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Abstract.  

We show that non-diffusive volume advection in two-dimensions is achieved with several 

benchmark problems using a newly developed high-order volume of fluids (VOF) interface 

reconstruction method. 

 

1. A new VOF interface reconstruction method using circular/corner facets (linear facets 

are a degenerate case of arcs). We create a circular interface facet in each mixed zone 

by matching neighbor volume with a hybrid Newton’s-bisection method and the local 

solution is final. In the general case, the new VOF interface reconstruction has 3rd order 

accuracy and can be easily made seamless. The new method addresses intrinsic issues 

with Young’s method such as gaps between interface facets in the case of a curved 

interface, and inability to define curvature nor identify corners. 

 

2. A non-diffusive volume advection scheme. In an ALE advection step, a well-defined 

interface can be carried over through a Lagrange step and used to compute volume 

distribution into a relaxed mesh. Then, an interface reconstruction step is performed to 

redefine the interface in the relaxed mesh. We must point out that the interface carried 

over is also a solution of interface reconstruction because all the volume fractions in the 

relaxed mesh are naturally matched. We provide an interface tracking method 

compatible with our reconstruction scheme, where it is granted to use the prior info as 

an initial guess to capture sub-mesh resolution features. As a result, we are able to treat 

multiple facets inside a single mixed cell and obtain highly accurate, non-diffusive 

solution for advection problems with rather coarse meshes. We show our solutions for 

two-dimensional incompressible flows with two materials with a) the X + O diagonal 

translation; b) the Zalesak rotational test; and c) the single vortex spiral test.  
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1 INTRODUCTION 

Fixed-grid methods for simulating interfacial flows include interface tracking and interface 

capturing methods, which use explicit and implicit representations of the fluid interface 

respectively. Interface tracking methods have been used to achieve highly accurate 

representations of interface, including features finer than mesh resolution, but these methods 

can struggle with volume conservation. Furthermore, in the case of topology changes, 

additional explicit methods are often required. A key interface capturing method is volume of 

fluid (VOF), which maintains volume fraction info for each mesh cell. The VOF method 

enforces volume conservation and naturally handles topology changes but requires an interface 

reconstruction step. 

 

Piecewise linear interface calculation (PLIC) methods are commonly used for interface 

reconstruction within VOF methods. An interface normal is obtained for each mixed cell based 

on an estimate of the gradient of the volume fraction function, and a piecewise linear interface 

is formed by matching volume fractions. In general, PLIC methods achieve only second-order 

accuracy given sufficient mesh resolution. Additionally, piecewise linear interfaces are unable 

to directly represent curvature or sharp cusps within a mesh cell, typically resulting in large 

discontinuities in the interface. With coarser meshes or flows with heavy deformation, PLIC 

methods often result in unphysical topology changes (“flotsam” and “jetsam”). 

 

We implement a new high-order interface reconstruction method using a piecewise circular 

representation of the interface. Circles are chosen for simple analytical expressions of points 

and areas of intersection between interface facets and mesh cells. Instead of relying on an 

estimate of interface slope, we use an iterative method to find the unique circular arc that 

matches three neighboring volume fractions exactly. To represent cusps, we extend two 

neighboring facets to intersect at a corner within a single mesh cell and match volume fractions 

using an iterative optimization method. 

 

Volume advection is handled using geometric intersection algorithms. Facets are carried over 

via a Lagrangian step and updated flux polygons are intersected with neighboring relaxed mesh 

cells to compute new volume fractions. When the interface has features finer than mesh 

resolution, we employ an interface tracking algorithm using interface info from the previous 

time step carried over to detect when cells require multiple disconnected facets. We can 

compute volume fractions accurately in these cases and we can detect topology changes caused 

by intersecting facets, so the interface tracking algorithm is compatible with interface 

reconstruction. 

 

Our approach is entirely local and accurately represents curvature and cusps of the interface. 

