipse,
a production HPC system at SNL. Eclipse is a 1488 node
cluster capable of 1.8 petaflops [19]. Data storage, analysis, and
visualization back-end components are hosted on a monitoring
host, HPCMON, a single-node server with 72 Intel Xeon Gold
6140 CPUs, 750 GB of memory, and 18 TB of NVMe raided
storage. . The visualization is driven from and displayed on a
per-user basis on each client machine.

A. LDMS on Eclipse

Eclipse is currently running LDMS v3 on all 1488 compute,
24 gateway, 12 login, and 8 administrative nodes to obtain a
comprehensive view of the system. Data is aggregated from all
nodes to administrative nodes, which also collect information
about themselves, and then further aggregated to HPCMON.
We currently collect information related to SLURM job

metadata, memory and virtual memory, CPU utilization, mul-
tiple Lustre filesystems, and the InfiniBand network which
amounts to 406 discrete values, referred to as metrics, from
each node. Data from all nodes is currently sampled once a
minute. The resultant data size is 10 GB per day.

B. SOS and Eclipse Data

While the latest deployments of LDMS can store directly to
SOS, SNL's production systems use LDMS's store feature to
write live data out to CSV files every five minutes on HPCMON.
This creates a five-minute lag to present data which we are
addressing in future work, as seen in VI We keep the most
recent two weeks worth of data from these CSV files in a SOS
database. Two weeks of CSV data from Eclipse translates to

roughly 150 GB which translates to 600 GB in a SOS database
with six indices. In future work, we intend to increase the
sampling rate and length of data stored which will bring the
dataset into the terabyte range discussed earlier.
To demonstrate SOS's utility in this deployment, we com-

pared the ingest and query performance of InfluxDB, an open-
source timeseries database [8], and SOS. We created a 3.5GB
CSV file with 6 6 million records by taking about a third of
the metrics from a single day of Eclipse CSV. Using this as a
data source, SOS maintained an average insertion rate of 8,316
records/second, compared to InfluxDB's rate of approximately
1,665 records/second. This makes the CSV insertion rates for
SOS five times faster than InfluxDB, with neither database
utilizing "batch mode". Batch mode was not used for this
testing because it does not represent rates of continuously
ingesting live data.
As an example of query performance, the databases were

queried for identical metrics through a Python interface, with
a filter for jobs with non-zero IDs. The metric data queried
for in both cases was "Active" memory from a schema named
meminfo. This query was performed 10 times on each database.
On average, InfluxDB returned a pandas DataFrame object
41.15 seconds after submitting a query, while SOS returned
the same DataFrame object, on average, in .008 seconds.

IV. DASHBOARDS AND ANALYSES USE CASES

System administrators face a variety of challenges and
require an agile approach to diagnosing system issues in order
to efficiently address problems as they arise. This section
highlights the Grafana dashboards and underlying analyses that
we created to present relevant metrics to both users and system
administrators in order to meet their expressed needs.
The team of system administrators running SNL's production

HPC systems was surveyed to discover their priorities with
respect to application and system resource performance under-
standing. We summarize their top three priorities as follows:

1) Characterization of dedicated hardware utilization levels
through fractional use metrics of job-specific compute
node resources including RAM, CPU core time, memory
bandwidth, and network bandwidths. Detailed retrospec-
tive analysis of Out-Of-Memory (OOM) related job
failures is particularly sought after.

2) Identification of causes of performance degradation, tied
to a specific user, specific job, and/or hardware fault,
in shared resources such as networks (e.g., InfiniBand,
10GigE) and file systems (e.g., NFS, Lustre, and GPFS),
particularly while the degradation is still in progress and
subject to exacerbation by additional load.

3) Identification of users that could benefit from guidance
to help them understand and avoid grossly inefficient
behavior of their applications.

