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Overview () e

= Overview of Bayesian Inference and MCMC
= Sequential Tempered MCMC

= Multifidelity ST-MCMC

" |dentifying gene regulatory networks

= Conclusion




Motivation () e,

= The Bayesian Perspective:

* Probability distributions quantify uncertainty due to insufficient information

= Bayesian methods for identification and estimation are critical to the
robust system analysis

= Yet, Bayesian methods like MCMC are often computationally very
expensive since the require many model evaluations

= Often computational models exist with varying fidelities, which can be
used to speed up MCMC

* How do we know when to use each model in a fidelity hierarchy?




The Bayesian Inference Problem () i,

Observations: D

Bayes’ Theorem




The Bayesian Inference Problem () s,

Observations: D

Bayes’ Theorem

p(D|6,M)p(0| M)
p(D|M)

‘ N
Posterior Estimation: E[g(f) | D,M] = / (0)p (0| D, M)db ~ Zg(ﬁi)
Model Evidence: p(D|M)= /p(D [0, M)p(O | M)do




Quantifying Learning () i

= Quantifying the accuracy of a " |[nformation quantifies how belief
quantity of interest q(8) change to p(0) with respect to
= Posterior Estimation: a state of belief r(0) :
N 0
Elg(0) DM = [4(0)p@] DM~ 59 (0) Loy [P(0) || q(8)] = /7“(9) log %d@
= Effective Number of Samples = Quantifying changes in belief due to
| 0 ' .
ESS g (01.x)] = 'l»;a"" [siv (0)] inference:
var ["N >i=19 (9?:)] To(oi,wunn) [p(0 | Dy, M) || p(0 ] 9, M)] =

(0 1D,¢p, M)

)
o, M)

KL [p(0 | D, %, M) ||p<9|¢,M>1=/p<9|D,¢,M>1ogp

J. A. Duersch and T. A. Catanach. Generalizing information to the evolution of rational belief. Entropy,
22(1):108, 2020.
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Sequential Tempered MCMC (ST-MCMC) =

= ST-MCMC methods use parallel chains that interact with each other to
speed up convergence

= ST-MCMC methods evolve to the posterior through a series of
intermediate distributions

= ST-MCMC is able to solve Bayesian parameter estimation and model
selection problems effectively




Sequential Tempered MCMC () e,

= ST-MCMC methods combine:
1) Annealing: Introduce intermediate distributions
2) MCMC: Explore the intermediate distributions

3) Importance Resampling: Discard unlikely chains and multiply likely chains while
maintaining the distribution

= Examples: SMCY%3, Subset Simulation*, TMCMC>, and AMSSA®

! Del Moral et al 2006 3 Kantas et al 2014 > J. Ching and Y. C. Chen 2007
2 Cérou et al 2012 4S.K. Au and J.L. Beck 2001 6 E. Prudecio and S.H. Cheung 2012



Annealing () s,

B defines how much the data updates the intermediate distribution:

m: (0) < p(D | 6, p(6| M) B;€]0,1]

Intermediate distributions at different B levels
Level 0: B, =0 Level 1: B, = B, + AB; Level 2: B, =B, +AB, Leveln: B, =1

Posterior




Annealing: Finding AR ()

Find AB such that the coefficient of variation (k) of the sample weights is 1
Sample weight: w (gj) o p(D | Qj,M)Aﬂfi

Coefficient of variation: x (w) — w

Current Level Set of Possible Next Betas

Weighted Sample
Populations




Importance Resampling =

= Resampling the population rebalances the weights as the distribution
changes. This discards unlikely samples and replicates likely samples

" Multinomial Resampling from level i-1 to level i:

Probability of selecting sample k: P (0; ; = 0;_1 1) = w (0;i—1%)

Sample weight: w (6;-1) < p(D | Hi_l’j,M)A,Bi




Metropolis Hastings MCMC with Parallel Chains

Single MH Markov Chain Parallel MH Markov Chain

Proposal
Distribution

Markov Chain

Multiple
Markov Chains
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Estimating Model Evidence using ST-MCMC ()