We show gaps between neighboring facets are reduced and C0 continuity is achieved with a 

simple corrective scheme. Our proposed interface reconstruction method has 3rd order spatial 

accuracy and perfectly reconstructs interfaces consisting of piecewise linear or circular 

components (including all 2D polygons) given sufficient mesh resolution. We demonstrate non-

diffusive volume advection in several benchmark advection problems. Although this work 

focuses on two-material flows in 2D, our ideas can be generalized to multi-material or 3D cases. 
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2 HIGH-ORDER INTERFACE RECONSTRUCTION SCHEME (WITHOUT PRIOR 

INFO) 

2.1 Assumptions on true interface and local mesh resolution  

We assume the true interface is C0 and piecewise C2 continuous, possibly with cusps. 

Typically, the mesh resolution is fine enough that the true interface lies only within a fraction 

of the cells. In addition, the intersection of the intersect with most mixed cells should consist 

of only a single connected component, and most mixed cells should have exactly two mixed 

neighbors. We call such mixed cells regular. 

For interface reconstruction without prior info, we assume the input mesh is sufficiently fine. 

In C2 neighborhoods of the interface, this means that mixed cells must be regular (a sufficient 

condition is for the radius of curvature to be at least 3 times the local zone size), although we 

also discuss methods to address cases when this assumption does not hold. In neighborhoods 

around cusps, mixed cells are likely not regular no matter the mesh resolution. Instead, we 

assume that any cusps, if present, are spaced apart enough such that at least one regular mixed 

cell lies between any pair of cusps. This gives us sufficient info to determine when a cusp 

exists and to accurately reconstruct it.  

Figure 1: Left: an insufficient resolution, mixed cells are not regular. Right: a sufficient resolution. 

We note that in typical cases these conditions are fulfilled for most mixed cells, and that 

violations only occur within small neighborhoods. We rely on our front tracking method, 

described later, in cases of extreme sub-mesh level interface features. 

2.2 Orientation of interface facets 

A facet is the solution of interface reconstruction within a single mixed cell. For regular mixed 

cells, assuming a single interface component, we note that we can determine the orientation of 

the desired facet only from the volume fractions of the immediate neighboring cells. The 

reconstructed interface must travel through the two edges of the regular cell shared with its two 
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mixed neighbors. The other edges must correspond to neighbors that are either full or empty. 

We choose the orientation of the facet such that the interiors of both fluids are consistently 

oriented (moving along the reconstructed interface yields a walk around the shared boundary). 

Figure 2: Regular mixed cell C and its neighbors A and B. Walk from B to C to A is counterclockwise from 

interior of dark fluid, and clockwise from interior of light fluid. VA, VB, and VC are the corresponding partial 

volumes. Left: linear facets; right: circular facets. 

2.2.1 Treatment of non-regular mixed cells by merging 

 

We note that our assumptions on the mesh resolution may not be entirely satisfied. There are 

cases in which non-regular mixed cells appear in a small neighborhood, even when mesh 

resolution is generally sufficient, which still grant enough info to reconstruct a unique facet. 

We resolve the issue by merging ambiguous neighborhoods and treating them as single mixed 

cells. Because merged zones are now regular and because our method does not require any 

assumptions on mesh structure, we may run our interface reconstruction algorithm normally.  

Figure 3: Ambiguous regions become regular mixed zones when merged (outlined in red). 

Note that although merging makes local mesh resolution coarser, uniqueness of our facet fitting 

algorithm provides more consistent results than attempting to guess the appropriate neighbors. 

Additionally, assuming the true interface curvature does not change too drastically, a circular 

facet is still accurate enough to capture the curvature of ambiguous regions. 
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2.3 Uniqueness of reconstructed interface and detection of cusps 

 

After orientations are determined for each regular mixed cell, three local neighbors zA, zB, zC 

and their volume fractions vA, vB, vC are identified and ordered with a walk that keeps fluid 

interiors consistent. Because a circle has three degrees of freedom in 2D (center coordinates 

and curvature), given three polygons, three volume fractions, and an orientation defining the 

direction of the interior, there exists in general a unique circle defined by these conditions. 