The primary focus of the dashboards being presented in this
section are compute node memory occupancy and shared Lustre
filesystem load (both bandwidth and meta-data operations).
Subsequent discussions with scientific simulation application
teams have revealed that these same dashboards provide value
to them in understanding their applications and identifying
unexpected or anomalous run-time behaviors. As an example



of the dual applicability, system administrators interested in
seeing why a job ran out of memory and users interested in
observing their application's temporal memory profile can both
find value from a timeseries summary of memory metrics of
a job. In order to facilitate users being able to browse their
applications behavioral characteristics with respect to other
resources, we have created additional dashboards to provide
views of arbitrary raw time-series data for jobs currently or
recently running on the system.
Our dashboards fall into two main categories: general and

breakdown. General dashboards display aggregate information
about the system and how it is being used by jobs or users.
Breakdown dashboards display more detailed analyses about
individual jobs and are typically navigated to by clicking on
links within general dashboards. This distinction was made to
allow system administrators to determine what jobs to drill-
down into at a glance from general dashboards and then
explore the data in breakdown dashboards. All dashboards
enable selection of a HPC system-specific metrics database
via a drop-down "container' menu. This is to support the
many individual HPC systems in our production data center.
In this work, the only database created and used was for the
Eclipse system. Dashboard load times depend on the time-range
specified but typically range from 5-15 seconds for an hour of
data. The Lustre Summary Dashboard loads on the order of
30-45 seconds because of the large quantity of queries.
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Fig. 2: The query interface in Grafana with the sosdb-grafana plugin.

Each panel in a dashboard is associated with a single query
which may or may not have an analysis associated with it.
Analyses are only run when an associated query is executed.
This happens on dashboard loads, refreshes, and time-range
changes. An example of the Grafana-based query interface
provided by the SosDS-grafana plugin is shown in Figure 2.
Container, schema, job number, component, user name, and
producer name are all parameters passed back to NumSOS
and the python analysis modules for performing the SOS
database query and associated analyses. The Query Type field
can be defined as either "metric" or "analysis" depending on
whether the result returned for display is to be raw or derived
respectively. The remainder of this section presents a variety of
dashboards that provide the insights requested by our system
administrators. The only HPC system represented in this section
is Eclipse but there is nothing about the dashboards and other
mechanisms presented that are system specific. All dashboards
presented here display real data from a normal two week period
of Eclipse activity. We describe use cases for these dashboards
but did not provide in-depth root cause analysis for trends
displayed.

A. System Memory Summary Dashboard
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Fig. 3: System Memory Summary dashboard displaying metrics about
top nodes in terms of memory usage, bottom node tables omitted for
brevity.

The System Memory Summary dashboard in Fig. 3 tabulates
the top and bottom jobs in terms of percent of memory high-
water mark over the time period specified and presents this in
two separate panels (High Memory Jobs shown). The utility
of identifying high-memory jobs is to understand temporal
memory characteristics of an application; if users are bumping
up against memory limits (inform future procurements), or
being killed due to excessive memory utilization or memory
anomalies on some nodes of a job. For low memory jobs such
insight can additionally provide opportunities for more effective
problem decomposition. Users may also compare the reported
node with high or low memory usage to the node0 host memory
usage via the General Job Metric Dashboard described later.
The node0 host is defined as the smallest node number host in
the job, which is of interest because job schedulers often put
rank 0 of a parallel application on this node. Likewise, the same
tabulations are provided for high and low memory utilization
on nodes not allocated to jobs, including login nodes (High
Memory Idle nodes shown). As seen in Fig. 3, many of the high
memory usage idle nodes are login nodes, which is expected.
However, one of the nodes in this category is a compute node
which may occur from abnormal memory utilization, orphaned
processes from previous jobs, malicious code execution, and
malfunction of system OS code. This information can help
identify problem nodes which can be pulled out of the pool
available for allocation to jobs.
The memory used percentage is calculated using Equation

1
MemTotal — MemAvailable

MemUsed% = * 100 (1)
MemTotal

MemTotal and MemAvailable are both metrics read from the
/proc/meminfo pseudo-file. The Node column displays the
compute node on a particular job which has the maximum
percentage of memory used over the display time period.



The min/max threshold input at the top of the dashboard
determines the number of jobs or nodes included on each
panel. The query for this dashboard can be changed to filter
jobs by user. Populating the username field with "system"
or with a blank returns data for the entirety of the system.
Other dashboards with the "username" field follow the same
convention. Our Grafana instance is restricted to trusted user
groups so we do not have security concerns on one user seeing
another's data.