Model Class Probability:

p(M | z) = REIMPM)

p(2)

. (/pcz 10, M)p(0] M)do)p(M)

Model Class Evidence:

l . .
/ p(z] 0, M)p (0| M)do = ch, Dec;ompose_lnto evidence
i—1 for intermediate

it Distribution Evidence Estimate: RIS UOENS

Bi—1 , N
¢; = /p(z E H,M)Aﬂi P(Z | G,Mz_l p(ﬂ % ‘M)de - %Zp(z E ei—l,k,M)Aﬁi
\ J\ Hi=1cs I |
! r v
Level i Likelihood Level i prior Monte Carlo Estimate




Multifidelity ST-MCMC

= Models in a multifidelity hierarchy can
define intermediate levels just like the
annealing factor’

p(D |6, M) p(6)
p(D | M, 1)

= Tempering: Adjust the annealing factor

TR, (9 | Mml) —

" Bridging: Change model fidelity
= Reweighting

&
WBH‘(eﬂMmz-l-l) b (D | eé’ Mml-l—l) o

Ww; = =
T3, (Gi | Mmz) ) (D | Qé,lwm)ﬁ'I

Latz, Jonas, lason Papaioannou, and Elisabeth Ullmann. "Multilevel sequential?2 Monte Carlo for
Bayesian inverse problems." Journal of Computational Physics 368 (2018): 154-178.

Model Fidelity
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General Multifidelity ST-MCMC Algorithm r

Inputs : Prior distribution p (0)
Model fidelity hierarchy M = {M; : j=1... K} . .
Likelihood fanction p (D | 6, M;) ’ } Define the model hierarchy
Number of samples N
Output : Posterior samples 0;. n
begin
Initialize: Set level counter [ = 0
Set annealing factor 3o = 0
Set model level my = 1
Define the first intermediate distribution 7y (6) = p (0)
Draw initial samples 0] 5 ~ 7o ()

while 75, (0| M,,) # p (0 | D, M) do - -
1) Increment level counter [ = [ + 1 Identlfy the annealmg factor

and model fidelity for the
et e Gtk (O Al (B IBAMANBY, I next evel of ST-MCMC

-1
4) Compute the unnormalized importance weights for the population as w; = — (0.7 1Mom,) } Transform the sam pIe

TBy—1 (92_1 | M, )
5) Resample the population according to the normalized importance weights to initialize 0} popu lation

6) Evolve the samples 8!, using MCMC with stationary distribution g, (0 | M,,,)

end
return 0, n = ell...N
end




Bridging/Tempering Strategies =

Multilevel Sequential> Monte Carlo Information Theoretic Bridging
(ESS Bridging)

1. Trya Bridging Step: 1. Try a Tempering Step

Bl,Mml _> Bl-{—l ﬁl) ml+1 - Mml+l Bl)Mml —> Bl+l = Bl —I_ AB) Mml+1 = Mml

2. Compute the population weights 2 Determine if this step gains or

p (D] 6L, My, 1)" looses information about the
L p(D |6, M m;)ﬁl posterior
3. Temper instead if ESS of the Zoop.aic) [P (8| D, Moy, Bie1 ) 1P (8 | Dy Moy, o)
weighted population is too low 3. Bridge if looses information

Bi, My, = Biv1 = B1 + AR, My, ,, = My,




Bridging/Tempering Strategies ="

= ESS-Bridging requires only Comparison of Trajectories
evaluating models at the current —== Full-fidelity =~ —— IT-Bridge
. -=---- ESS-Bridge  =v---- Tuned IT-Bridge
and next level of the hierarchy R
» |T-Bridging additionally requires o ]_
some full model evaluations g
L
= After bridging, the annealing % 103
factor can also be tuned to an = T
ESS target (Tuned IT-Bridge) | .
Bl?Mml — Bl+1 — Bl + Aﬁa Mml+1 — Mmz-H 1077 107"




Information Theoretic Criteria ()

= To determine if information is lost, we need to estimate the sign of

Ip(9|DaMK) [p (9 | D7 Mmla [3l-|-1) ||p (e | D7 Mmu Bl)]

p(D l Mmla Bl-l—l)
DI0.M Do, M, )P
p(|’k)log p(D|06,My,,)

