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Multichannel Deconvolution of Vibrational Signals:
A State-Space Inverse Filtering Approach

J. V. Candy, K. A. Fisher, B. A. Markowicz, D. J. Paulsen
Lawrence Livermore National Laboratory
P.O. Box 808, L-151
Livermore, CA 94551

Phone: 925-422-8675

Deconvolution of noisy measurements, especially when they are multichannel, has always
been a challenging problem. The development of processing techniques range from simple
Fourier methods to more sophisticated model-based parametric methodologies based on the
underlying acoustics of the problem at hand. Methods relying on multichannel mean-squared
error processors (Wiener filters) have evolved over long periods from the seminal efforts in
seismic processing. However, when more is known about the acoustics, then model-based
state-space techniques incorporating the underlying process physics can improve the pro-
cessing significantly. The problem of interest is the vibrational response of a tightly-coupled
acoustic test object excited by an out-of-the-ordinary, transient, potentially impairing its
operational performance. Employing a multiple input/multiple output structural model of
the test object under investigation enables the development of an inverse filter by applying
subspace identification techniques during initial calibration measurements. Feasibility appli-
cations based on a mass transport experiment and test object calibration test demonstrate
the ability of the processor to extract the excitation successfully even in the case of random

excitations.

PACS numbers: 43.60.Uv, 43.60.Gk, 43.60.Cg, 43.30.Zk
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I INTRODUCTION

When transporting delicate acoustical objects of interest, out-of-the ordinary, transient
events can occur affecting overall system performance creating great concern. Events that
can occur are essentially pulse-like, transient signals of short duration that evolve from var-
ious phenomena. Here the event can be created by either dropping of a test object during
shipping/packing subjecting it to a compact high-energy blow or the object being struck
unintentionally during transit resulting in potential damage or even just the typical random
vibrations evolving from roadway, rail or flight turbulence. The intensity and location of
the strike can cause an inoperability condition that is totally unacceptable. Therefore, it
is essential to detect, classify and localize damage of any test object subjected to a shock
event. This effort is aimed at evaluating the vibrational response of acoustical test objects
that are subjected to “transport” shocks and roadway vibrations during shipping and han-
dling as well as any test object subjected to random vibrations—another common event
during transport. Any potential damage that could be inflicted during transportation must
not only be detected, but also evaluated to determine the operational readiness of the test
object before and after transport.!=6

The estimation of excitation signals from noisy data is termed the deconvolution prob-
lem in the signal processing literature. The deconvolution problem is based on recovering the
input excitation signal(s) from a system characterized by its impulse response sequence.” !
Using this model of the system, an “inverse” representation or filter is developed to remove
the system from the measured data and recover the input.!'?'3 Deconvolution has long
been a problem of great interest especially in the seismic community where the source lo-
cation and extraction problem is one of great interest in localizing earthquakes and other
phenomena.? Explosives in ocean acoustics have also been acoustic sources, desirable or
undesirable, for both exploration and mapping leading to a transient deconvolution prob-
lem of high interest.>* Deconvolution problems in nondestructive evaluation (NDE), room
acoustics and structural vibration problems abound.®415

Multichannel processing methods evolve from a variety of acoustic applications in spec-

tral estimation, ocean acoustics, structural acoustics and more.'®=1® Model-based methods
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show improved performance with multiple input/multiple output (MIMO) constructs incor-
porating embedded models such as finite impulse response, autoregressive moving average
and state-space models that are prevalent in spectral estimation and structural vibration
analysis.!>~17 In this paper, the state-space approach is employed for a number of reasons,
not just because the systems under investigation are primarily structural and can easily
be captured within this framework, but also because they can be physically represented
by a multichannel, linear time-invariant (LTI), mass-damper-spring (MCK) vibrating struc-
ture along with the added advantage of existing numerically stable subspace estimation
techniques. 51921

The evolution of multichannel techniques for deconvolution has progressed significantly
since the pioneering work of Robinson in the development of a recursive, mean-squared error
(Wiener) method based on an FIR-representation and efficient Levinson methodology.??*23
Following this work other methods evolved especially in spectral estimation applied to
acoustic problems (e.g. ocean acoustics, sonar, seismology, NDE) as well as state-space
techniques.?*=26 The state-space approach coupled to the well-known Kalman filter proces-
sor has evolved from seismic applications incorporating a well-defined geophysical model.?
Since deconvolution is essentially an ill-conditioned inverse problem, an alternative method-
ology has evolved in ocean acoustics termed matched-field processing (MFP) primarily aimed
at target localization and tracking.?® In this approach measured multichannel field data are
compared to that predicted by a propagation model, maxima or minima are then calculated
based on various criteria to locate the target(s) position.?® Another recent model-based ap-
proach incorporating a transient model has evolved using a forward modeling technique cou-
pled to a Kalman filter, similar to the matched-field approach.?®-?” In this method, a Kalman
filter with its embedded system model identified from experimental data, is employed in an
iterative scheme to extract a parameterized transient.26:27

There are two candidate approaches that can be used to mitigate this multichannel
problem. The first is the well-known Wiener least-squares solution employing the nonpara-
metric multichannel Levinson algorithm.?2?22* The second approach, that is pursued in this
paper, incorporates a state-space model that can be used to develop an inverse filter directly

from input/output data. This approach incorporates any existing modal coupling that exists

in the underlying structure being identified. That is, the state-space approach is to estimate
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the response of an underlying linear time-invariant, multichannel structural system using a
black-box state-space model. This model captures the underlying structural dynamics of
critical components enabling a viable vibration analysis to ensure that even weakly coupled
modal signals buried in the noise are represented. Thus the primary contribution of this
paper is to develop an inverse system design technique from calibration measurements em-
ploying subspace identification methodology and applying the resulting design as a filter to
solve the multichannel deconvolution problem.20:28-30

The development of the underlying structural system and its incorporation into the
state-space framework is developed in Sec. II. Next the deconvolution problem is defined in
terms of multichannel input/state/output system descriptions and their equivalence. This
is followed by the description of stochastic representations including the Gauss-Markov and
innovations models leading to the state-space description of the inverse (shaping) filter along
with its design—the primary mechanism employed in this effort. The design and applica-
tion of the inverse filter for multichannel deconvolution is discussed in Sec. III after briefly
describing a set of various transient shock signals that typically occur during transit. Two
applications are discussed in detail. First a noisy mass-simulation transportation data ex-
periment obtained by transporting a large-mass concrete block using a tractor /tailer vehicle
on typical roadways followed by the vibrational response experiment of a test object excited
by random excitations completing the study. The results of this work are summarized in the

final section.

