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Deconvolution of noisy measurements, especially when they are multichannel, has always1

been a challenging problem. The development of processing techniques range from simple2

Fourier methods to more sophisticated model-based parametric methodologies based on the3

underlying acoustics of the problem at hand. Methods relying on multichannel mean-squared4

error processors (Wiener filters) have evolved over long periods from the seminal efforts in5

seismic processing. However, when more is known about the acoustics, then model-based6

state-space techniques incorporating the underlying process physics can improve the pro-7

cessing significantly. The problem of interest is the vibrational response of a tightly-coupled8

acoustic test object excited by an out-of-the-ordinary, transient, potentially impairing its9

operational performance. Employing a multiple input/multiple output structural model of10

the test object under investigation enables the development of an inverse filter by applying11

subspace identification techniques during initial calibration measurements. Feasibility appli-12

cations based on a mass transport experiment and test object calibration test demonstrate13

the ability of the processor to extract the excitation successfully even in the case of random14

excitations.15

PACS numbers: 43.60.Uv, 43.60.Gk, 43.60.Cg, 43.30.Zk16
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I INTRODUCTION17

When transporting delicate acoustical objects of interest, out-of-the ordinary, transient18

events can occur affecting overall system performance creating great concern. Events that19

can occur are essentially pulse-like, transient signals of short duration that evolve from var-20

ious phenomena. Here the event can be created by either dropping of a test object during21

shipping/packing subjecting it to a compact high-energy blow or the object being struck22

unintentionally during transit resulting in potential damage or even just the typical random23

vibrations evolving from roadway, rail or flight turbulence. The intensity and location of24

the strike can cause an inoperability condition that is totally unacceptable. Therefore, it25

is essential to detect, classify and localize damage of any test object subjected to a shock26

event. This effort is aimed at evaluating the vibrational response of acoustical test objects27

that are subjected to “transport” shocks and roadway vibrations during shipping and han-28

dling as well as any test object subjected to random vibrations—another common event29

during transport. Any potential damage that could be inflicted during transportation must30

not only be detected, but also evaluated to determine the operational readiness of the test31

object before and after transport.1−6
32

The estimation of excitation signals from noisy data is termed the deconvolution prob-33

lem in the signal processing literature. The deconvolution problem is based on recovering the34

input excitation signal(s) from a system characterized by its impulse response sequence.7−11
35

Using this model of the system, an “inverse” representation or filter is developed to remove36

the system from the measured data and recover the input.1,12,13 Deconvolution has long37

been a problem of great interest especially in the seismic community where the source lo-38

cation and extraction problem is one of great interest in localizing earthquakes and other39

phenomena.1,2 Explosives in ocean acoustics have also been acoustic sources, desirable or40

undesirable, for both exploration and mapping leading to a transient deconvolution prob-41

lem of high interest.3,4 Deconvolution problems in nondestructive evaluation (NDE), room42

acoustics and structural vibration problems abound.8,14,15
43

Multichannel processing methods evolve from a variety of acoustic applications in spec-44

tral estimation, ocean acoustics, structural acoustics and more.16−19 Model-based methods45
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show improved performance with multiple input/multiple output (MIMO) constructs incor-46

porating embedded models such as finite impulse response, autoregressive moving average47

and state-space models that are prevalent in spectral estimation and structural vibration48

analysis.15−17 In this paper, the state-space approach is employed for a number of reasons,49

not just because the systems under investigation are primarily structural and can easily50

be captured within this framework, but also because they can be physically represented51

by a multichannel, linear time-invariant (LTI), mass-damper-spring (MCK) vibrating struc-52

ture along with the added advantage of existing numerically stable subspace estimation53

techniques.15,19−21
54

The evolution of multichannel techniques for deconvolution has progressed significantly55

since the pioneering work of Robinson in the development of a recursive, mean-squared error56

(Wiener) method based on an FIR-representation and efficient Levinson methodology.2,22,23
57

Following this work other methods evolved especially in spectral estimation applied to58

acoustic problems (e.g. ocean acoustics, sonar, seismology, NDE) as well as state-space59

techniques.24−26 The state-space approach coupled to the well-known Kalman filter proces-60

sor has evolved from seismic applications incorporating a well-defined geophysical model.2561

Since deconvolution is essentially an ill-conditioned inverse problem, an alternative method-62

ology has evolved in ocean acoustics termed matched-field processing (MFP) primarily aimed63

at target localization and tracking.26 In this approach measured multichannel field data are64

compared to that predicted by a propagation model, maxima or minima are then calculated65

based on various criteria to locate the target(s) position.26 Another recent model-based ap-66

proach incorporating a transient model has evolved using a forward modeling technique cou-67

pled to a Kalman filter, similar to the matched-field approach.26,27 In this method, a Kalman68

filter with its embedded system model identified from experimental data, is employed in an69

iterative scheme to extract a parameterized transient.26,27
70

There are two candidate approaches that can be used to mitigate this multichannel71

problem. The first is the well-known Wiener least-squares solution employing the nonpara-72

metric multichannel Levinson algorithm.2,22,24 The second approach, that is pursued in this73

paper, incorporates a state-space model that can be used to develop an inverse filter directly74

from input/output data. This approach incorporates any existing modal coupling that exists75

in the underlying structure being identified. That is, the state-space approach is to estimate76
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the response of an underlying linear time-invariant, multichannel structural system using a77

black-box state-space model. This model captures the underlying structural dynamics of78

critical components enabling a viable vibration analysis to ensure that even weakly coupled79

modal signals buried in the noise are represented. Thus the primary contribution of this80

paper is to develop an inverse system design technique from calibration measurements em-81

ploying subspace identification methodology and applying the resulting design as a filter to82

solve the multichannel deconvolution problem.20,28−30
83

The development of the underlying structural system and its incorporation into the84

state-space framework is developed in Sec. II. Next the deconvolution problem is defined in85

terms of multichannel input/state/output system descriptions and their equivalence. This86

is followed by the description of stochastic representations including the Gauss-Markov and87

innovations models leading to the state-space description of the inverse (shaping) filter along88

with its design—the primary mechanism employed in this effort. The design and applica-89

tion of the inverse filter for multichannel deconvolution is discussed in Sec. III after briefly90

describing a set of various transient shock signals that typically occur during transit. Two91

applications are discussed in detail. First a noisy mass-simulation transportation data ex-92

periment obtained by transporting a large-mass concrete block using a tractor/tailer vehicle93

on typical roadways followed by the vibrational response experiment of a test object excited94

by random excitations completing the study. The results of this work are summarized in the95

final section.96

II. BACKGROUND97

In this section, multiple channel structural vibration models are briefly developed lead-98

ing to a set of deterministic as well as stochastic state-space models that are employed99

throughout to solve the deconvolution problem. The multichannel aspects of this problem100

are defined in terms of the state-space realization enabling it to uniquely characterize the101

problem and proceed with its solution.102

A. Vibrational State-Space Model103
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Mechanical systems are important in many applications, especially when considering104

vibrational responses of critical components such as turbine-generator pairs in nuclear sys-105

tems on ships or even in power generating plants at home as well as aircraft structures that106

transport people throughout the world. Next we briefly present the generic multivariable107

mechanical system representation that will be employed in examples and case studies to108

follow.109

A multichannel, linear, time-invariant mechanical system can be characterized by110

