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■ Overview of Bayesian Inference and MCMC

■ Sequential Tempered MCMC

■ Multifidelity ST-MCMC

■ Identifying gene regulatory networks
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Motivation

■ The Bayesian Perspective:

• Probability distributions quantify uncertainty due to insufficient information

■ Bayesian methods for identification and estimation are critical to the
robust system analysis

■ Yet, Bayesian methods like MCMC are often computationally very
expensive since the require many model evaluations

■ Often computational models exist with varying fidelities, which can be
used to speed up MCMC

■ How do we know when to use each model in a fidelity hierarchy?
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The Bayesian Inference Problem

Obse vations:

Bayes' Theorem
p (0 I D .A4)

p(D .A4)p(Ol]M) 

1)(1)1M)
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The Bayesian Inference Problem

J

Observat ons: D

[ Bayes' Theoremmo 

(0 I D A4)

p(D A-1)p(O1M) 
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Posterior Estimation: E [g (0) l D,,tit ~g(e)P ,,tit)de N g (0i)

Model Evidence: l A4) = p .A4) p M) dO



Quantifying Learning

• Quantifying the accuracy of a
quantity of interest

• Posterior Estimation:

E Q9 (0) l .A41 g (0)kell),M)dO
i=

g(Oi)

• Effective Number of Samples
var [g ( )1

ESS [g (91-N)]
var [1 g (0-)
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• Information quantifies how belief
q(9) change to p(9) with respect to
a state of belief r(9) :

Ir (0) [P(e) q(6)] r(e) log P±')de
q(61)

• Quantifying changes in belief due to
inference:

[p(19 I DoP,A4) 11 *0 0,.A4)] =

KL [p(9 I D M) I I p(e M)] = 1)(0 I D , , M 
p(e 

.A4)
) log D de

1# M)

J. A. Duersch and T. A. Catanach. Generalizing information to the evolution of rational belief. Entropy,
22(1):108, 2020.
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Solving Bayesian Inference and

Uncertainty Quantification Problems



Sequential Tempered MCMC (ST-MCMC)

■ ST-MCMC methods use parallel chains that interact with each other to
speed up convergence

■ ST-MCMC methods evolve to the posterior through a series of
intermediate distributions

■ ST-MCMC is able to solve Bayesian parameter estimation and model
selection problems effectively
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Sequential Tempered MCMC
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• ST-MCMC methods combine:

1) Annealing: Introduce intermediate distributions

2) MCMC: Explore the intermediate distributions

3) Importance Resampling: Discard unlikely chains and multiply likely chains while
maintaining the distribution

• Examples: SMC1/23, Subset Simulation4, TMCMC5, and AMSSA6

1 Del Moral et al 2006

2 Cérou et al 2012

3 Kantas et al 2014 5 J. Ching and Y. C. Chen 2007

4 S.K. Au and J.L. Beck 2001 6 E. Prudecio and S.H. Cheung 2012



Annealing

defines how much the data updates the intermediate distribution:

71- (0) oc p (73

Level 0: [30 = 0

Prior

p

0 .A4)13i p (0 I M) 13i E [0 1

Intermediate distributions at different p levels
Level 1: 131 = [30 + A[31 Level 2: [32 = 131 + A[32 Level n: Pon = 1
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Annealing: Finding ap

Find Ap such that the coefficient of variation (. ) of the sample weights is 1

Current Level

Sample weight:

Coefficient of variation:

(O ') 1) (I) l

k (W) — c r (w)

Set of Possible Next Betas
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Importance Resampling

• Resampling the population rebalances the weights as the distribution
changes. This discards unlikely samples and replicates likely samples

• Multinomial Resampling from level i- 1 to level i:

Probability of selecting sample k: p (O.  oi w 0-

Sample weight: w (0-
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Metropolis Hastings MCMC with Parallel Chains

Single MH Markov Chain Parallel MH Markov Chain
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Estimating Model Evidence using ST-MCMC

Model Class Probability:
)  p(z

l A4)13 (A4
p (z)

Model Class Evidence:

p (z I e, .A4) p (0 .A4) dO

ith Distribution Evidence Estimate:
p(z 0,M) '13

, M)A132.