II. BACKGROUND

In this section, multiple channel structural vibration models are briefly developed lead-
ing to a set of deterministic as well as stochastic state-space models that are employed
throughout to solve the deconvolution problem. The multichannel aspects of this problem
are defined in terms of the state-space realization enabling it to uniquely characterize the

problem and proceed with its solution.

A. Vibrational State-Space Model
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Mechanical systems are important in many applications, especially when considering
vibrational responses of critical components such as turbine-generator pairs in nuclear sys-
tems on ships or even in power generating plants at home as well as aircraft structures that
transport people throughout the world. Next we briefly present the generic multivariable
mechanical system representation that will be employed in examples and case studies to
follow.

A multichannel, linear, time-invariant mechanical system can be characterized by

Md(7) + C4d(7) + Kd(7) = B,p(7) (1)
where d is the Ny x 1 displacement vector, p is the N, x 1 excitation force, and M, Cy,
K, are the Ny x N lumped mass, damping, and spring constant matrices characterizing the
vibrational process model, respectively and B, is the input weighting matrix.

: T
Define the 2N -state vector as x(7) := [ d(r) | d(r) } , then the continuous-time (7)

state-space representation of this process can be expressed as

0 | I 0
() = | ——= | ——— |x(0)+| ——= |p() (2)
-M'K | -M~1Cy M~'B,
—_———
A Be
or more compactly
X(1) = Aex(7) + Bcp(t) (3)

for A, and B, the appropriately dimensioned continuous-time (subscript ¢) system and input
transmission matrices.

The corresponding measurement or output vector relation can be obtained from

y(7) = Caa(T) + Cvd(r) + Cqad(7) (4)

where the constant matrices: C,, Cy, Cq are the respective acceleration, velocity and dis-
placement weighting matrices of appropriate dimension.

Solving for the acceleration in Eq. 1 and substituting for this term in Eq. 4, gives
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d(r)
y(7) = [Ca= CaM 'K | Cy = CaM'Cq] | — = — |+ CaM 'B,p(7) (5)
C. d(T) D,

to yield the vibrational measurement in terms of the state-space model as:

y(7) = Cex(7) + Deu(r) (6)

where the continuous-time output or measurement vector is y € R™*! completing the
deterministic multiple input/multiple output (MIMO) vibrational state model.
Corresponding to this continuous-time representation is its discrete-time counterpart

consisting of similar state/measurement relations:

x(t+1) = Ax(t) + Bu(t) [State]
y(t) = Cx(t)+ Du(t) [Measurment]| (7)

with appropriately dimensioned matrices defined by the model set ¥ 4pcp := {A, B,C, D}

The discrete transfer function matrix is defined in terms of the Z-transform

H(z) =C(zI —A)'B+ D (8)

with the impulse response matrix specified by its set of Markov parameters specified by the

underlying state-space model 243!

H(t) = CA"'B+D 4(t) (9)

Markov Parameters

B. Deconvolution

The basic deterministic multichannel deconvolution problem can be defined mathemat-

ically as:
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GIVEN an N,-vector measurement sequence {y(¢)};t =1,---, N, for y € R">*! FIND the

corresponding N,-vector excitation (input) sequence, {U(t)}

The direct solution to the deterministic deconvolution problem is given by

Uuit) = H(t) * o y(t) (10)
S~~~ —— S~~~
Excitation Inverse Impulse Response Measurement
or in the Z-domain as
U(z) = H(2) x  Y(z) (11)
—— —— ——
Excitation Inverse Transfer Function = Measurement

Therefore, it is clear mathematically why this problem is termed an “inverse” problem—
primarily because the system impulse response or transfer function matrices must be inverted
in order to recover the excitation signal. Approaches to solve the deconvolution problem
range from a simple division of Fourier spectra to more sophisticated Wiener inversions
using smoothed power spectra to achieve reasonable results for the single channel case.?*
However, all attempts in the multichannel case usually result in transfer function modeling
approaches and time domain solutions as in the seismic case.? For multichannel acoustic
systems, a state-space model is one of the fundamental mechanisms applicable.?:2%:27

The multiple channel models can be developed, starting with a set of input/output
representations eventually leading to a set of deterministic state-space models. Typical
discrete-time deterministic multiple input/multiple output (MIMO) systems can be char-

acterized by their impulse response matrices or equivalently multichannel transfer function

matrices. The impulse response of a discrete-time system is

y(t) = H(t) *u(t) = ’; H(t — k)u(k) (12)

with t is the discrete-time index, * the multichannel convolution operator and y € RMv*!
the vector of outputs, u € R™*!  the vector of inputs, H € RM*Nu the impulse response
matriz with corresponding transfer function matriz, H(z) € CNv*Ne,

The impulse response can be represented as a multichannel matrix in terms of its inputs

(columns) and outputs (rows) or equivalently in terms of column vector functions ( h;(t) €
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H(t) =

Outputs

hll (t)

ha(t) - By (1) L

hin, (t) -—-
: =M@ [ [hy,@O] =] (13)

T
Inputs L hNy (t) J

The multichannel convolution operations are then defined in terms of this representation

o, (O] u() = () xu(t) | - |y () *u(t)] (14)
[ hll(t)*ul(t) thu(t)*uNu(t)
| b () % wr(t) - oy, (um, (8)
[ o hu(B)ui(t—k) - Spg b, (k)uw, (t — k)
S b (Run(t — k) - S By (K ( — B)

(15)

where h,,,(t) the impulse response from the n-th input excitation (u,(t)) measured at the

m-th output channel (y,,(t)); form=1,--- Nyjandn=1,---,N,.