M d̈(τ) + Cdḋ(τ) + Kd(τ) = Bpp(τ) (1)

where d is the Nd × 1 displacement vector, p is the Np × 1 excitation force, and M , Cd,111

K, are the Nd×Nd lumped mass, damping, and spring constant matrices characterizing the112

vibrational process model, respectively and Bp is the input weighting matrix.113

Define the 2Nd-state vector as x(τ) :=
[
d(τ) | ḋ(τ)

]T
, then the continuous-time (τ)114

state-space representation of this process can be expressed as115

ẋ(τ) =

 0 | I
−−− | − −−
−M−1K | −M−1Cd


︸ ︷︷ ︸

Ac

x(τ) +

 0
−−−
M−1Bp


︸ ︷︷ ︸

Bc

p(t) (2)

or more compactly116

ẋ(τ) = Acx(τ) + Bcp(t) (3)

for Ac and Bc the appropriately dimensioned continuous-time (subscript c) system and input117

transmission matrices.118

The corresponding measurement or output vector relation can be obtained from119

y(τ) = Cad̈(τ) + Cvḋ(τ) + Cdd(τ) (4)

where the constant matrices: Ca,Cv,Cd are the respective acceleration, velocity and dis-120

placement weighting matrices of appropriate dimension.121

Solving for the acceleration in Eq. 1 and substituting for this term in Eq. 4, gives122

5



y(τ) =
[
Cd −CaM

−1K | Cv −CaM
−1Cd

]
︸ ︷︷ ︸

Cc

 d(τ)
−−−
ḋ(τ)

 + CaM
−1Bp︸ ︷︷ ︸

Dc

p(τ) (5)

to yield the vibrational measurement in terms of the state-space model as:123

y(τ) = Ccx(τ) + Dcu(τ) (6)

where the continuous-time output or measurement vector is y ∈ RNy×1 completing the124

deterministic multiple input/multiple output (MIMO) vibrational state model.125

Corresponding to this continuous-time representation is its discrete-time counterpart126

consisting of similar state/measurement relations:127

x(t + 1) = Ax(t) + Bu(t) [State]

y(t) = Cx(t) + Du(t) [Measurment] (7)

with appropriately dimensioned matrices defined by the model set ΣABCD :=
{
A, B, C,D

}
128

The discrete transfer function matrix is defined in terms of the Z-transform129

H(z) = C(zI − A)−1B + D (8)

with the impulse response matrix specified by its set of Markov parameters specified by the130

underlying state-space model 24,31
131

H(t) = CAt−1B + D︸ ︷︷ ︸
Markov Parameters

δ(t) (9)

B. Deconvolution132

The basic deterministic multichannel deconvolution problem can be defined mathemat-133

ically as:134
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GIVEN an Ny-vector measurement sequence {y(t)}; t = 1, · · · , Nt for y ∈ RNy×1, FIND the135

corresponding Nu-vector excitation (input) sequence, {U(t)}136

The direct solution to the deterministic deconvolution problem is given by137

U(t)︸ ︷︷ ︸
Excitation

= H−1(t)︸ ︷︷ ︸
Inverse Impulse Response

? y(t)︸︷︷︸
Measurement

(10)

or in the Z-domain as138

U(z)︸ ︷︷ ︸
Excitation

= H−1(z)︸ ︷︷ ︸
Inverse Transfer Function

× Y(z)︸ ︷︷ ︸
Measurement

(11)

Therefore, it is clear mathematically why this problem is termed an “inverse” problem—139

primarily because the system impulse response or transfer function matrices must be inverted140

in order to recover the excitation signal. Approaches to solve the deconvolution problem141

range from a simple division of Fourier spectra to more sophisticated Wiener inversions142

using smoothed power spectra to achieve reasonable results for the single channel case.24143

However, all attempts in the multichannel case usually result in transfer function modeling144

approaches and time domain solutions as in the seismic case.2 For multichannel acoustic145

systems, a state-space model is one of the fundamental mechanisms applicable.10,25,27
146

The multiple channel models can be developed, starting with a set of input/output147

representations eventually leading to a set of deterministic state-space models. Typical148

discrete-time deterministic multiple input/multiple output (MIMO) systems can be char-149

acterized by their impulse response matrices or equivalently multichannel transfer function150

matrices. The impulse response of a discrete-time system is151

y(t) = H(t) ? u(t) =
K∑

k=0

H(t− k)u(k) (12)

with t is the discrete-time index, ? the multichannel convolution operator and y ∈ RNy×1,152

the vector of outputs, u ∈ RNu×1, the vector of inputs, H ∈ RNy×Nu the impulse response153

matrix with corresponding transfer function matrix, H(z) ∈ CNy×Nu .154

The impulse response can be represented as a multichannel matrix in terms of its inputs155

(columns) and outputs (rows) or equivalently in terms of column vector functions ( hi(t) ∈156
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RNy × 1) or row vector functions ( hT
i (t) ∈ RNu × 1), that is,157

H(t) = Outputs




h11(t) · · · h1Nu(t)
...

. . .
...

hNy1(t) · · · hNyNu(t)


︸ ︷︷ ︸

Inputs

= [h1(t) | · · · | hNu(t)] =



hT
1 (t)

−−−
...

−−−
hT

Ny
(t)

 (13)

The multichannel convolution operations are then defined in terms of this representation158

as:159

y(t) = H(t) ? u(t) = [h1(t) | · · · | hNu(t)] ? u(t) = [h1(t) ? u(t) | · · · | hNu(t) ? u(t)] (14)

and therefore,160

y(t) = H(t) ? u(t) =


h11(t) ? u1(t) · · · h1Nu(t) ? uNu(t)

...
. . .