Clicking on a job number in this panel takes the user to the
dashboard in IV-B with time range automatically set to the
beginning and end of the job. This is done by using the returned
job start and end times from the System Memory Summary
query as variables in the hyperlink to the other dashboard.

B. Memory Min/Mean/Max Across Components Dashboard
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Fig. 4: Memory Min/Mean/Ivlax across Components dashboard which
displays active, dirty memory, and four other metrics (omitted for
brevity) for a single job across all nodes with max, mean, and min
values for each timestamp. Here, active memory dips correlate with
dirty memory spikes.

The Memory Min/Mean/IVIax across Components dashboard
shown in Fig. 4 is a breakdown dashboard that displays the
minimum, mean, and maximum of several key memory metrics
for a particular job. These metrics are Active, MemAvailable,
Writeback, AnonPages, Dirty, and Mapped which all come from
the /proc/meminfo pseudo-file. The min and max values at each
timestamp correspond to the minimum and maximum values for
that metric across all nodes in the job. While this page is usually
accessed from the System Memory Summary dashboard, it can
also be accessed via the Grafana "dashboard dropdown" menu.
Users can modify the job number and time range to meet their
query needs. Users can track the load balance and memory
usage characteristics of their applications over time as well as

check for anomalies in the memory profile. Figure 4 shows
the active memory and dirty memory metrics for a particular
job. There are two dips in active memory at the same time
that there are spikes in dirty memory. This might point to the
application waiting on the filesystem to continue progress. It
could also convey that the job was not operating at maximum
performance because there was an issue with writing to disk.
System administrators can check for potential upcoming OOM
conditions, for consistently high dirty memory, or if users are
misallocating resources (i.e., multiple nodes but using only a
small fraction of CPU and memory/memory bandwidth).

C. Lustre Summary Dashboard

The Lustre Summary dashboard in Fig. 5 communicates the
utilization of a Lustre filesystem, an important shared resource
across the SNL HPC center. There are three different types of
analyses being presented on this dashboard: high utilization
jobs, high utilization users, and system views of utilization.
There are two types of rates shown in these panels: average
and peak. These analyses assist the user in identifying jobs
with high continuous or peak Lustre usage. For the entirety
of the time period selected, metrics passed to the query are
summed together at each timestamp. Using this timeseries of
a sum of metrics, simply denoted as "met" in the following
equations, the average rate is calculated using Equation 2 and
the peak rate by Equation 3. Each of these rate equations has
its own analysis module. The final timestamp for the job is
notated as tn, the initial as to in these equations.

AverageRate = 
En (met, — 

(2)
tn — to

PeakRate = max( 
met, — met,-1
  for i = 1...n) (3)

ti — ti_i

The File Ops panels present file event rates from the Lustre
client counters, specifically the open, close, create, and unlink
events which are all passed into a single analysis module.
The "Bps" panels describe the read and write rates (in units
of Bytes per second) on the filesystem using read_bytes and
write_bytes counters from the same utility. The top jobs panels
display the top k jobs in terms of average or peak rates where
k is the threshold value selected. The job numbers link to File
Operations (Ops) and Bps breakdown dashboards. The top users
panels compute the peak and average rates per individual user
rather than per job and display the top k users. This provides
user-based attribution of file system utilization independent of
number or size of jobs.
The timeseries charts on the left of Fig. 5 display a breakout

of the metrics used in the top job and user panels, but are
computed from totals over the entire system. These are broken
out into rates contributed by login nodes and by compute nodes.
The reason for this separation is that, for Eclipse, operations on
the login nodes contribute significantly to the total usage of the
filesystem. This might be indicative of users inappropriately
using the login nodes, which would also be of interest. As seen
in the left middle panel of Fig. 5, there is a period of time
where a substantial part of the Lustre open and close operations
happens on the login nodes. The job and user panels do not
encapsulate data from the login nodes, so it is important to
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Fig. 5: Lustre Summary dashboard reporting the top jobs and users in terms of peak and average file operations along with a system view of
file operations. Bytes read and written tables and plots are calculated as well but omitted for brevity.

include that distinction in the visualizations. Like the System
Memory Summary dashboard, a specific user can be selected
via the username input at the top of the dashboard. This does
not affect the system timeseries plots.