The multichannel transfer function matrix follows by applying the Z-transform to obtain

H(z) =

Hyi(2)

Hy,u(2)

Hiy,(2)
. = [Hy(2)---Hy, (2)] for H, € "' (16)

Hy,n,(2)

The multichannel system can also be represented in state-space form with the impulse

response matrix given in terms of its Markov parameters
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H(t) = CA™'B+ Dj(t); t=0,1,---,N (17)

Markov Parameters

such that

C{Atilbl + dllé(t) s C{Atilb]\[u + leu(S(t)
H(t) = : : (18)
CNyAt_lbl + dNy15(t) cee C%yAt_leu + dNyNu(S(t)

with the corresponding transfer function matrix in state-space form given by

cl(zl —A) by +dyy - cl(zl — A)7 by, +din,
H(z) = : : (19)
cy, (21 —A)7'by +dy, - ey (2 = A) by, +dyyw,
demonstrating the fact that the input/state/output representation captures the input/output
as well as the internal structure of the underlying system in terms of its state variables and

equivalent impulse response/transfer function matrices.
C. Gauss-Markov and Innovation Models

Incorporating noise and uncertainty into the basic multichannel problem, the stochastic
deconvolution problem evolves.%?4?° Applying more structure to this stochastic problem
leads to a linear, time-invariant Gauss-Markov model (GM) with correlated noise sources

(see Fig. 1(a)) for stationary processes as:

y(t) = Cx(t)+ Du(t) + v(t) (20)

where x,w € RV*! yv € RV and u € RY*! with A € RN=XNe B ¢ RNeXNu
C e RNvNa D e RNv*Nu s ~ N(0, Ryw), v ~ N(0, Ry,) and the cross-covariance matrix
given by cov(w,v) = R,,. (Here the notation N (u, V) defines a Gaussian distribution of

mean vector p and variance matrix V).
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Noisy data must be processed to increase the signal-to-noise ratio (SNR) enabling the
recovery problem to succeed. A state-space processor based on the Gauss-Markov representa-
tion leads directly to an optimal solution—the Kalman filter. It produces enhanced estimates
of both the states and measurements while providing the all important innovations (residual
error) sequence for performance analysis.?4?” The basic state estimation problem is to find
the minimum variance estimate of the state vector of the GM-model in terms of the currently
available measurement sequence y(t).

The innovations (INV) representation of the Kalman filter in “prediction form” is given

by (see Refer. 27 for details)

x(t+1) = Ax(t) + Bu(t) + K,(t)e(t) [State Estimate]
e(t) = y()—Cx(t) [Innovation]
y(®)
(21)

with e(t) the innovations sequence, y(t) the estimated measurement and K,(t) the predicted

Kalman gain for correlated noise sources R,,, with state error covariance p(t) given by

Re.(t) = (t)C" + Ryp(t) [Innovations Covariance]
Ky(t) = (AP@#)C"+ Ru(t)) R (1) [Kalman Gain]
Pt+1) = APHt)A — Kp(t) Ree(t) K (t) + Ryw(t) [Error Covariance]

(22)

where the innovations model can be defined in terms of the Kalman filter parameters as
Sivv o= {A,C, P, K,, R..}.

With this information in mind, the solution to the multichannel deconvolution problem
is based on designing and applying an inverse filter to recover the excitation as shown in Eq.
11. A direct model of an inverse filter is quite difficult to obtain analytically; however, we
apply a subspace identification technique (N4SID) to solve the multichannel deconvolution
problem.?® Essentially, this approach is used to design a “shaping filter” (see Ref. 24) based

on the state-space approach using representative excitation signals and apply it directly noisy

10
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u(t) —— B > z-1f c > y(©)

| : o |

x(t+1) = Ax(t) + Bu(t) + w(t)

K v® = Cx(t)+ Du(t) + v(t) Gauss-Markov Model /
) / Dinv \

4
S
)

w(t)
y) — BNV >z 1] » CINV >D » u(t)
| g§(t+1) &(t) |
ANV v(t)
§(t+1) = AvE(® + Binvy(® + w(t)

K ut) = CyyvE(D) + Dynyy(®) + () Inverse Gauss-Markov Model /

Figure 1: State-Space Realizations of Gauss-Markov and Inverse Filters: (a) Gauss-Markov
model: Input: (u(t)) and Output: (y(¢)). (b) Inverse Gauss-Markov (shaping) filter: Input:
(y(t)) and Output: (u(t)).

data. Once designed, the filter is applied to measured data extracting the desired excitation

directly.
D. Inverse (Shaping) Filter

A shaping filter is developed directly from Wiener filtering theory where a filtered output
(e.g. a pulse) is termed the “desired” signal (d) with the measured data (y) as input. The
objective is to develop a filter response capable of producing the desired signal or shaping

the output, that is,

d(t) = F(t) »y(t) — F = R, Ry,

Y

with covariance matrix/vector, Ry, and Rg,.*

11
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For deconvolution, the shaping (inverse) filter is primarily developed to apply a set of
calibration measurement data as input and produce the estimated excitations as outputs, that
is, the filter is designed to create a processor that estimates the input excitations. First, the
impulse response of the shaping filter or equivalently the multichannel state-space processor
must be estimated during the design phase and next it must be applied to measured data
as its input—the usual filtering operation. From the deconvolution problem perspective, the
shaping filter is the required “inverse filter”.