(Note that a line is a degenerate case of a circle.) 

 

 
Figure 4: Three partial volume fractions uniquely determine a circle with three degrees of freedom.  

In the presence of cusps, the unique circle defined above will differ significantly from the true 

interface. Indeed, if a cusp is present, the unique circular facets in adjacent mixed cells defined 

by their volume fractions must exhibit large changes in both predicted interface normals and 

curvatures. Additionally, given sufficient mesh resolution, we know the edges of a corner will 

have similar normals and curvatures to nearby regular non-cusp facets. Thus, we can determine 

whether a cusp exists by checking for large changes in interface normals and curvatures across 

adjacent facet endpoints. We define a corner facet as the intersection of the closest two 

neighboring non-cusp facets and confirm whether the corner facet matches the volume fractions 

accurately. 

 

2.4 Facet fitting 

  

Our interface reconstruction scheme attempts to fit facets from low order to high order: linear, 

corners with only linear edges, circular, and corners with curved edges. In this way we ensure 

our reconstructed interface matches the order of the true interface in all local regions. 

 

Linear facets: 

Rather than relying on an estimate of the interface normal, we find the line matching volume 

fractions vA and vB. Note that since a line has two degrees of freedom, two polygons and their 

volume fractions define a unique linear facet. A Newton’s method is applied to obtain the 

solution. If vC happens to also be matched by this linear solution, the interface must be linear in 

this region and a linear facet in zC is obtained. 
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Corners with linear edges: 

Each neighborhood of unpredicted mixed cells may signal the presence of a corner with linear 

edges. Corners are formed by extending the nearest linear facets until they intersect at a point. 

If a proposed corner facet matches the unpredicted volume fractions sufficiently, Newton’s 

method is applied on the coordinates of the corner point to optimize the match on volume 

fractions. 

 

By this stage of the algorithm, we have fully reconstructed all planar polygons. 

 

Circular facets: 

Circular facets are now fit to all remaining unpredicted mixed cells. The linear fit from the 

linear facet stage is used to set the initial guess of a circular facet fit. A hybrid Newton’s-

bisection method is used to find the unique curvature and coordinates of the circle’s center. A 

near quadratic convergence is consistently observed. 

 

Corners with curved edges: 

The final stage checks for the presence of curved-edge corners. Adjacent facets that exhibit 

large change in interface normals or curvatures are either resulting from unrepresented cusps 

or from mesh coarseness. Curved-edge corners are formed by extending the nearest non-corner 

facets until they intersect at a point. Note that by our assumption on mesh resolution, there 

always exists at least one proper linear or circular facet between any two cusps. As with straight-

edged corners, if a proposed corner facet matches the unpredicted volume fractions sufficiently, 

Newton’s method is applied on the coordinates of the corner point to optimize the match on 

volume fractions. 

2.5 C0 continuity enforcement 

Because our proposed interface reconstruction achieves 3rd order spatial accuracy given a 

smooth interface, gaps between adjacent facets are small. Thus, a simple corrective scheme is 

sufficient to achieve C0 continuity while preserving accurate interface curvature. Given two 

neighboring facets, the rightmost endpoint of the left facet and the leftmost endpoint of the  

Figure 5: Left: reconstructed interface without C0 enforcement. Right: after C0 correction. 
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right facet are reset to the midpoint of the facet gap. Curvature of each mixed cell is again 

optimized to match volume fractions. Note that because the linear/circular facet fitting 

algorithms determine endpoint locations by checking neighboring cells, facet gaps are 

guaranteed to lie on the same edge. This operation provides a seamless interface which stays 

3rd order accurate in space. Our entire interface reconstruction method is local and final. 