...
hNy1(t) ? u1(t) · · · hNyNu(t)uNu(t)



=


∑K

k=0 h11(k)u1(t− k) · · · ∑K
k=0 h1Nu(k)uNu(t− k)

...
. . .

...∑K
k=0 hNy1(k)u1(t− k) · · · ∑K

k=0 hNyNu(k)uNu(t− k)


(15)

where hmn(t) the impulse response from the n-th input excitation (un(t)) measured at the161

m-th output channel (ym(t)); for m = 1, · · · , Ny; and n = 1, · · · , Nu.162

The multichannel transfer function matrix follows by applying the Z-transform to obtain163

H(z) =


H11(z) · · · H1Nu(z)

...
. . .

...
HNy1(z) · · · HNyNu(z)

 = [H1(z) · · ·HNu(z)] for Hn ∈ CNy×1 (16)

The multichannel system can also be represented in state-space form with the impulse164

response matrix given in terms of its Markov parameters165
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H(t) = CAt−1B + Dδ(t)︸ ︷︷ ︸
Markov Parameters

; t = 0, 1, · · · , N (17)

such that166

H(t) =


cT

1 At−1b1 + d11δ(t) · · · cT
1 At−1bNu + d1Nuδ(t)

...
. . .

...
cNyA

t−1b1 + dNy1δ(t) · · · cT
Ny

At−1bNu + dNyNuδ(t)

 (18)

with the corresponding transfer function matrix in state-space form given by167

H(z) =


cT

1 (zI − A)−1b1 + d11 · · · cT
1 (zI − A)−1bNu + d1Nu

...
. . .

...
cT

Ny
(zI − A)−1b1 + dNy1 · · · cT

Ny
(zI − A)−1bNu + dNyNu

 (19)

demonstrating the fact that the input/state/output representation captures the input/output168

as well as the internal structure of the underlying system in terms of its state variables and169

equivalent impulse response/transfer function matrices.170

C. Gauss-Markov and Innovation Models171

Incorporating noise and uncertainty into the basic multichannel problem, the stochastic172

deconvolution problem evolves.6,24,25 Applying more structure to this stochastic problem173

leads to a linear, time-invariant Gauss-Markov model (GM) with correlated noise sources174

(see Fig. 1(a)) for stationary processes as:175

x(t + 1) = Ax(t) + Bu(t) + w(t)

y(t) = Cx(t) + Du(t) + v(t) (20)

where x,w ∈ RNx×1, y,v ∈ RNy×1 and u ∈ RNu×1 with A ∈ RNx×Nx , B ∈ RNx×Nu ,176

C ∈ RNy×Nx , D ∈ RNy×Nu , w ∼ N (0, Rww), v ∼ N (0, Rvv) and the cross-covariance matrix177

given by cov(w,v) = Rwv. (Here the notation N (µ,V) defines a Gaussian distribution of178

mean vector µ and variance matrix V).179
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Noisy data must be processed to increase the signal-to-noise ratio (SNR) enabling the180

recovery problem to succeed. A state-space processor based on the Gauss-Markov representa-181

tion leads directly to an optimal solution—the Kalman filter. It produces enhanced estimates182

of both the states and measurements while providing the all important innovations (residual183

error) sequence for performance analysis.24,27 The basic state estimation problem is to find184

the minimum variance estimate of the state vector of the GM-model in terms of the currently185

available measurement sequence y(t).186

The innovations (INV) representation of the Kalman filter in “prediction form” is given187

by (see Refer. 27 for details)188

x̂(t + 1) = Ax̂(t) + Bu(t) + Kp(t)e(t) [State Estimate]

e(t) = y(t)− Cx̂(t)︸ ︷︷ ︸
ŷ(t)

[Innovation]

(21)

with e(t) the innovations sequence, ŷ(t) the estimated measurement and Kp(t) the predicted189

Kalman gain for correlated noise sources Rwv with state error covariance P̃ (t) given by190

Ree(t) = CP̃ (t)C ′ + Rvv(t) [Innovations Covariance]

Kp(t) =
(
AP̃ (t)C ′ + Rwv(t)

)
R−1

ee (t) [Kalman Gain]

P̃ (t + 1) = AP̃ (t)A′ −Kp(t)Ree(t)K
′
p(t) + Rww(t) [Error Covariance]

(22)

where the innovations model can be defined in terms of the Kalman filter parameters as191

ΣINV := {A, C, P̃ , Kp, Ree}.192

With this information in mind, the solution to the multichannel deconvolution problem193

is based on designing and applying an inverse filter to recover the excitation as shown in Eq.194

11. A direct model of an inverse filter is quite difficult to obtain analytically; however, we195

apply a subspace identification technique (N4SID) to solve the multichannel deconvolution196

problem.28 Essentially, this approach is used to design a “shaping filter” (see Ref. 24) based197

on the state-space approach using representative excitation signals and apply it directly noisy198
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𝑩 +

+

𝐀

𝑪

𝑫

+ 𝑧−1I𝒖 t 𝐲 t

w t

v t

x t+1 x t

x(t+1) = Ax(t) + Bu(t) + w(t)

y(t) = Cx(t) + Du(t) + v(t)

+𝑩INV

𝐀INV

𝑪INV

𝑫INV

𝑧−1I

𝑤 t

𝑣 t

ξ(t)ξ(t+1)
𝐲 t 𝒖 t

ξ(t+1) = AINVξ(t) + BINVy(t) + 𝑤(t)
u(t) = CINVξ(t) + DINVy(t) + 𝑣(t)

(a)

(b)

Gauss-Markov Model 

Inverse Gauss-Markov Model 

Figure 1: State-Space Realizations of Gauss-Markov and Inverse Filters: (a) Gauss-Markov
model: Input: (u(t)) and Output: (y(t)). (b) Inverse Gauss-Markov (shaping) filter: Input:
(y(t)) and Output: (u(t)).

data. Once designed, the filter is applied to measured data extracting the desired excitation199

directly.200

D. Inverse (Shaping) Filter201

A shaping filter is developed directly from Wiener filtering theory where a filtered output202