In the state-space framework, we have that 3;,, = {Ainw, Binvs Cinv, Diny} 18 character-

ized by
§E+1) = Ap€(t) + Binoy(t) + w(t) [State]
u(t) = Cink(t) + Dinvy(t) + v(t) [Excitation]

(23)

where y is the new input and u is the new output of this inverse filter “shaping” it to be the
actual excitation as shown in Fig. 1(b).

In summary, the multichannel shaping (inverse) filter design procedure is:
e Obtain excitation and multichannel sensor calibration data,;

e Design inverse (shaping) filter, Sine = {Amv,Bmv,émy,Dmv}, from calibration data
using subspace identification (N4SID) techniques; and

e [ilter subsequent measured data with the inverse filter to extract the excitations per-

forming the deconvolution.

III. MULTICHANNEL DECONVOLUTION

The multichannel deconvolution processor was designed and applied to two sets of acous-
tic vibration data: (1) Transport Data; (2) Calibration Data. The transportation data was
gathered using a tractor/trailer vehicle and a large mass to estimate typical roadway vi-

brations and shock events during shipping/handling operations. A test object response was

12
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investigated during a calibration experiment using a large shaker with random excitations.
Both tests were employed to evaluate the feasibility of the inverse filter approach. Other

simulations and data were also used and reported.®3!:32

A. Mass Transportation Experiment

A variety of excitations can occur during shipping and handling for transport any time

during this process characterized by three typical excitations:?3?

e DROP—a drop can occur anytime during shipping/handling when the structural object

is being placed in a container or trailer.

e HAZARD—a hazard can occur anytime during transit, once the object is placed in the

transporter (truck, train, plane, ship, etc.).

e ROAD—a road induced vibration can occur anytime during transit on a roadway or

rail or at sea/air.

The DROP is the most severe of excitations that can be directly applied to the struc-
tural object being transported. It can occur in a variety of situations when the object is
being handled for shipping such as: forklift placement or moving the object through a vari-
ety of transporters (e.g. truck-to-train or truck-to-plane). The HAZARD excitation can also
occur in a variety of manners. For instance, if construction were being performed on a road
or railway with uneven surfaces being exposed as well as pot-holes on a road for example.
The ROAD excitation induces a persistent vibrational response of the transported struc-
tural object during transit. Data were gathered, analyzed and used to synthesize potential
responses evaluating the ability of the processor to extract these excitations employing an
inverse multichannel filter—all of the results were successful as discussed in Ref. 32.

Mass transport experiments were performed by incorporating a 1500-1b concrete block
mounted on a wooden shipping palate—the “Mass Transport Simulator”.® The block syn-
thesized a mock test object in size and shape and was transported in a 48-ft tractor/trailer
over a typical transportation path in order to acquire shock and vibration data. The mass

was mounted over the front axles and instrumented with tri-axial accelerometers located:

13
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adjacent to the center-of-gravity of the block, centered in the trailer bed and above the rear
axle as illustrated in Fig.2.

Data were acquired at a 10K Hz sampling frequency triggered by shock events during
the transport. The raw data were filtered and decimated to a Nyquist frequency of 5K Hz.
This data set contains a high g-shock event as recorded over the rear axle on channels 4 — 6.
The shock, a HAZARD, was produced (unintentionally) by the tractor/trailer riding over a
large road surface separation at different levels causing a g-force event as shown by the large
transient recorded on the Z-direction channel (No. 6) and indicated on the X, Y-channels
(No. 4 and 5) as well.

The processing approach is shown in Fig. 2 where the multichannel measurements
are band-pass filtered using a 10"*-order Butterworth filter between the frequency band
of 60Hz to 4.5K Hz based on the range of expected rigid body modes of the vibrating
structure (< 60H z). The data were equalized (pre-whitened) to ensure a wide bandwidth for
deconvolution. Once these data were available, the “average” impulse response along with the
upper accelerometer measurements were used in an optimal deconvolution (single channel)
scheme to extract the shock excitation for analysis. The resulting signal was investigated
further applying a spectrogram processor to generate a frequency-time evolution analysis of
the vibrational response as well as the deconvolution processor as illustrated.

The excitation and accelerometer data were pre-processed (filtered, decimated, trend
removed, normalized) as shown in Fig. 3(a) where a set of extracted shock excitation tran-
sients and their corresponding ensemble spectra are given along with the subsequent response
data and spectra in (b). Multichannel deconvolution (design) was performed by estimating
(N4SID) an inverse filter using a 40-th order state-space model applying the excitation data
as the output and the response data as the input.20:28:29

The results of the inverse filter design are shown in Fig. 4 where the true excitation data
(turquoise) and their estimates (red) are overlayed in (a). Recall that the Z-M test requires
that the estimate should lie below the bound (0.17) , while the W-T insists that 95% of
each channel correlation estimates lie within the bounds or equivalently 5% are outside.
For the design, the Z-M/W-T results for each measurement are: (No. 1: 0.022/6.3%), (No.
2: 0.058/6.3%), (No. 3: 0.026/4.7%). The application of the inverse filter processor to

measurement data is shown in Fig. 5 where the average data spectrum is compared to the

14
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Figure 2: Transportation Vibration Measurements and Processing for Analysis: Test ob-
ject transport structure with shock excitation, multichannel accelerometer measurements,
processed signals and analysis spectrogram.
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Figure 3: Mass Transportation Experiment Data: (a) Multichannel excitation (input) data
and ensemble (thin line) with average (thick line) spectra. (b) Multichannel response (out-
put) data and ensemble (thin line) with average (thick line) spectra.

average deconvolved spectrum. The results are encouraging, since the spectral bands of high

interest are captured by the processor.