, M) p (0 M) dO) (- 4)

1
i=1

11'

Level i Likelihood Level i prior
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Decompose into evidence
for intermediate
distributions

p(zIO
k=1

k

Monte Carlo Estimate



Multifidelity ST-MCMC

• Models in a multifidelity hierarchy can
define intermediate levels just like the
annealing factor1

p(D I e, Mmi)131 13 (0) 
7131 (O 1117721)

13(D I Mm,

• Tempering: Adjust the annealing factor

• Bridging: Change model fidelity

• Reweighting
7

131+1 (01i1M-mi+1

7131 (@ii Mini)

131+1
p mi±i

Pi

1 Latz, Jonas, lason Papaioannou, and Elisabeth Ullmann. "Multilevel sequential2 Monte Carlo for
Bayesian inverse problems." Journal of Computational Physics 368 (2018): 154-178.
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General Multifidelity ST-MCMC Algorithm

Inputs : Prior distribution p (0)
Model fidelity hierarchy M = {Mi : j = 1 . . . K}
Likelihood function p (D l 0, Mi)
Number of samples N

Output : Posterior samples 01...N

begin
Initialize: Set level counter l = 0

Set annealing factor (30 = 0
Set model level mo = 1
Define the first intermediate distribution 710 (0) = p (0)
Draw initial samples 0?...N — 7To (0)

while 701 (0 1 Mmt) p (0 ID, MK) do
1) Increment level counter l = l + 1

I Define the model hierarchy

1
rtiroose the neit (3/ and TT based on the previous level sample population 011.. INII

3) Define the next intermediate distribution 7(31 ig_Lmm,Ipc p (D lAbiliml)f31 p„ . a

4) Compute the unnormalized importance weights for the population as wi =
70/ (ei-ilMmt)

70/-1(°1i 11Mmj-i)
5) Resample the population according to the normalized importance weights to initialize 011...N
6) Evolve the samples 011...N using MCMC with stationary distribution 701 (0 l Mmt)

end

return O l...N = 0
end

...N
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Identify the annealing factor
---1 and model fidelity for the
j-- next level of ST-MCMC

LTransform the sample
j population
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Bridging/Tempering Strategies

Multilevel Sequential2 Monte Carlo
(ESS Bridging)

1. Try a Bridging Step:

Pi, mm, = Mmj+1

2. Compute the population weights

p (7) eli,-7711+1 )131 

p eli, Mmi)13'

3. Temper instead if ESS of the
weighted population is too low

Mmi = + Mmi+i
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Information Theoretic Bridging

1. Try a Tempering Step
131,111mi -> 131+1 = + 013. _11111 l -11111

2. Determine if this step gains or
looses information about the
posterior

ip(017),M.) [p(e I D1 Mmi i31+1)1113 (0 Mmi PO]

3. Bridge if looses information



Bridging/Tempering Strategies

• ESS-Bridging requires only
evaluating models at the current
and next level of the hierarchy

• IT-Bridging additionally requires
some full model evaluations

• After bridging, the annealing
factor can also be tuned to an
ESS target (Tuned IT-Bridge)

Pi, mmi - pi + mmi+i = 1117n1+1
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Comparison of Trajectories

Full-fidelity

ESS-Bridge • • •

IT-Bridge

Tuned IT-Bridge
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Information Theoretic Criteria

• To determine if information is lost, we need to estimate the sign of

/.73(01D,MK) [13 (0 ID, Mm„ Pi+i) IIP (e) ID, Mmil Pi)]

= MO 11),Midlogp(7) 1 0, mmi)AP  MD 1 Mmi'131)  dO
p (D 1 Mmil (3i+i)

, oi)  MD I OlMk), loga f p (0 1 D, Mmi ) A 1 dO
MD 1 0,Mmiri Efam,ivimp 1( ,:i 1[13°,(DM7In 01) 1:mi LI P

• This can be estimate using samples from 7rp i (0 1 Mmi)

'criteria
=EOID,mmi,131[13(D 101111K) D 0

P(D 1 01 MmiY1

, log p ( 1 , Mint)"