(e.g. a pulse) is termed the “desired” signal (d) with the measured data (y) as input. The203

objective is to develop a filter response capable of producing the desired signal or shaping204

the output, that is,205

d(t) = F̂(t) ? y(t) −→ F̂ = R−1
yy Rdy

with covariance matrix/vector, Ryy and Rdy.
24

206
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For deconvolution, the shaping (inverse) filter is primarily developed to apply a set of207

calibration measurement data as input and produce the estimated excitations as outputs, that208

is, the filter is designed to create a processor that estimates the input excitations. First, the209

impulse response of the shaping filter or equivalently the multichannel state-space processor210

must be estimated during the design phase and next it must be applied to measured data211

as its input—the usual filtering operation. From the deconvolution problem perspective, the212

shaping filter is the required “inverse filter”.213

In the state-space framework, we have that Σinv = {Ainv, Binv, Cinv, Dinv} is character-214

ized by215

ξ(t + 1) = Ainvξ(t) + Binvy(t) + w(t) [State]

u(t) = Cinvξ(t) + Dinvy(t) + v(t) [Excitation]

(23)

where y is the new input and u is the new output of this inverse filter “shaping” it to be the216

actual excitation as shown in Fig. 1(b).217

In summary, the multichannel shaping (inverse) filter design procedure is:218

• Obtain excitation and multichannel sensor calibration data;219

• Design inverse (shaping) filter, Σ̂inv = {Âinv, B̂inv, Ĉinv, D̂inv}, from calibration data220

using subspace identification (N4SID) techniques; and221

• Filter subsequent measured data with the inverse filter to extract the excitations per-222

forming the deconvolution.223

III. MULTICHANNEL DECONVOLUTION224

The multichannel deconvolution processor was designed and applied to two sets of acous-225

tic vibration data: (1) Transport Data; (2) Calibration Data. The transportation data was226

gathered using a tractor/trailer vehicle and a large mass to estimate typical roadway vi-227

brations and shock events during shipping/handling operations. A test object response was228
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investigated during a calibration experiment using a large shaker with random excitations.229

Both tests were employed to evaluate the feasibility of the inverse filter approach. Other230

simulations and data were also used and reported.5,31,32
231

A. Mass Transportation Experiment232

A variety of excitations can occur during shipping and handling for transport any time233

during this process characterized by three typical excitations:5,32
234

• DROP—a drop can occur anytime during shipping/handling when the structural object235

is being placed in a container or trailer.236

• HAZARD—a hazard can occur anytime during transit, once the object is placed in the237

transporter (truck, train, plane, ship, etc.).238

• ROAD—a road induced vibration can occur anytime during transit on a roadway or239

rail or at sea/air.240

The DROP is the most severe of excitations that can be directly applied to the struc-241

tural object being transported. It can occur in a variety of situations when the object is242

being handled for shipping such as: forklift placement or moving the object through a vari-243

ety of transporters (e.g. truck-to-train or truck-to-plane). The HAZARD excitation can also244

occur in a variety of manners. For instance, if construction were being performed on a road245

or railway with uneven surfaces being exposed as well as pot-holes on a road for example.246

The ROAD excitation induces a persistent vibrational response of the transported struc-247

tural object during transit. Data were gathered, analyzed and used to synthesize potential248

responses evaluating the ability of the processor to extract these excitations employing an249

inverse multichannel filter—all of the results were successful as discussed in Ref. 32.250

Mass transport experiments were performed by incorporating a 1500-lb concrete block251

mounted on a wooden shipping palate—the “Mass Transport Simulator”.5 The block syn-252

thesized a mock test object in size and shape and was transported in a 48-ft tractor/trailer253

over a typical transportation path in order to acquire shock and vibration data. The mass254

was mounted over the front axles and instrumented with tri-axial accelerometers located:255
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adjacent to the center-of-gravity of the block, centered in the trailer bed and above the rear256

axle as illustrated in Fig.2.257

Data were acquired at a 10KHz sampling frequency triggered by shock events during258

the transport. The raw data were filtered and decimated to a Nyquist frequency of 5KHz.259

This data set contains a high g-shock event as recorded over the rear axle on channels 4− 6.260

The shock, a HAZARD, was produced (unintentionally) by the tractor/trailer riding over a261

large road surface separation at different levels causing a g-force event as shown by the large262

transient recorded on the Z-direction channel (No. 6) and indicated on the X, Y -channels263

(No. 4 and 5) as well.264

The processing approach is shown in Fig. 2 where the multichannel measurements265

are band-pass filtered using a 10th-order Butterworth filter between the frequency band266

of 60Hz to 4.5KHz based on the range of expected rigid body modes of the vibrating267

structure (< 60Hz). The data were equalized (pre-whitened) to ensure a wide bandwidth for268

deconvolution. Once these data were available, the “average” impulse response along with the269

upper accelerometer measurements were used in an optimal deconvolution (single channel)270

scheme to extract the shock excitation for analysis. The resulting signal was investigated271

further applying a spectrogram processor to generate a frequency-time evolution analysis of272

the vibrational response as well as the deconvolution processor as illustrated.273

The excitation and accelerometer data were pre-processed (filtered, decimated, trend274

removed, normalized) as shown in Fig. 3(a) where a set of extracted shock excitation tran-275

sients and their corresponding ensemble spectra are given along with the subsequent response276

data and spectra in (b). Multichannel deconvolution (design) was performed by estimating277

(N4SID) an inverse filter using a 40-th order state-space model applying the excitation data278

as the output and the response data as the input.20,28,29
279

The results of the inverse filter design are shown in Fig. 4 where the true excitation data280

(turquoise) and their estimates (red) are overlayed in (a). Recall that the Z-M test requires281

that the estimate should lie below the bound (0.17) , while the W-T insists that 95% of282

each channel correlation estimates lie within the bounds or equivalently 5% are outside.283

For the design, the Z-M/W-T results for each measurement are: (No. 1: 0.022/6.3%), (No.284

2: 0.058/6.3%), (No. 3: 0.026/4.7%). The application of the inverse filter processor to285

measurement data is shown in Fig. 5 where the average data spectrum is compared to the286
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Figure 2: Transportation Vibration Measurements and Processing for Analysis: Test ob-
ject transport structure with shock excitation, multichannel accelerometer measurements,
processed signals and analysis spectrogram.
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Figure 3: Mass Transportation Experiment Data: (a) Multichannel excitation (input) data
and ensemble (thin line) with average (thick line) spectra. (b) Multichannel response (out-
put) data and ensemble (thin line) with average (thick line) spectra.

average deconvolved spectrum. The results are encouraging, since the spectral bands of high287

interest are captured by the processor.288

B. Test Object Calibration Experiment289

Calibration tests are usually performed before shipping any acoustical object to ensure290

its proper operation especially for delicate instruments. The application of the multichannel291

deconvolution approach to an “unknown” structural test object is the focus of this effort.292

These tests are performed on this object that is essentially a complex, stationary structure293

with no rotating parts that is subjected to random excitations with accelerometers placed on294

its surface and around its periphery. Here the primary objective is to examine the feasibility295

of applying the model-based deconvolution technique to a mulitple input/multiple (MIMO)296

structural object with minimal a priori information subjected to environmental disturbances297

and noise.298
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Figure 4: Mass Transportation Experiment: Inverse Filter Design for Excitation Recovery
(Deconvolution). (a) Design: Recovery (multichannel) subspace (order = 16-modes) esti-
mates with true-mean outputs. (b) Performance: Zero-Mean/Whiteness optimality tests:
Z-M/W-T are: (No. 1: 0.022/6.3%), (No. 2: 0.058/6.3%), (No. 3: 0.026/4.7%).
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Figure 5: Mass Transportation Experiment Inverse Filter Design Spectra: Median excitation
spectrum and average recovered (deconvolved) excitation ( filled) spectral estimate.