&
(D | eijl) l E9|D,Mml,[3l |:p (D I 67 Mml)AB]

— /p(9 | D, Mg )logp (D |0, Mp,)

do

Oc/p(e|D7Mml7Bl)p

= This can be estimate using samples from =, (0 | M,,,)
- p(D I 67MK)
P (D | eaMmz)ﬁl

| p(D |6, M)
P (D | G’Mmz)ﬁl

A
Icrite'ria :E9|D,Mmla[3l logp(D | 97Mml> B:l -

EG'D,Mml,Bl

A
} logEg|p M., B, [p (D |6, Mp,) ﬁ]

(e ,,sSSSSSS————EEEE——



Bayesian Inference of Stochastic
Reaction Networks

with Huy Vo and Brian Munsky at Colorado State University

Catanach, Thomas A., Huy D. Vo, and Brian Munsky. "Bayesian inference of Stochastic reaction networks using Multifidelity
Sequential Tempered Markov Chain Monte Carlo." arXiv preprint arXiv:2001.01373 (2020). [Accepted JUQ]




Chemical Master Equation Model () i

_ Stochastic Reaction Networks Surrogate Hierarchy for the FSP CME

Dynamics p=A(0)p
Observations (D) Chemical Species Copy Number . =4

(Molecule Count) g ol — oo
States (p) Probability of a cell h_avmg acertain g5 e

number of each species (p)

« True CME
. . > 20 »= Surrogate CME - b=40

Parameters (0 ) Propensities for certain reactions = SniTogte CHE - b8l

to occur o === Surrogate CME - b=100
Model Hierarchy (1) Maximum copy number in Finite - - T

State Projection CME algorithm

" Limiting the maximum copy number significantly reduces
the size of the matrix A(6) making the simulations faster.




Example 1: Repressilator Gene Circuit () i

" Theoretical three species gene circuit with negative feedback

Parameter ID with ST-MCMC

Chemical Reactions i
5 20 50 %5 25

reaction propensity
0 0 0 0

1. 0 — TetR ko/(1+ ag[LacI]t) 0 1 2 0 1 2 0 1 2 2 -1 0
2. TetR — 0 vyo[TetR] log, ko logy k1 log, k2 log; bo
3. 0 — Acl ]{71/(1 + ap [TetR]b‘) c c - 50 :
4. Al —0  yi[Ac]] o - 10
5. 0 —Lacl ky/(1+ ay[AcI]®) . :
6. Lacl -0 +y[Lacl] G - 0 g - 0 '
= B 0 = 1 0 2 =i 0 B 5 W
log1y 70 logyom logp 72 log, by
I | I i
Sg. | L 5 A/\ 5 L ) l
1
——= True  Wwm Full-fidelity = mmm |T-Bridge 0 ! o 0 0
Prior ESS-Bridge Tuned IT-Bridge 2 —1 " —4 —1 . —= —1 0 -2 -1 0




Example 1: Repressilator Gene Circuit @sﬁ.@;ﬁ

= Multifidelity ST-MCMC provides = The evolution of parameter
speed ups of 3.5 (ESS-Bridge), 4.8 estimates are very similar
(Tuned IT), 6.2 (IT-Bridge)

Example Trajectories

—==—Full-fidelity —— |T-Bridge Full-fidelity ——— ESS-Bridge —— |T-Bridge Tuned IT-Bridge
----- ESS-Bridge -====+ Tuned IT-Bridge
1.25
5 106 < 1 &' <1
10 e = w = 1.00 %\ =
20 o0 0
-------------------- 2 2 2
g ks
g e 0°¢ 1072 10° 1076 1072 10° 10°6 1072 10°
£ % 10
b a
2 - & g —1 &
© & = S S
= g g g~
_9 -2
10* 106 1072 10° 106 1072 10° 06 102 10°