B. Test Object Calibration Experiment

Calibration tests are usually performed before shipping any acoustical object to ensure
its proper operation especially for delicate instruments. The application of the multichannel
deconvolution approach to an “unknown” structural test object is the focus of this effort.
These tests are performed on this object that is essentially a complex, stationary structure
with no rotating parts that is subjected to random excitations with accelerometers placed on
its surface and around its periphery. Here the primary objective is to examine the feasibility
of applying the model-based deconvolution technique to a mulitple input/multiple (MIMO)
structural object with minimal a priori information subjected to environmental disturbances

and noise.
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Figure 4: Mass Transportation Experiment: Inverse Filter Design for Excitation Recovery
(Deconvolution). (a) Design: Recovery (multichannel) subspace (order = 16-modes) esti-
mates with true-mean outputs. (b) Performance: Zero-Mean/Whiteness optimality tests:
Z-M/W-T are: (No. 1: 0.022/6.3%), (No. 2: 0.058/6.3%), (No. 3: 0.026/4.7%).
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Figure 5: Mass Transportation Experiment Inverse Filter Design Spectra: Median excitation
spectrum and average recovered (deconvolved) excitation ( filled) spectral estimate.

The object under test is subjected to random excitations by placing a stinger or motor-
driven rod perpendicular to the base of the structure as illustrated in Fig. 6. A suite of 19-
triaxial (XY Z) accelerometers is positioned strategically about the surface of the structural
object along with a single triaxial sensor allocated to measure the stinger xcitation time
series. In total, an array of 57-accelerometer channels acquired a set of 10-minute duration
data at a 6.4K Hz sampling frequency.?*3! For pre-processing the data were subsequently
down-sampled to 2.5K Hz in order to focus on the range of the excitation frequencies (<
1.25K Hz). For this investigation, a subset of 8-triaxial accelerometers is selected as well as
the single triaxial sensor measuring the stinger excitation. Therefore, from the state-space
perspective our MIMO-system, is a targeted system of up to a maximum of 12-modes or
24-states with an array of 24-channels (XY Z) of time series measurements and 3-channels
(XY Z) of an excitation measurement that we are attempting to recover from these noisy
accelerometer measurements using an inverse filter.

The raw (down-sampled) data represent the expected data windows (5000 samples)

acquired from a real-time acquisition system. The windowed responses (time series) were
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Figure 6: Structural Test Object Experimental Setup: Motor driven stinger (random ex-

citations), accelerometer sensor measurements, MIMO analog-to-digital (A/D) acquisition,
inverse filter (DESIGN), multichannel deconvolution,(INVERSE FILTERING), performance
analysis.
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pre-processed, that is, they were outlier corrected, equalized (whitening filter), bandpass
filtered (150 — 1.1K Hz), and normalized (mean removal/unit variance) prior to performing
the inverse filter design. Once pre-processed the input/output data with roles reversed were
provided to the subspace algorithm enabling an identification of a stability constrained,
state-space model of the inverse filter, ¥, = {Ainw, Binvs Cinv, Dino}.  Once the design
accomplished, the inverse filter is applied to an independent section (5000 samples) of noisy
accelerometer data to validate multichannel deconvolution processor performance.

The MIMO-data of the controlled experiment are shown in Fig. 7 where the triaxial
(random) excitations with their accompanying ensemble spectra are shown along with the 8-
triaxial accelerometer responses (24-channels) on the surface and periphery of the structural
object. The ensemble spectra bounded at 1100H z of both excitations and responses are
also shown with the average spectrum (thick line) as well. The question to be answered is
whether or not the multichannel deconvolution technique using an inverse filter is capable for
extracting these excitations from the noisy accelerometer measurement data. We investigate
this problem in two-phases: XY Z-data sets individually (8 directional outputs and 1-input)
and the combined measurement array directly (24-outputs and 3-excitations). The simpler
XY Z-data sets are investigated first followed by the combination or batch data.

The design procedure is to: (1) Calibration: design the MIMO-inverse filter using the
state-space subspace identification method constrained for stable solutions only; (2) Applica-
tion: process the incoming accelerometer measurements with 3;,, to extract the excitations.
The performance metrics that can be used are: the percentage of model fit (Fit %) to the
data and its corresponding mean-squared error (MSE). This procedure is applied, starting
with the individual XY Z-directional data sets with the results for the X-channel data is
shown in Fig. 8(a) where the estimated excitation (thin dotted-line) is overlaid on the actual
(initial) excitation (thick line). The subspace “fit” using a 25-mode model to the data (ex-
citation) is at 44.4% and the MSE at 0.29. The optimality tests (zero-mean/white) indicate
an optimal subspace design as Z-M/W-T: 0.009/4.9%. Note that since the excitations are
random signals, then a reasonable comparison is the power spectra as shown in (c). It is
clear that the design spectrum (filled) has captured the prominent spectral characteristics
of the original excitation. The application of the inverse filter to another section of noisy

measurement data (8-channels) also demonstrates the robustness of this approach, since the
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extracted excitation spectrum (green) also captures the salient features of the original ex-
citation data (thick line). The resonant peaks (inset list) and the identified modal peaks
(squares) are also shown overlaid on the spectral plots.

The multichannel deconvolution results for the Y-channel data shown in Fig. 9. Again
the estimated excitation (dotted line) is overlaid on the actual (initial) excitation (thick
line) where the subspace “fit” using a 25-mode model to the data is at 55.8% and the MSE
0.17—somewhat better than that of the X-channel. The optimality tests (zero-mean/white)
indicate an optimal subspace design as Z-M/W-T: 0.006/4.7% with slightly better statistics
as well.