The object under test is subjected to random excitations by placing a stinger or motor-299

driven rod perpendicular to the base of the structure as illustrated in Fig. 6. A suite of 19-300

triaxial (XY Z) accelerometers is positioned strategically about the surface of the structural301

object along with a single triaxial sensor allocated to measure the stinger xcitation time302

series. In total, an array of 57-accelerometer channels acquired a set of 10-minute duration303

data at a 6.4KHz sampling frequency.24,31 For pre-processing the data were subsequently304

down-sampled to 2.5KHz in order to focus on the range of the excitation frequencies (<305

1.25KHz). For this investigation, a subset of 8-triaxial accelerometers is selected as well as306

the single triaxial sensor measuring the stinger excitation. Therefore, from the state-space307

perspective our MIMO-system, is a targeted system of up to a maximum of 12-modes or308

24-states with an array of 24-channels (XY Z) of time series measurements and 3-channels309

(XY Z) of an excitation measurement that we are attempting to recover from these noisy310

accelerometer measurements using an inverse filter.311

The raw (down-sampled) data represent the expected data windows (5000 samples)312

acquired from a real-time acquisition system. The windowed responses (time series) were313

18



INVERSE FILTER
(MIMO Deconvolution)

PERFORMANCE
Analysis

Structural
Test Object

Stinger
Driver

ADC

MULTICHANNEL DECONVOLUTION

DESIGN
(Inverse MIMO Filter) 

Figure 6: Structural Test Object Experimental Setup: Motor driven stinger (random ex-
citations), accelerometer sensor measurements, MIMO analog-to-digital (A/D) acquisition,
inverse filter (DESIGN), multichannel deconvolution,(INVERSE FILTERING), performance
analysis.
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pre-processed, that is, they were outlier corrected, equalized (whitening filter), bandpass314

filtered (150− 1.1KHz), and normalized (mean removal/unit variance) prior to performing315

the inverse filter design. Once pre-processed the input/output data with roles reversed were316

provided to the subspace algorithm enabling an identification of a stability constrained,317

state-space model of the inverse filter, Σinv = {Ainv, Binv, Cinv, Dinv}. Once the design318

accomplished, the inverse filter is applied to an independent section (5000 samples) of noisy319

accelerometer data to validate multichannel deconvolution processor performance.320

The MIMO-data of the controlled experiment are shown in Fig. 7 where the triaxial321

(random) excitations with their accompanying ensemble spectra are shown along with the 8-322

triaxial accelerometer responses (24-channels) on the surface and periphery of the structural323

object. The ensemble spectra bounded at 1100Hz of both excitations and responses are324

also shown with the average spectrum (thick line) as well. The question to be answered is325

whether or not the multichannel deconvolution technique using an inverse filter is capable for326

extracting these excitations from the noisy accelerometer measurement data. We investigate327

this problem in two-phases: XY Z-data sets individually (8 directional outputs and 1-input)328

and the combined measurement array directly (24-outputs and 3-excitations). The simpler329

XY Z-data sets are investigated first followed by the combination or batch data.330

The design procedure is to: (1) Calibration: design the MIMO-inverse filter using the331

state-space subspace identification method constrained for stable solutions only; (2) Applica-332

tion: process the incoming accelerometer measurements with Σinv to extract the excitations.333

The performance metrics that can be used are: the percentage of model fit (Fit %) to the334

data and its corresponding mean-squared error (MSE). This procedure is applied, starting335

with the individual XY Z-directional data sets with the results for the X-channel data is336

shown in Fig. 8(a) where the estimated excitation (thin dotted-line) is overlaid on the actual337

(initial) excitation (thick line). The subspace “fit” using a 25-mode model to the data (ex-338

citation) is at 44.4% and the MSE at 0.29. The optimality tests (zero-mean/white) indicate339

an optimal subspace design as Z-M/W-T: 0.009/4.9%. Note that since the excitations are340

random signals, then a reasonable comparison is the power spectra as shown in (c). It is341

clear that the design spectrum (filled) has captured the prominent spectral characteristics342

of the original excitation. The application of the inverse filter to another section of noisy343

measurement data (8-channels) also demonstrates the robustness of this approach, since the344
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extracted excitation spectrum (green) also captures the salient features of the original ex-345

citation data (thick line). The resonant peaks (inset list) and the identified modal peaks346

(squares) are also shown overlaid on the spectral plots.347

The multichannel deconvolution results for the Y -channel data shown in Fig. 9. Again348

the estimated excitation (dotted line) is overlaid on the actual (initial) excitation (thick349

line) where the subspace “fit” using a 25-mode model to the data is at 55.8% and the MSE350

0.17—somewhat better than that of the X-channel. The optimality tests (zero-mean/white)351

indicate an optimal subspace design as Z-M/W-T: 0.006/4.7% with slightly better statistics352

as well.353

Finally for the individual directional data, the multichannel deconvolution of the Z-354

channel data is depicted in Fig. 10 as above. The results are better than those of the355

previous individual channel data primarily because of a higher directional sensitivity (better356

SNR) to the induced vibrations. In this case, the the subspace “fit” again using a 25-mode357

model to the data is at 66.0% (best) and the smallest MSE of 0.11—somewhat better than358

that of the other channels. The optimality tests (zero-mean/white) indicate an optimal359

subspace design as Z-M/W-T: 0.003/6.6% (slightly larger %).360

Next we consider the “batch” of all of the sensors combined as a MIMO-system of 3-361

excitations (inputs) and 24-responses (outputs) of Fig. 7. The inverse filter design results as a362