Example 2: Compartmental Model of Gene Expression @ o

" Theoretical Bayesian model Chemical Reactions
SEleCtIOn for‘ a 2’ 3’ and 4 gene reaction index reaction propensity
o . 1,...,71 Gi—l Gi,izl,...,n —1 kj-_l[Gz'—l]
model for the transcription, mod L g G Genie L ng—1 k7 [Gi]
. . 2ng+1,..., 3ng—1 G; > G, +RNA,4c,t1=1,..., ng — 1 T‘L[GL]
transportation, and degradation 3na RNA, . — RNAcy, Ftrans[RNA )
3ng + 1 RNA — 0 Y[RNAy¢]

of nuclear mRNA
" Tuned-IT bridging was used

Model Evidence

because of its robustness at Model Full-fidelity Tuned IT Bridge
. . . Log Evidence Time (Sec) | Log Evidence Time (Sec)
estimating the evidence. 2 Gene | —20108.8 5.4 1244 | —20112.6 £ 2.0 758

3 Gene | —20111.9 +5.6 67496 | —20115.7+2.0 17511
= Speed ups of 1.6, 3.8, and 3.2 for 4 Gene | —20113.0 +5.7 76546 | —20117.5 + 1.8 23777

the 2, 3, and 4 gene models
respectively




Example 3: Inflammation response gene IL1beta () i,

Data Fits
- Th ree state gene expression - il - —
model for inflammation g
response |L1beta dataset?! so
Chemical Reactions t=10nr t=20hr
reaction propensity oo o
1. GO —> Gl k()l [GO] §0-004 §o,oo4
2. Gl — G2 klZ[Gl] 0.002 0.002
3- G2 — Gl k21 [GZ] 0000 0 200 Izt!ol ' .600 0000 oIII 200 400 600
4. G =Gy kio(t) = max{0, ai — bioS(t)}
5. ) —=RNA o« [Gl] + OCQ[GQ]
6. RNA — (Z) Y[RNA] go.ooe
S(t) = max {0,exp (—r(t — Tp)) (1 —exp (—r2(t —70)))} e

0 200 400 600
'Kalb, Daniel M., et al. "Single-cell correlations of MRNA and protein content in a human monocytic cell RNA copy number
line after LPS stimulation." PloS one 14.4 (2019): e0215602.

0.000




Example 3: Inflammation response gene IL1beta () i,

= Three state gene expression Parameter ID with ST-MCMC
model for inflammation el e
response IL1beta dataset! v L m /3&
Chemical Reactions ™ g loguobio. ™ logar |
reaction propensity . 1 "W" 0 JA\ 5 J/\
. Go— G kulGo L, Lo
2. Gl — G2 klZ[Gl] logyg 2 logyg k12 logyo
3. Gz — Gl k21 [GZ] o 10 |
4, Gl — G() kl()(t) = maX{O, ayo — bl()S(t)} 2 J\ ? /A A
5. ) 5 RNA  o[Gy] + oG] : e .
6. RNA — () y[RNA] logio kot logy ko logyy T
S(t) = max {0,exp (=7 (t — Tp)) (1 —exp (—r2(t —T70)))} g’ /\A 2 M
'Kalb, Daniel M., et al. "Single-cell correlations of mMRNA and protein content in a human monocytic cell N logl_fam N B = N

line after LPS stimulation." PloS one 14.4 (2019): e0215602.




Example 3: Inflammation response gene IL1beta () i,

= Multifidelity ST-MCMC provides " There is more variation in the
speed ups of 1.7 (ESS-Bridge), 2.0 trajectories but they still follow
(Tuned IT), 2.2 (IT-Bridge) similar trends

Example Trajectories
Full-fidelity =~ —— ESS-Bridge =~ —— IT-Bridge

=== Full-fidelity —— |T-Bridge
------ ESS-Bridge ===+ Tuned IT-Bridge

Tuned IT-Bridge
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Conclusion () i

= Multifidelity Sequential Tempered MCMC methods are able to solving
Bayesian system Identification and model selection.

" [Information Theoretic approaches can be used to identify when a
model in the multifidelity hierarchy no longer is informative in ST-
MCMC

= Multifidelity CME models can be used to accelerate identification of
gene regulatory networks