EOID1Mini1131 p (D 1 0 1 Mrn
i)

(31

gp(DO,114-1-c)  I lo EenD,mm,1 , (31 [p (i) 1 0) Mmi)[

]
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Bayesian Inference of Stochastic

Reaction Networks

with Huy Vo and Brian Munsky at Colorado State University

Catanach, Thomas A., Huy D. Vo, and Brian Munsky. "Bayesian inference of Stochastic reaction networks using Multifidelity

Sequential Tempered Markov Chain Monte Carlo." arXiv preprint arXiv:2001.01373 (2020). [Accepted IJUQ]



Chemical Master Equation Model

Stochastic Reaction Networks

Dynamics

Observations (D)

- A (0)p
Chemical Species Copy Number

(Molecule Count)

States ( p ) Probability of a cell having a certain

number of each species (p)

Parameters ( A )

Model Hierarchy (M)

Propensities for certain reactions

to occur

Maximum copy number in Finite

State Projection CME algorithm

C
o
p
y
 n
u
m
b
e
r
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Surrogate Hierarchy for the FSP CME

100 -

80 -

60 -

40 -

20 -

0 -

411011111111) 01111

A A A A A A A

I

True CME

Surrogate CME - b=40

e Surrogate CME - b=60

—it— Surrogate CME - b=100

0 100

• Limiting the maximum copy number significantly reduces
the size of the matrix A(0) making the simulations faster.

200 300

Time (second)

400 500



Example 1: Repressilator Gene Circuit

• Theoretical three species gene circuit with negative feedback

Chemical Reactions

reaction propensity

1. TetR
2. TetR

3. —> AcI
4. Ad —>
5. LacI
6. LacI

ko/ (1 ao [LacI]bo
To [TetR]
/ (1 +al[TetR]b')

Yi [AcI]
k2/ (1 + a2[AcI] b2
1/2 [LacI]

--- True

Prior

Full-fidelity

ESS-Bridge

IT-Bridge

Tuned IT-Bridge

5

0_

o

0

2
loglo ko

—2 —1 0
log10 70

—2 —1 0
log10 ao

0

5

o

5

0

Parameter ID with ST-MCMC

1 2
log10 k1

—2 —1
log10 Yi

—2 —1
log10 al

0

0

•)5

10

5

0

10g10 k2
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2 —2 —1 0
loglo bo

50

()
—2 —1 0 —2 —1 0

log10 72 loglo bi
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—2 —1 0
log10 a2

0
—2 —1 0

loglo b2



Example 1: Repressilator Gene Circuit

• Multifidelity ST-MCMC provides

speed ups of 3.5 (ESS-Bridge), 4.8

(Tuned IT), 6.2 (IT-Bridge)

I I '

/

No.

--- Full-fidelity

ESS-Bridge

— IT-Bridge

  Tuned IT-Bridge
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• The evolution of parameter

estimates are very similar

Example Trajectories
Full fidelity ESS-Bridge IT-Bridge — Tuned IT-Bridge

bo

0.5

10-6 10-2 100

o —1
bA
o

—2

10-6

1.25

,4"a" 4'2 1.0
2
bo

1.00 o

b.0
0.75 --' 0.5

o

10-6 10-2 10°

—2

10-2 100 10-6 10-2 10°

10-6 10-2 10°

—1.5
10-6 10-2 100



Example 2: Compartmental Model of Gene Expression

• Theoretical Bayesian model
selection for a 2, 3, and 4 gene
model for the transcription,
transportation, and degradation
of nuclear mRNA

• Tuned-IT bridging was used
because of its robustness at
estimating the evidence.