MIMO-system is shown in Fig. 11 where the overlaid fits and Z-M/W-T are shown. Here the363

subspace “fits” using a 20-mode model to the excitation data are at (35%,33%,31%) and the364

respective MSE at 1.25 not as good as the individual XY Z-channel results. The optimality365

tests (zero-mean/white) were also not quite as good for an optimal subspace design as Z-366

M/W-T: (0.005/7.6%; 0.003/8.3%; 0.005/7.7%). This could be because a lower SNR for the367

combination of batch channels as well as the fact that individual deconvolvers were design368

directly from each excitation separately. Next the inverse filter was applied directly to the369

24-channel response data with the results shown in Fig. 12 depicting the deconvolution of370

each of the raw excitation channels (dotted lines). The similarity to the channel excitation371

spectra (solid lines) is quite good and clearly captures the major frequencies (list) available372

from the subspace identification.373

This completes the discussion of the results of applying the MIMO deconvolution tech-374

nique using the multichannel inverse filter subspace design as compared to the individual375
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Figure 7: Test Object Data: (a) Multichannel (3-channels) random excitation (input) data
and ensemble with average spectra. (b) Multichannel (24-channels) response (output) data
and ensemble with average spectra.

channel designs. Even though the individual designs indicate a slightly superior performance,376

the batch design option may prove to be quite adequate in some applications. Thus, rea-377

sonable solutions to the multichannel deconvolution problem is successful on experimental378

data.379

IV. SUMMARY380

Transporting critical acoustical objects of high interest is a viable problem from the381

initial shipping/packaging and subsequent vibrational response inflicted during actual trans-382

port by rail, highway, sea or air. This leads to the need to extract any of the excitations383

incurred in order to assess the potential damage and assess potential structural failures. The384

multichannel deconvolution problem for transporting critical test objects is investigated by385

developing a shaping or inverse filter design based on a state-space (subspace) identification386

technique. The filter is designed during calibration tests and applied to noisy multichannel387
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Figure 8: Test Object X-Channel Data (8-Measurements,1-Excitation): (a) Design: Recov-
ery (multichannel) subspace estimates (Order = 25-modes, Fit = 44.4%, MSE = 0.29). (b)
Performance: Zero-Mean/Whiteness optimality tests: Z-M/W-T are: (No. 1: 0.009/4.9%).
(c) Deconvolution spectra: Excitation, inverse filtered application and design deconvolu-
tion with spectral peaks (circles) and eigen-frequencies (squares) including peak frequency
estimates (list).
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Figure 9: Test Object Y-Channel Data (8-Measurements,1-Excitation): (a) Design: Recov-
ery (multichannel) subspace estimates (Order = 25-modes, Fit = 55.8%, MSE = 0.17). (b)
Performance: Zero-Mean/Whiteness optimality tests: Z-M/W-T are: (No. 1: 0.006/4.7%).
(c) Deconvolution spectra: Excitation, inverse filtered application and design deconvolu-
tion with spectral peaks (circles) and eigen-frequencies (squares) including peak frequency
estimates (list).
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Figure 10: Test Object Z-Channel Data (8-Measurements,1-Excitation): (a) Design: Recov-
ery (multichannel) subspace estimates (Order = 25-modes, Fit = 66.0%, MSE = 0.11). (b)
Performance: Zero-Mean/Whiteness optimality tests: Z-M/W-T are: (No. 1: 0.003/6.6%).
(c) Deconvolution spectra: Excitation, inverse filtered application and design deconvolu-
tion with spectral peaks (circles) and eigen-frequencies (squares) including peak frequency
estimates (list).
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Figure 11: Test Object DESIGN: Inverse Filter Design (3-Channels) for Excitation Recovery
(Deconvolution). (a) Design: Recovery (multichannel) subspace (Order = 20-modes, Fits
= 35%,33%,31%) estimates with corresponding raw excitation data to match and Perfor-
mance: Zero-Mean/Whiteness optimality tests: Z-M/W-T are: (No. 1: 0.005/7.6%), (No.
2: 0.003/8.3%), (No. 3: 0.005/7.7%).
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accelerometer measurement data demonstrating a reliable and timely approach to solving388

this critical problem.389

A Mass Transportation Experiment is performed employing a large concrete block as a390

test object that was packaged and shipped in an instrumented tractor/trailer vehicle along391

typical roadways to obtain both excitation and response signals for analysis and performance392

evaluations. The basic idea is to extract shock and vibration excitation signals that test393

objects experience during a typical transport scenario. During this transport “known” shocks394

(drops) occur and are processed along with minor shocks during various segments of travel395

yielding valuable data sets. The results of applying a model-based deconvolution are quite396

reasonable enabling a successful extraction of the excitation inputs.397

Finally, the vibrational response of a structural test object is investigated during a398

calibration test with recorded random excitation inputs from a shaker. Again the results are399

quite encouraging indicating that the shaping or inverse filter design and application provide400

a meaningful methodology that can be applied to extract random transient excitations during401

transport of critical structural test objects to assess potential damage and ensure reliable402

operation.403
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APPENDIX A: Subspace Identification Method

In this appendix, we briefly summarize the major points of the numerical algorithm410

for state space subspace system identification (N4SID) technique.28 Primarily, subspace411

techniques extract an extended observability matrix directly from the acquired data first,412

followed by estimating the state-space, system model (ΣABCD) (see Refr. 20, 28 − 30 for413

more details). The observability matrix to be extracted is defined by414

Ok :=



C
−−−

...
−−−
CAk−1

 (24)

The underlying mathematical foundation that enables these extractions is projection415

theory. The primary idea, when applied to this problem, is to perform projections in a416

Hilbert space occupied by random vectors. That is, if yf (t) is a random vector (finite) of417

future outputs and yp(t) a random vector of past outputs, then the projection of the “future418

output data onto the past output data” Pyf |yp is invoked by applying the projection operator419

onto the past output data space to the future output data.420

This idea of projecting a vector onto a subspace spanned by another vector can be421

extended to projecting a row space of a matrix onto the row space of another matrix.20,28−30
422

Invoking oblique projections of the row space of future data Yf onto the row space of past423

data Yp enables us to extract both the extended observability matrix as well as the estimated424

state vectors by applying a singular value decomposition (SVD) operation, that is,20425

PYf |Yp = OkX̂k =
(
UNxΣ

1/2
Nx

)
︸ ︷︷ ︸

ONx

(
(Σ′

Nx
)1/2V ′

Nx

)
︸ ︷︷ ︸

X̂k

(25)

where UNx and V ′
Nx

are the respective left and right orthogonal matrices of the SVD per-426

formed on a data matrix.20427

This technique also requires a “shifted” projection PY−
f
|Y+

p
to extract the model. Here428

the operator projects shifted future data Y−
f as a row and incorporates it into the past output429

data array such that Yp → Y+
p . This projection, coupled with the first enables the extraction430