 

3 EQUIVALENCE OF RECONSTRUCTION AND DIRECT TRACKING 

 

3.1 Updating volume fractions 

 

A linear/circular facet is characterized by three control points: the two endpoints and its 

midpoint. Each of these points is associated with a pair of logical parameters that map a 

quadrilateral zone to a logical square. In the Lagrange phase of an ALE advection, a circular 

facet is carried over with the logical parameters of the control points. The orientation is set by 

the order of these points. A seamless interface stays seamless after a Lagrange step. The 

volume fluxes distributed into the relaxed mesh are computed by finding geometric 

intersections. Updated interface facets are intersected with the polygonal regions obtained 

from intersecting the advected and relaxed meshes. Volume fractions for the relaxed mesh are 

totaled and employed for interface reconstruction at the next time step. 

Figure 6: Updating volume fractions. Advected volume is in red. Volume fluxes into relaxed mesh is computed 

by taking intersection of advected region with relaxed mesh cells. 

 

3.2 Interface tracking as a solution to reconstruction problem 

 

We point out that a seamless interface directly carried through the Lagrange motion is by 

nature a solution of interface reconstruction on the relaxed mesh, because all the volume 

fractions in relaxed zones are naturally matched. In this sense, interface tracking, and its VOF 

(volume of fluids) reconstruction are equivalent. The only difference is the interface carried 

over may not be the converged solution of the interface reconstruction method of choice. 

Nevertheless, the information carried over can be taken as granted and used as an initial guess 

to accelerate the convergence of our reconstruction scheme.  



Jerry Liu, Jin Yao 

 8 

This is particularly helpful with complex interface geometries or coarse meshes. In cases 

when multiple disconnected sections of the interface lie in a single mesh cell, attempting to 

represent the interface with a single facet induces topology changes where none should exist 

(creating “flotsam” and “jetsam”). We propose to combine a direct interface tracking with our 

reconstruction method to identify complex fluid structures. 

3.3 Interface tracking and compatibility with VOF 

Our interface tracking scheme uses the same Lagrange step formulation as in 3.1, using three 

control points. Instead of computing volume fluxes, explicit intersection points of updated 

facets with the relaxed mesh are stored. Using this info, we can detect when the updated 

interface intersects a mixed cell with multiple disconnected components. 

Within a mixed cell, each component is remerged, preserving volume fractions of updated 

facets and thus ensuring local mass conservation. Interface normals and curvatures of adjacent 

updated facets are compared to determine when remerging should occur. This allows for 

accurate representation of sub-mesh resolution interfacial features. Proper remerging combats 

the formation of undulations that often occur with high-order interface tracking methods. 

Figure 7: Interface tracking method. Left: interface facets from reconstruction. Middle: after Lagrangian step. 

Right: after remerging.  

For full compatibility with our VOF method, we can compute volume fractions given the 

output of our tracking method, even with multiple disconnected facets in a cell. For each 

mixed cell, we simply form a walk along the interface facets and cell edges with consistent 

orientation to trace a polygon with linear and circular edges. The volumes of each polygon are 

then summed, and the resulting volume fractions can be used for the next round of interface 

reconstruction. 

 

A consequence of our volume fraction computing method is that we can detect the presence of 

topology changes caused by intersecting facets. In this case, polygons formed by our walk are 

overlapping. We propose to use the interface reconstruction scheme to accurately represent 

the new interface when a topology change occurs. 
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4 NUMERICAL STATIC RECONSTRUCTION TESTS 

In all our numerical tests exact volume fractions are computed with target geometries and 

used as input for the proposed interface reconstruction scheme. 

4.1 Perfect reconstruction of planar polygons 

Given sufficient resolution, our interface reconstruction scheme can reconstruct to arbitrary 

precision any 2D shapes consisting entirely of lines or circular arcs joined at sharp cusps. This 

includes all polygons and circles, as well as shapes with circular arc sides. 

Furthermore, the proposed interface reconstruction method does not require mesh regularity 

as shown below. Because we cast all the components of our method as geometric problems 

with unique solutions, there is no constraint on mesh structure. We demonstrate with tests on 

perturbed Cartesian meshes. 

Figure 8: Interface reconstructions with our method on perturbed Cartesian meshes (with a tolerance 10-11). 

Curvatures are accurately represented and corners are sharp. 