• Speed ups of 1.6, 3.8, and 3.2 for
the 2, 3, and 4 gene models
respectively

Chemical Reactions
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Laboratories

reaction index reaction propensity

1, . . • ,71G
nG ± 1, ... ,2nG
2nG + 1, , 3nG — 1
3nG
3nG + 1

Gi-1 Gi, i = 1, . ,nG — 1
Gi Gi—i, i = 1, . ,nG — 1

Gi RNA. = 1, • • . , nG —
RNAnuc RNAcyt
RNAcyt —>

kL [G —
ki [Gi]
ri [Gi]

ktrans [RNA.]
y[RNAcyt]

Model Evidence

Model Full-fidelity Tuned IT Bridge
Log Evidence Time (Sec) Log Evidence Time (Sec)

2 Gene —20108.8 ± 5.4 1244 —20112.6 ± 2.0 758
3 Gene —20111.9 ± 5.6 67496 —20115.7 ± 2.0 17511
4 Gene —20113.0 ± 5 .7 76546 —20117.5 ± 1.8 23777
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Example 3: Inflammation response gene ILlbeta

• Three state gene expression
model for inflammation
response ILlbeta dataset1

Chemical Reactions

reaction propensity

1. Go G1
2. G1 G2

3. G2 G I

4. G1 Go
5. RNA

6. RNA —>

k01 [Go]
k12 [G1]
k21 [G2]
kio(t) = max{0, am — b10S(t)}
oci [Gi] + cx2 [G2]
y [RNA]

S(t) = max {0, exp (t — T0)) (1 — exp (—r2(t — TO)))}

1 Kalb, Daniel M., et al. "Single-cell correlations of mRNA and protein content in a human monocytic cell
line after LPS stimulation." PIoS one 14.4 (2019): e0215602.

0.05

>., 0.04

co 0.03
_o
o
el_ 0.02

0.01

0.00
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-pa 0.004

o
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0.002

0.000

0.006

0.002

0.000
0 200 400 600

RNA copy number

Data Fits
t = 0.0 hr

200 400 600
RNA copy number

t= 1.0 hr

0.020

0.015

173

-8 0.010

0.005

0.000

0.006

0.002

0.000
200 400 600 0 200 400 600

RNA copy number RNA copy number

t= 0.5 hr

200 400 600
RNA copy number

t = 2.0 hr
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Example 3: Inflammation response gene ILlbeta

• Three state gene expression
model for inflammation
response ILlbeta dataset1

Chemical Reactions

reaction propensity

1 . Go G1
2. G1 G2

3. G2 G I

4. G1 Go
5. RNA
6. RNA —>

k01 [Go]
k12 [G1]
k21 [G2]
kio(t) = max{0, am — b1oS(t)}
oci [Gi] + cx2 [G2]
y [RNA]

S(t) = max {0, exp (t — T0)) (1 — exp ( —r2 (t — TO)))}

1 Kalb, Daniel M., et al. "Single-cell correlations of mRNA and protein content in a human monocytic cell
line after LPS stimulation." PIoS one 14.4 (2019): e0215602.

1 0

o_

0

0

5

0

Parameter ID with ST-MCMC
Prior

Full-fidelity

ESS-Bridge

E._ IT-Bridge

Tuned IT-Bridge

1 2.5

II 

—3 —2 —1 

0
2 4

0.0

1-1-41(010a2 1log 1og10 r1

—3 —2 —1
log10 r2

—4 —2
log10 kw

A
—3 —2 —1

log10 at()

10

2

2

0

log10 bm

—4 —2
1og10

—3 —2 —1
1og10 k21

—4 —2
log10 al

5

0

0

—5 —4 —3
log10 7

4
log10 To

6
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Example 3: Inflammation response gene ILlbeta

• Multifidelity ST-MCMC provides

speed ups of 1.7 (ESS-Bridge), 2.0

(Tuned IT), 2.2 (IT-Bridge)

--- Full-fidelity

ESS-Bridge

— IT-Bridge

  Tuned IT-Bridge

•
e ...

-a 102

0_
ro

ED

102
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• There is more variation in the

trajectories but they still follow

similar trends

Example Trajectories
— Full-fidelity ESS-Bridge IT-Bridge — Tuned IT-Bridge

-2 0o •
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0.0a
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10-6 10-4 10-2 10°
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47'
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Conclusion

■ Multifidelity Sequential Tempered MCMC methods are able to solving
Bayesian system Identification and model selection.

■ Information Theoretic approaches can be used to identify when a
model in the multifidelity hierarchy no longer is informative in ST-
MCMC

■ Multifidelity CME models can be used to accelerate identification of
gene regulatory networks

Sandia
National
Laboratoits