29



of estimated states, since it has been shown that39
431

PYf |Yp = Ok × X̂k and PY−
f
|Y+

p
= Ok−1 × X̂k+1 [Projections] (26)

where Ok−1 is the observability matrix with the last block row removed.432

With this in mind, both states can be extracted directly from the projections using433

pseudo-inversion (#) to obtain434

X̂k = O#
k ×PYf |Yp = Ok×X̂k and X̂k+1 = O#

k−1×PY−
f
|Y+

p
= Ok−1×X̂k+1 [States]

(27)

With these states of a Kalman filter now available from the SVD and pseudo-inversions,435

the underlying “batch” state-space (innovations) model is436

X̂k+1 = A X̂k + B Uk|k + ξωk

Ŷk|k = C X̂k + D Uk|k + ξνk
(28)

where the block data and input matrices are defined by Yk|k, Uk|k, respectively and the437

corresponding system and measurement noise processes by ξωk
, ξνk

.20,28
438

The residuals or equivalently innovations sequence and its covariance are defined by439

ξ :=

 ξωk

−−
ξνk

 ; and Rξξ := E{ξξ′} = E


 ξωk

−−
ξνk

 [
ξωk

| ξνk

]′ (29)

More compactly,440

 X̂k+1

−−−
Ŷk|k


︸ ︷︷ ︸

known

=

 A | B
− − −
C | D


 X̂k

−−−
Uk|k


︸ ︷︷ ︸

known

+

 ξωk

−−−
ξνk

 (30)

which can be solved as an estimation problem providing a least-squares solution as:441

 Â | B̂
− − −
Ĉ | D̂

 =


 X̂k+1

−−−
Ŷk|k


 X̂k

−−−
Uk|k


′


 X̂k

−−−
Uk|k


 X̂k

−−−
Uk|k


′

−1

(31)
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with the corresponding “least-squares” residual (innovations) covariances estimated by442

R̂ξξ =

 Re
ωω | Re

ωυ

− − −
(Re

ωυ)
′ | Re

υυ

 =

 KReeK
′ | KR1/2

ee

− − −
(KR1/2

ee )′ | Ree

 (32)

leading to443

R̂ee ≈ Re
υυ [Innovations Covariance]

K̂ ≈ Re
ωυR̂

−1/2
ee [Kalman Gain]

(33)

Thus, the solution of the stochastic realization problem, ΣINV = {Â, B̂, Ĉ, D̂, Re
ωω, Re

ωυ, R
e
υυ},444

is obtained through solving these least-squares relations using the N4SID-method.20,28
445

31



1 L. Sibul and M. Roan, “An overview of inverse problems in acoustic and seismic signal446

processing,” J. Acoust. Society Amer., Vol. 115, pp 2470, 2004.447

2 E. Robinson and S. Treitel, Geophysical Signal Analysis (Prentice-Hall,New Jer-448

sey,1980).449

3 J. Cook, T. Coforth and R. Cook, “Seismic and underwater responses to sonic boom,”450

J. Acoust. Society Amer., Vol. 49, pp 77, 1971.451

4 L. Dicus, “Impulse response estimation with underwater explosive charge acoustic452

signals,” J. Acoust. Soc. Am. 70 (1), 122-133, 1981.453

5 S. Jensen and B. Markowicz, Transportation Vibration Characterization of a 48’ Air454

ride Trailer with 1500 lbs. Mass Load, LLNL Internal Memo, 2016.455

6 J. Candy, K. Fisher, J. Case, B. Illingworth, K. Craft, “Excitation Recovery Prob-456

lem: A Model-Based Approach to Multichannel Deconvolution”, LLNL-Report, LLNL-TR-457

813769, 2020.458

7 P. Mignerey and S. Finette, “Multichannel deconvolution of an acoustic transient in459

an oceanic waveguide,” J. Acoust. Society Amer., Vol. 92 (1), pp 351-364, 1992.460

8 T. Olofsson and T. Stepinski, “Maximum a posteriori deconvolution of ultrasonic461

signals using multiple transducers,” J. Acoust. Soc. Am. 107 (6), 3276-3288, 2000.462

9 C-Y. Chi and W-T Chen, “An adaptive maximum-likelihood deconvolution algo-463

rithm,” Signal Proc. 24, pp 149-163, 1991.464

10 J. Kormylo and J. Mendel, “Maximum-likelihood deconvolution”, IEEE Trans. Geosci.465

Remote Sensing, Vol. GE-21, pp. 72-82, 1983.466

11 J. Candy, R. Ziolkowski, and K. Lewis, “Transient wave estimation: a multichannel467

deconvolution application,” J. Acoust. Society Amer., Vol. 88 (5), pp 2235-2247, 1990.468

12 M. Tanter, J-L Thomas and M. Fink, “Time reversal and the inverse filter” J. Acoust.469

Soc. Am. 108 (1), 223-234, 2000.470

13 T. Gallot, S. Catheline, P. Roux and M. Campillo, “A passive inverse filter for Green’s471

function retrieval” J. Acoust. Soc. Am. Exp. Letters, 131 (1), EL21-EL26, 2012.472

14 D. Beaton and N. Xiang,“Room acoustic modal analysis using Bayesian inference,”473

J. Acoust. Soc. Am. 141(6), 4480-4493, 2017.474

15 E. Reynders, “System identification methods for (operational) modal analysis: review475

and comparison,” Archives of Comp. Methods Engr., Vol. 19 (1), pp. 51-124, 2012.476

32



16 L. Marple, Digital Spectral Analysis, 2nd-Ed., (Dover,NY,2019).477

17 E. Sullivan, Model-Based Processing for Underwater Acoustic Arrays. (Springer,NY,2015).478

18 J. Candy, K. Fisher, J. Case, and T. Goodrich, “Multichannel spectral estimation in479

acoustics: a state-space approach,” J. Acoust. Soc. Am. 148(2), 759-779, 2020.480