 

4.2 Reconstruction of random ellipses 

We demonstrate the 3rd order spatial accuracy of our interface reconstruction method by 

reconstructing randomly oriented ellipses. Ellipses used have minor and major axis lengths 
√𝟏𝟐

𝟓
  and 

√𝟐

𝟓
  respectively and are rotated arbitrarily to avoid any biases. We show the average 

results over 100 trials. Our method shows 1st order convergence of curvature and 3rd order 

convergence of facet gaps, consistent with a 3rd order spatial accurate method. This is 

expected because we use circular facets as our geometric primitive, which have three degrees 

of freedom. 
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Figure 9: Top: interface reconstructions of randomly oriented ellipse. Without C0 continuous correction scheme 

(left) and with (right). Bottom: reconstruction method achieves 3rd order convergence of facet gaps (left) and 1st 

order convergence of curvature (right). 

 

5 NUMERICAL VOLUME ADVECTION TESTS  

     We demonstrate non-diffusive volume advection with several benchmark problems. In our 

tests the meshes are set back to unit Cartesian ones after each Lagrange step. 
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5.1 x+o  

Figure 10: Diagonal translation of x+o shapes. Initial setup (top), middle (middle), end (bottom). Young’s (left) 

method diffuses sharp cusps of x’s and distorts curvature of o’s, whereas ours (right) remains accurate. 
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5.2 Zalesak slotted disk rotation  

Figure 11: Rotation of slotted disk. Top: initial reconstructed interface. Bottom: reconstructed interfaces at 

rotation angles 
2π

3
, 
4π

3
, and 2𝜋. Young’s (left) diffuses sharp cusps of slotted disk, whereas ours (right) remains 

accurate. 
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5.3 Rider-Kothe time-reversing vortex 

A circle is placed within a time-reversed vorticity field defined via stream function field 

𝛙(𝒙, 𝒚, 𝒕) =
𝟏

𝛑
𝒔𝒊𝒏𝟐(𝛑𝒙) 𝒔𝒊𝒏𝟐(𝛑𝒚) 𝒄𝒐𝒔 (

𝛑𝒕

𝑻
) 

with parameter T. The maximum fluid deformation occurs at time t=T/2 and returns to the 

initial setup at time t=T. 

Figure 12: Left: reconstructed interfaces using our method, no prior info, T=2. Right: approximately 3rd order 

spatial accuracy is achieved, compared to only 2nd order accuracy of Young’s. 

Figure 13: Reconstructed interfaces using our method with prior info, T=8. Stronger deformation and coarser 

mesh can be handled. 
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6 CONCLUSIONS 

- We propose a high-order interface reconstruction scheme using a combination of 

linear, circular, and corner facets. Our approach accurately represents curvature and 

cusps while ensuring a seamless interface, addressing key shortcomings of PLIC 

methods. Given sufficient mesh resolution, typical mixed cells have exactly two 

mixed neighbors: we can determine the orientation of the interface and obtain a 

circular facet matching all three volume fractions using only this local information. A 

hybrid Newton’s-bisection method is used to fit circular facets, and we observe near 

quadratic convergence consistently. Because circular facets have three degrees of 

freedom, our method ensures uniqueness of reconstructed interfaces. Facets are fit 

from low to high order to identify sections of the interface that are linear or where a 

cusp exists. We guarantee C0 continuity with a simple corrective scheme. 

- We demonstrate the effectiveness and accuracy of the new interface reconstruction 

method on static tests. We show our method can reconstruct planar polygons and 

circles to arbitrary precision and has 3rd order spatial accuracy on general smooth 

interfaces. We achieve non-diffusive volume advection on several benchmark 

problems. 

- We point out that interface tracking and reconstruction are compatible. Tracking is 

achieved by updating a reconstructed seamless interface via a Lagrange step, and 

volume fractions for a tracked interface can be computed. We demonstrate the ability 

of the tracking method to capture sub-mesh resolution features of a complex interface 

on the Rider-Kothe vortex benchmark. 
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