Finally for the individual directional data, the multichannel deconvolution of the Z-
channel data is depicted in Fig. 10 as above. The results are better than those of the
previous individual channel data primarily because of a higher directional sensitivity (better
SNR) to the induced vibrations. In this case, the the subspace “fit” again using a 25-mode
model to the data is at 66.0% (best) and the smallest MSE of 0.11—somewhat better than
that of the other channels. The optimality tests (zero-mean/white) indicate an optimal
subspace design as Z-M/W-T: 0.003/6.6% (slightly larger %).

Next we consider the “batch” of all of the sensors combined as a MIMO-system of 3-
excitations (inputs) and 24-responses (outputs) of Fig. 7. The inverse filter design results as a
MIMO-system is shown in Fig. 11 where the overlaid fits and Z-M/W-T are shown. Here the
subspace “fits” using a 20-mode model to the excitation data are at (35%,33%,31%) and the
respective MSE at 1.25 not as good as the individual XY Z-channel results. The optimality
tests (zero-mean/white) were also not quite as good for an optimal subspace design as Z-
M/W-T: (0.005/7.6%;0.003/8.3%;0.005/7.7%). This could be because a lower SNR for the
combination of batch channels as well as the fact that individual deconvolvers were design
directly from each excitation separately. Next the inverse filter was applied directly to the
24-channel response data with the results shown in Fig. 12 depicting the deconvolution of
each of the raw excitation channels (dotted lines). The similarity to the channel excitation
spectra (solid lines) is quite good and clearly captures the major frequencies (list) available
from the subspace identification.

This completes the discussion of the results of applying the MIMO deconvolution tech-

nique using the multichannel inverse filter subspace design as compared to the individual
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Figure 7: Test Object Data: (a) Multichannel (3-channels) random excitation (input) data
and ensemble with average spectra. (b) Multichannel (24-channels) response (output) data
and ensemble with average spectra.

channel designs. Even though the individual designs indicate a slightly superior performance,
the batch design option may prove to be quite adequate in some applications. Thus, rea-
sonable solutions to the multichannel deconvolution problem is successful on experimental

data.

IV. SUMMARY

Transporting critical acoustical objects of high interest is a viable problem from the
initial shipping/packaging and subsequent vibrational response inflicted during actual trans-
port by rail, highway, sea or air. This leads to the need to extract any of the excitations
incurred in order to assess the potential damage and assess potential structural failures. The
multichannel deconvolution problem for transporting critical test objects is investigated by
developing a shaping or inverse filter design based on a state-space (subspace) identification

technique. The filter is designed during calibration tests and applied to noisy multichannel
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ery (multichannel) subspace estimates (Order = 25-modes, Fit = 44.4%, MSE = 0.29). (b)
Performance: Zero-Mean/Whiteness optimality tests: Z-M/W-T are: (No. 1: 0.009/4.9%).
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estimates (list).
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Figure 10: Test Object Z-Channel Data (8-Measurements,1-Excitation): (a) Design: Recov-
ery (multichannel) subspace estimates (Order = 25-modes, Fit = 66.0%, MSE = 0.11). (b)
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accelerometer measurement data demonstrating a reliable and timely approach to solving
this critical problem.

A Mass Transportation FExperiment is performed employing a large concrete block as a
test object that was packaged and shipped in an instrumented tractor/trailer vehicle along
typical roadways to obtain both excitation and response signals for analysis and performance
evaluations. The basic idea is to extract shock and vibration excitation signals that test
objects experience during a typical transport scenario. During this transport “known” shocks
(drops) occur and are processed along with minor shocks during various segments of travel
yielding valuable data sets. The results of applying a model-based deconvolution are quite
reasonable enabling a successful extraction of the excitation inputs.

Finally, the vibrational response of a structural test object is investigated during a
calibration test with recorded random excitation inputs from a shaker. Again the results are
quite encouraging indicating that the shaping or inverse filter design and application provide
a meaningful methodology that can be applied to extract random transient excitations during
transport of critical structural test objects to assess potential damage and ensure reliable

operation.
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APPENDIX A: Subspace Identification Method

In this appendix, we briefly summarize the major points of the numerical algorithm
for state space subspace system identification (N4SID) technique.?® Primarily, subspace
techniques extract an extended observability matrix directly from the acquired data first,
followed by estimating the state-space, system model (Xapcp) (see Refr. 20, 28 — 30 for

more details). The observability matriz to be extracted is defined by

C
Ok = (24)

C Ak

The underlying mathematical foundation that enables these extractions is projection
theory. The primary idea, when applied to this problem, is to perform projections in a
Hilbert space occupied by random vectors. That is, if y;(¢) is a random vector (finite) of
future outputs and y,(t) a random vector of past outputs, then the projection of the “future
output data onto the past output data” Py, ,, is invoked by applying the projection operator
onto the past output data space to the future output data.

This idea of projecting a vector onto a subspace spanned by another vector can be
extended to projecting a row space of a matrix onto the row space of another matrix,20:28-30
Invoking oblique projections of the row space of future data )y onto the row space of past

data ), enables us to extract both the extended observability matrix as well as the estimated

state vectors by applying a singular value decomposition (SVD) operation, that is,?

Py, = OxXi = (Un,ZN7) ((54,)2V4,) (25)

OnNg X,

where Uy, and Vy  are the respective left and right orthogonal matrices of the SVD per-
formed on a data matrix.?°

This technique also requires a “shifted” projection ny—‘y; to extract the model. Here
the operator projects shifted future data ), as a row and incorporates it into the past output

data array such that ), — y; . This projection, coupled with the first enables the extraction
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of estimated states, since it has been shown that®’

’ny\yp = Ok X /’\?k

and Py;ly{f = 01 X )ek+1 [Projections] (26)

where O_1 is the observability matrix with the last block row removed.