D. File Ops and Bps Breakdown Dashboard

The File Ops and Bps Breakdown dashboards in Fig. 6 and
Fig. 7 are further expansions of the metrics described in the
Lustre Summary section. A timeseries plot of each metric's rate
for a specified job is shown with system information below it for
comparison. Rates are calculated as in Equation 3 but without
taking the maximum value and simply presenting all values.
Users can view the rate of file operations and byte reads/writes
as their application progresses. System administrators can
understand how much an individual job is contributing to
the load on the filesystem. For example, in Fig. 7, the job
metric plot has three peaks which corresponds to peaks in the
system summary plot.

E. Job Information Dashboard

The Job Information dashboard in Fig. 8 displays all of
the jobs that are running during the time period specified. All
jobs running in the time range are found. Extra analysis is
done to construct a report of the job start time, end time,
total time, node0, and hostname list. The job numbers link
to the dashboard in IV-F and automatically configures that
dashboard's time range to be the time span of the job. A
specific user can be selected via the username input at the
top of the dashboard. Users and administrators can use this
dashboard to get a snapshot of jobs running on the system.
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Fig. 6: FileOps Breakdown dashboard showing timeseries for the
file open rate of a job compared to the system. Three other file ops
metrics are present but omitted for brevity.

F. General Job Metric Query Dashboard

The General Job Metric Query dashboard in Fig. 9 displays
a timeseries plot and heatmap of a single metric for all of
the nodes associated with a single job over the specified time.
In this case, the metric is the number of processes running
and is plotted for each node in the timeseries plot. From the
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Fig. 7: Bps Breakdown dashboard showing a timeseries for the rate
of bytes written of a job compared to the system. The rate of bytes
read is present but omitted for brevity.

timeseries plot, we see one node has regular groups of spikes
in number of processes and another node has consistently less
processes than the mean which may or may not be a normal
profile for the application.
The heatmap is used to summarize timeseries plots for high

node counts and has a faster render time than the corresponding
timeseries plot. The heatmap displays the timeseries plot binned
into different regions over time with a color on a blue-red
spectrum. Colors near blue indicate a low number of nodes
in the bin whereas red indicates a high numbers of nodes. In
Fig. 9, most of the nodes have a procs_running value around
35 so most of the bins around that value are orange or red.
Any metric can be viewed on this dashboard by changing the
selection drop-down boxes at the top. This dashboard is used
by developers or users to get raw information about a job. An
analysis module is not needed for this dashboard, as simple
queries return the datasets required directly. Grafana enables
users to export data from any panel to a CSV file, so users
can obtain the raw LDMS information for their job.

V. RELATED WORK

There is a long history in visualizing HPC system data. In
this section we describe a variety of other research which
specifically addresses general variable analyses for runtime
performance monitoring. Our research remains distinct because
of the highly customizable, as-needed analyses that are enabled
by the data pipeline.

Ganglia [10] is a common HPC monitoring tool which uses
RRDTool [11] for data storage. Typical visualizations leverage
RRDTool's facility for aging out of data and storing larger time
aggregates (e.g., per hour, per day) to drive the data for the
interfaces, rather than on-demand analyses. Ganglia typically
targets general monitoring, with its high overhead (relative to
LDMS [3]) limiting its ability to collect the number of metrics

and fidelity of collection necessary for the resource analyses
targeted here.

Nikitenko et.al. [6] from Moscow State University created
JobDigest which collects 20 CPU and IB metrics from their
supercomputer Lomonosov2 and displays these metrics in a
variety of timeseries plots and tables. The data was stored in
a PostgreSQL database and basic statistic of each metric were
calculated and plotted in tables with color coding to indicate
the health of that metric for a job. This framework shares much
of the basic functionality of our work, however JobDigest does
not have as many metrics available to users and developers or
the flexibility to perform complex analyses.

Eitzinger et.al. [7] created ClusterCockpit for visualizing
job performance monitoring. ClusterCockpit is a custom web
application that visualizes HPC data from the Likwid moni-
toring stack. The interface was created with high-performance
and ease of use/installation in mind and deliberately does
not support generalized displays that would be needed for as-
needed analyses and visualizations. The framework is aimed
at supporting performance analysts in small to medium sized
HPC centers whereas we are aimed at large scale centers.