19 B. Rao and K. Arun, “Model-based processing of signals: a state space approach.”481

Proc. IEEE, Vol. 80, no. 2, pp. 283-309, 1992.482

20 J. Candy, Model-Based Processing: An Applied Subspace Identification Approach.483

(Wiley,Hoboken,NJ,2019).484

21 P. DeRusso, R. Roy, C. Close and A. Desroches, State Variables for Engineers, (Wi-485

ley,Hoboken,NJ,1998).486

22 R. Wiggins and E. Robinson,“Recursive solution to the multichannel filtering prob-487

lem,” J. Geophys. Res. 70(8), 1885-1891 (1965).488

23 J. Walsh, “On limitations of minimum mean-square error deconvolution in deriving489

impulse responses of rooms,” J. Acoust. Soc. Am. 77 (2), pp 547-556, 1985.490

24 J. Candy, Model-Based Signal Processing, (Wiley,IEEE Press,Hoboken,NJ,2006).491

25 J. Mendel, Maximum-likelihood Deconvolution: a Journey Into Model-based Signal492

Processing, (Springer,NY,1990).493

26 A. Baggeroer, W. Kuperman, and H. Schmidt, “Matched-field processing: source494

localization in correlated noise as an optimum parameter estimation problem,” J. Acoust.495

Soc. Am, 83, (2), 571-587, 1988.496

27 J. Candy, J. Case, K. Fisher, B. Illingworth K. Craft, “Transient recovery problem in497

acoustics: a multichannel model-based deconvolution approach,” J. Acoust. Soc. Am., Vol.498

143, (2), pp. 680-696, 2020.499

28 P. van Overschee and B. De Moor, “N4SID: Numerical algorithms for state space500

subspace system identification.” Automatica, vol 30, pp. 75-93, 1994.501

29 P. van Overschee and B. De Moor, Subspace Identification for Linear Systems: The-502

ory, Implementation, Applications. (Kluwer Academic,Boston,MA,1996).503

30 T. Katayama, Subspace Methods for System Identification. (Springer,London,UK,2005).504

31 J. Candy, S. Franco, E. Ruggiero, M. Emmons, I. Lopez and L. Stoops, “Anomaly505

detection for a vibrating structure: A subspace identification/tracking approach,” J. Acoust.506

Soc. Am., Vol. 142, (2), pp. 680-696, 2017.507

33



32 J. Candy, K. Fisher, B. Markowicz, D. Paulsen, “Multichannel Deconvolution of Vi-508

brational Shock Signals: An Inverse Filtering Approach”, LLNL-Report, LLNL-TR-8117068,509

2020.510

34



LIST OF FIGURES

FIG. 1 State-Space Realizations of Gauss-Markov and Inverse Filters: (a) Gauss-Markov511

model: Input: (u(t)) and Output: (y(t)). (b) Inverse Gauss-Markov (shaping) filter: Input:512

(y(t)) and Output: (u(t)).513

FIG. 2 Transportation Vibration Measurements and Processing for Analysis: Test ob-514

ject transport structure with shock excitation, multichannel accelerometer measurements,515

processed signals and analysis spectrogram.516

FIG. 3 Mass Transportation Experiment Data: (a) Multichannel excitation (input)517

data and ensemble (thin line) with average (thick line) spectra. (b) Multichannel response518

(output) data and ensemble (thin line) with average (thick line) spectra.519

FIG. 4 Mass Transportation Experiment: Inverse Filter Design for Excitation Recovery520

(Deconvolution). (a) Design: Recovery (multichannel) subspace (order = 16-modes) esti-521

mates with true-mean outputs. (b) Performance: Zero-Mean/Whiteness optimality tests:522

Z-M/W-T are: (No. 1: 0.022/6.3%), (No. 2: 0.058/6.3%), (No. 3: 0.026/4.7%).523

FIG. 5 Mass Transportation Experiment Inverse Filter Design Spectra: Median exci-524

tation spectrum and average recovered (deconvolved) excitation (filled) spectral estimate.525

526

FIG. 6 Structural Test Object Experimental Setup: Motor driven stinger (random ex-527

citations), accelerometer sensor measurements, MIMO analog-to-digital (A/D) acquisition,528

inverse filter (DESIGN), multichannel deconvolution,(INVERSE FILTERING), performance529

analysis.530

FIG. 7 Test Object Data: (a) Multichannel (3-channels) random excitation (input)531

data and ensemble with average spectra. (b) Multichannel (24-channels) response (output)532

data and ensemble with average spectra.533

FIG. 8 Test Object X-Channel Data (8-Measurements,1-Excitation): (a) Design: Re-534

35



covery (multichannel) subspace estimates (Order = 25-modes, Fit = 44.4%, MSE = 0.29). (b)535

Performance: Zero-Mean/Whiteness optimality tests: Z-M/W-T are: (No. 1: 0.009/4.9%).536

(c) Deconvolution spectra: Excitation, inverse filtered application and design deconvolu-537

tion with spectral peaks (circles) and eigen-frequencies (squares) including peak frequency538

estimates (list).539

FIG. 9 Test Object Y-Channel Data (8-Measurements,1-Excitation): (a) Design: Re-540

covery (multichannel) subspace estimates (Order = 25-modes, Fit = 55.8%, MSE = 0.17). (b)541

Performance: Zero-Mean/Whiteness optimality tests: Z-M/W-T are: (No. 1: 0.006/4.7%).542

(c) Deconvolution spectra: Excitation, inverse filtered application and design deconvolu-543

tion with spectral peaks (circles) and eigen-frequencies (squares) including peak frequency544

estimates (list).545

FIG. 10 Test Object Z-Channel Data (8-Measurements,1-Excitation): (a) Design: Re-546

covery (multichannel) subspace estimates (Order = 25-modes, Fit = 66.0%, MSE = 0.11). (b)547

Performance: Zero-Mean/Whiteness optimality tests: Z-M/W-T are: (No. 1: 0.003/6.6%).548

(c) Deconvolution spectra: Excitation, inverse filtered application and design deconvolu-549

tion with spectral peaks (circles) and eigen-frequencies (squares) including peak frequency550

estimates (list).551

FIG. 11 Test Object DESIGN: Inverse Filter Design (3-Channels) for Excitation Re-552

covery (Deconvolution). (a) Design: Recovery (multichannel) subspace (Order = 20-modes,553

Fits = 35%,33%,31%) estimates (dotted lines) with corresponding raw excitation data to554

match (solid lines)) and Performance: Zero-Mean/Whiteness optimality tests: Z-M/W-T555

are: (No. 1: 0.005/7.6%), (No. 2: 0.003/8.3%), (No. 3: 0.005/7.7%).556

FIG. 12 Test Object Inverse Filter Design Spectra: Raw excitation (dotted-lines) spectra557

(3-Channels) and recovered (deconvolved) excitation (solid lines) spectral estimates with558

spectral peaks (circles) and eigen-frequencies (squares) including peak frequency estimates559

(list).560

36