With this in mind, both states can be extracted directly from the projections using

pseudo-inversion (#) to obtain

/'\?k = O#X’Pyﬂyp = ka)ek

and [States]

(27)

S B R
Xpp1 = Ok_lxpyﬂy; = Op1 X Xpq1

With these states of a Kalman filter now available from the SVD and pseudo-inversions,

the underlying “batch” state-space (innovations) model is

Xppn = AX, + B Ui, + &,
Vi = C X + DUy +6, (28)

where the block data and input matrices are defined by Vi, Uy, respectively and the

corresponding system and measurement noise processes by &, , &, .20

The residuals or equivalently innovations sequence and its covariance are defined by

gwk , gwk /
5 = — ; and R{g = E{ﬁf} =LK - [ka ’ ka:| (29)
gljk 51/];;
More compactly,
)‘?kﬂ A | B A?k fwk
——=|=- - - |+ | —=- (30)
Yk ¢ [ D Uk S
—_———
known known
which can be solved as an estimation problem providing a least-squares solution as:
A | B R 1 A i Y
S - ——— - — - — (31)
C | D Velk Ui Ui Uik
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w2 with the corresponding “least-squares” residual (innovations) covariances estimated by

) R, | R, KR..K' | KR}/
Re=| — — — |= - = = (32)
(R,)" | R, (KR?) | Ree
w3 leading to
Re. =~ R:, [Innovations Covariance
K ~ R°,R;'? [Kalman Gain]
(33)
" Thus, the solution of the stochastic realization problem, YNy = {fl, B,C, D, Re., R, RE.},

ws is obtained through solving these least-squares relations using the N4SID-method.?%:2

31



446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

L'L. Sibul and M. Roan, “An overview of inverse problems in acoustic and seismic signal
processing,” J. Acoust. Society Amer., Vol. 115, pp 2470, 2004.

2 E. Robinson and S. Treitel, Geophysical Signal Analysis (Prentice-Hall,New Jer-
sey,1980).

3 J. Cook, T. Coforth and R. Cook, “Seismic and underwater responses to sonic boom,”
J. Acoust. Society Amer., Vol. 49, pp 77, 1971.

4 L. Dicus, “Impulse response estimation with underwater explosive charge acoustic
signals,” J. Acoust. Soc. Am. 70 (1), 122-133, 1981.

® S. Jensen and B. Markowicz, Transportation Vibration Characterization of a 48 Air
ride Trailer with 1500 lbs. Mass Load, LLNL Internal Memo, 2016.

6 J. Candy, K. Fisher, J. Case, B. Illingworth, K. Craft, “Excitation Recovery Prob-
lem: A Model-Based Approach to Multichannel Deconvolution”, LLNL-Report, LLNL-TR-
813769, 2020.

" P. Mignerey and S. Finette, “Multichannel deconvolution of an acoustic transient in
an oceanic waveguide,” J. Acoust. Society Amer., Vol. 92 (1), pp 351-364, 1992.

8 T. Olofsson and T. Stepinski, “Maximum a posteriori deconvolution of ultrasonic
signals using multiple transducers,” J. Acoust. Soc. Am. 107 (6), 3276-3288, 2000.

9 C-Y. Chi and W-T Chen, “An adaptive maximum-likelihood deconvolution algo-
rithm,” Signal Proc. 24, pp 149-163, 1991.

10°J. Kormylo and J. Mendel, “Maximum-likelihood deconvolution”, IEEE Trans. Geosci.
Remote Sensing, Vol. GE-21, pp. 72-82, 1983.

' J. Candy, R. Ziolkowski, and K. Lewis, “Transient wave estimation: a multichannel
deconvolution application,” J. Acoust. Society Amer., Vol. 88 (5), pp 2235-2247, 1990.

12 M. Tanter, J-L Thomas and M. Fink, “Time reversal and the inverse filter” J. Acoust.
Soc. Am. 108 (1), 223-234, 2000.

137, Gallot, S. Catheline, P. Roux and M. Campillo, “A passive inverse filter for Green’s
function retrieval” J. Acoust. Soc. Am. Exp. Letters, 131 (1), EL21-EL26, 2012.

14 D. Beaton and N. Xiang, “Room acoustic modal analysis using Bayesian inference,”
J. Acoust. Soc. Am. 141(6), 4480-4493, 2017.

15 E. Reynders, “System identification methods for (operational) modal analysis: review

and comparison,” Archives of Comp. Methods Engr., Vol. 19 (1), pp. 51-124, 2012.

32



477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

16 1. Marple, Digital Spectral Analysis, 2nd-Ed., (Dover,NY,2019).

I E. Sullivan, Model-Based Processing for Underwater Acoustic Arrays. (Springer,NY,2015).

18 J. Candy, K. Fisher, J. Case, and T. Goodrich, “Multichannel spectral estimation in
acoustics: a state-space approach,” J. Acoust. Soc. Am. 148(2), 759-779, 2020.

19 B. Rao and K. Arun, “Model-based processing of signals: a state space approach.”
Proc. IEEE, Vol. 80, no. 2, pp. 283-309, 1992.

20 J. Candy, Model-Based Processing: An Applied Subspace Identification Approach.
(Wiley,Hoboken,N.J,2019).

2L P. DeRusso, R. Roy, C. Close and A. Desroches, State Variables for Engineers, (Wi-
ley,Hoboken,NJ,1998).

22 R. Wiggins and E. Robinson, “Recursive solution to the multichannel filtering prob-
lem,” J. Geophys. Res. 70(8), 1885-1891 (1965).

23 J. Walsh, “On limitations of minimum mean-square error deconvolution in deriving
impulse responses of rooms,” J. Acoust. Soc. Am. 77 (2), pp 547-556, 1985.