Netti et.al. [4] showcases using Data Center Data Base
(DCDB) for analyzing job workloads and presenting data to
a Grafana interface. DCDB shares many attributes of LDMS
in terms of low-latency and range of metrics which can be
collected. Like our research, they created a custom plugin
for Grafana. They use Grafana to plot power consumption by
three different nodes on a production system at the Leibenz
Supercomputing Center (LRZ). DCDB does allow for collecting
derived metrics from user-specified arithmetic statements,
however this seems to be done in the configuration of a node
sampler rather than as-needed like our analysis modules.
TACC Stats has a long history in HPC monitoring, with

recent advances supporting live data display [17]. Simple
statistics (e.g., max, average) are calculated for each job
for visualization. The authors note that Python scripts for
more complex queries can be written that leverage aggregation
functions provided by the Django Object Relation Mapping to
their PostgreSQL database, but it is unclear what complexity
of query can be supported, how the scripts can be integrated
into the architecture for as-needed and repeated use, and how
results from such queries would be supported in the dashboard.
Prometheus is an open-source systems monitoring toolkit

which can integrate with Grafana to provide data visualizations
[20]. Several HPC monitoring frameworks [18], [21] have
used Prometheus as their database. The query language for
Prometheus supports in-line functions such as rate calculations
and aggregations over time. However, Prometheus's data
analysis capabilities are limited by it's function set.

Finally, Shoga et.al. [9] created an infrastructure called Sonar
to ingest data from a variety of data sources, including LDMS,
and then enable Jupyter notebooks to query and analyze the
resulting data. They used Kafka with custom LLNL tools and
plugins to transport data from spooling directories to their Sonar
cluster. The cluster had an Apache Cassandra database with
a query API called Scrubjay which presented the database to
the Jupyter notebooks. From there, they could create whatever
analyses they wanted from the data using Python. This work



container eclipse usemame system

Job Table

Job ID User Node 0 # of Nodes Job Start Job End • Total Time (s) Nodes

2020-06-24 2020-06-24
5978197 Jennifer Nodel 7 5580 Node[1,2,3,4,5,6,7]

13:53:00 15:26:00

2020-06-24 2020-06-24
5976069 Bob Node64 31

12:32:00 15:26:00
10440 Node[64,86,89,90-110...]

2020-06-24 2020-06-24
5967273 George Node72 2

09:27:00 15:26:00
21 540 Node[72-74]

Fig. 8: Job Information dashboard which shows all currently running jobs on the system and some data about them.
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Fig. 9: General Job Metric Query dashboard showing the number of processes running on each node during for a single application. A
timeseries plot and heatmap describe the trends of this application with regular groups of spiking on a certain node and one node consistently
lower than the mean.

shares many similarities to ours, however, our Grafana interface
provides a unified area for system administrators and users
alike to view data and provides a low barrier to adding and
sharing new analyses.

VI. CONCLUSION AND FUTURE WORK

The data pipeline presented in this paper showcases a new
way to create and present insights about HPC system operations.
By using flexible, as-needed python modules within queries,
analysis results can be returned without needing to perform
unnecessary computation on the entirety of the dataset. New
visualizations and derived metrics can be created to address
new needs. We have deployed our architecture on a 1500-node
HPC system, including analytics that address the priorities of
users and system administrators with respect to application and
system resource performance understanding. Some users and
admins have already used this application with the aid of basic
tutorials.

Updates to the data pipeline are currently underway. We
are simplifying data management through direct storage to

SOS containers, rather than intermediate CSV files, which will
eliminate a lag in presenting data. We are ingesting more job
and user metadata for faster queries. We are working with code
development teams to ingest application performance metrics
into the database which will allow us to correlate system events
with application events in order to answer the universal user
question of "Why is my job slow todayr New derived metrics
for network congestion and integration of machine learning
analyses for detecting system anomalies are also underway.
Finally, a distributed version of SOS, Distributed Scalable
Object Storage (DSOS), is currently in development at OGC
which will enable the database to scale across storage devices.
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