24 J. Candy, Model-Based Signal Processing, (Wiley,IEEE Press,Hoboken,N.J,2006).

25 J. Mendel, Mazimum-likelihood Deconvolution: a Journey Into Model-based Signal
Processing, (Springer,NY,1990).

26 A, Baggeroer, W. Kuperman, and H. Schmidt, “Matched-field processing: source
localization in correlated noise as an optimum parameter estimation problem,” J. Acoust.
Soc. Am, 83, (2), 571-587, 1988.

27 J. Candy, J. Case, K. Fisher, B. Illingworth K. Craft, “Transient recovery problem in
acoustics: a multichannel model-based deconvolution approach,” J. Acoust. Soc. Am., Vol.
143, (2), pp. 680-696, 2020.

2 P. van Overschee and B. De Moor, “N4SID: Numerical algorithms for state space
subspace system identification.” Automatica, vol 30, pp. 75-93, 1994.

29 P. van Overschee and B. De Moor, Subspace Identification for Linear Systems: The-
ory, Implementation, Applications. (Kluwer Academic,Boston,MA 1996).

30 T, Katayama, Subspace Methods for System Identification. (Springer,London,UK,2005).

31 J. Candy, S. Franco, E. Ruggiero, M. Emmons, I. Lopez and L. Stoops, “Anomaly
detection for a vibrating structure: A subspace identification/tracking approach,” J. Acoust.

Soc. Am., Vol. 142, (2), pp. 630-696, 2017.

33



508 32 J. Candy, K. Fisher, B. Markowicz, D. Paulsen, “Multichannel Deconvolution of Vi-
so0 brational Shock Signals: An Inverse Filtering Approach”, LLNL-Report, LLNL-TR-~8117068,
s 2020.

34



511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

LIST OF FIGURES

FIG. 1 State-Space Realizations of Gauss-Markov and Inverse Filters: (a) Gauss-Markov
model: Input: (u(t)) and Output: (y(¢)). (b) Inverse Gauss-Markov (shaping) filter: Input:
(y(t)) and Output: (u(t)).

FIG. 2 Transportation Vibration Measurements and Processing for Analysis: Test ob-
ject transport structure with shock excitation, multichannel accelerometer measurements,

processed signals and analysis spectrogram.

FIG. 3 Mass Transportation Experiment Data: (a) Multichannel excitation (input)
data and ensemble (thin line) with average (thick line) spectra. (b) Multichannel response

(output) data and ensemble (thin line) with average (thick line) spectra.

FIG. 4 Mass Transportation Experiment: Inverse Filter Design for Excitation Recovery
(Deconvolution). (a) Design: Recovery (multichannel) subspace (order = 16-modes) esti-
mates with true-mean outputs. (b) Performance: Zero-Mean/Whiteness optimality tests:

7-M/W-T are: (No. 1: 0.022/6.3%), (No. 2: 0.058/6.3%), (No. 3: 0.026/4.7%).

FIG. 5 Mass Transportation Experiment Inverse Filter Design Spectra: Median exci-

tation spectrum and average recovered (deconvolved) excitation (filled) spectral estimate.

FIG. 6 Structural Test Object Experimental Setup: Motor driven stinger (random ex-
citations), accelerometer sensor measurements, MIMO analog-to-digital (A/D) acquisition,

inverse filter (DESIGN), multichannel deconvolution,(INVERSE FILTERING), performance

analysis.

FIG. 7 Test Object Data: (a) Multichannel (3-channels) random excitation (input)
data and ensemble with average spectra. (b) Multichannel (24-channels) response (output)

data and ensemble with average spectra.

FIG. 8 Test Object X-Channel Data (8-Measurements,1-Excitation): (a) Design: Re-
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covery (multichannel) subspace estimates (Order = 25-modes, Fit = 44.4%, MSE = 0.29). (b)
Performance: Zero-Mean/Whiteness optimality tests: Z-M/W-T are: (No. 1: 0.009/4.9%).
(c¢) Deconvolution spectra: Excitation, inverse filtered application and design deconvolu-
tion with spectral peaks (circles) and eigen-frequencies (squares) including peak frequency

estimates (list).

FIG. 9 Test Object Y-Channel Data (8-Measurements,1-Excitation): (a) Design: Re-
covery (multichannel) subspace estimates (Order = 25-modes, Fit = 55.8%, MSE = 0.17). (b)
Performance: Zero-Mean/Whiteness optimality tests: Z-M/W-T are: (No. 1: 0.006/4.7%).
(c¢) Deconvolution spectra: Excitation, inverse filtered application and design deconvolu-
tion with spectral peaks (circles) and eigen-frequencies (squares) including peak frequency

estimates (list).

FIG. 10 Test Object Z-Channel Data (8-Measurements,1-Excitation): (a) Design: Re-
covery (multichannel) subspace estimates (Order = 25-modes, Fit = 66.0%, MSE = 0.11). (b)
Performance: Zero-Mean/Whiteness optimality tests: Z-M/W-T are: (No. 1: 0.003/6.6%).
(¢) Deconvolution spectra: Excitation, inverse filtered application and design deconvolu-
tion with spectral peaks (circles) and eigen-frequencies (squares) including peak frequency

estimates (list).

FIG. 11 Test Object DESIGN: Inverse Filter Design (3-Channels) for Excitation Re-
covery (Deconvolution). (a) Design: Recovery (multichannel) subspace (Order = 20-modes,
Fits = 35%,33%,31%) estimates (dotted lines) with corresponding raw excitation data to
match (solid lines)) and Performance: Zero-Mean/Whiteness optimality tests: Z-M/W-T
are: (No. 1: 0.005/7.6%), (No. 2: 0.003/8.3%), (No. 3: 0.005/7.7%).

FIG. 12 Test Object Inverse Filter Design Spectra: Raw excitation (dotted-lines) spectra
(3-Channels) and recovered (deconvolved) excitation (solid lines) spectral estimates with

spectral peaks (circles) and eigen-frequencies (squares) including peak frequency estimates

(list).
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