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ABSTRACT
This project has developed models of variability of performance to enable robust design and
certification. Material variability originating from microstructure has significant effects on
component behavior and creates uncertainty in material response. The outcomes of this project
are uncertainty quantification (UQ) enabled analysis of material variability effects on
performance and methods to evaluate the consequences of microstructural variability on material
response in general.

Material variability originating from heterogeneous microstructural features, such as grain and
pore morphologies, has significant effects on component behavior and creates uncertainty around
performance. Current engineering material models typically do not incorporate microstructural
variability explicitly, rather functional forms are chosen based on intuition and parameters are
selected to reflect mean behavior. Conversely, mesoscale models that capture the microstructural
physics, and inherent variability, are impractical to utilize at the engineering scale. Therefore,
current efforts ignore physical characteristics of systems that may be the predominant factors for
quantifying system reliability. To address this gap we have developed explicit connections
between models of microstructural variability and component/system performance. Our focus on
variability of mechanical response due to grain and pore distributions enabled us to fully probe
these influences on performance and develop a methodology to propagate input variability to
output performance.

This project is at the forefront of data-science and material modeling. We adapted and innovated
from progressive techniques in machine learning and uncertainty quantification to develop a new,
physically-based methodology to address the core issues of the Engineering Materials Reliability
(EMR) research challenge in modeling constitutive response of materials with significant inherent
variability and length-scales.
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1. OVERVIEW

Variability of material response is ubiquitous and especially pronounced in manufactured and
natural materials where the creation process is not tightly controlled. Rock, biological tissue,
nanoscale materials, and additively manufactured (AM) materials are particular examples were
variability is significant. Robust design requires accounting for this variability in the design
process. The primary goal of this project is to create models of material variability that can be
used to augment the traditional design process. We focus on AM metals, where microstructural
sources of variability are widely agreed to be: porosity, surface defects and deviations from the
nominal geometry, non-optimal grain structure, and residual stresses due to the sintering process.
In addition to direct experimental investigation, we used two broad classes of modeling
techniques to address the challenges; we employed uncertainty quantification (UQ) methods to
predict the distributions of response and machine learning (ML).

Our specific achievements are:

• Technological developments to bring characterization on par with high-throughput
mechanical testing: demonstrated femtosecond laser cutting for rapid surface preparation
for electron backscatter diffraction, and deployed 30 times faster electron backscatter
imaging systems. These developments enable characterization of the statistics and
distributions of microstructure, and pairing this information with corresponding
high-throughput tests. This will be the basis for breakthroughs in
structure-property-mechanism discovery.

• In situ investigation of how pores in stainless steel evolve under deformation. We observed
sub-threshold voids emerge, voids grow and merge, and voids migrate to the surface. These
observations will impact plasticity-damage models of this a related materials especially the
processes leading to failure.

• We developed a technique for modelling and calibrating both voids visible in computed
tomography (CT) scans and the invisible sub-threshold population. The visible voids are
represented explicitly in the mesh via a Karhunen-Loève expansion based on the CT
information and the unresolved population are represented with a damage model. This
methodology is generally applicable to all additively manufactured metals and can
accurately predict failure.

• Using a method of embedded uncertainty, where model parameters are given distributions,
we are able to assess and represent material variability through the joint distribution of the
parameters of a selected material model [1]. The fact that this approach maps observed
variable mechanical response of an ensemble of test specimens onto interpretable material
parameters is crucial in inferring mechanisms for the observed variability. For instance,
wide distributions of parameters controlling failure versus those determining elastic
response imply that defects are eliciting the distribution of response.

• Bayesian model selection methodology to determine which parameters vary due to
microstructure and which are uncertain due to merely a lack of data [1]. Since all calibrated
parameters are uncertain given limited data, this is key to assessing which physical
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parameters are actually varying across the population of test samples and hence which
properties should vary in making predictions at the component or assemblage level.

• We extended our Bayesian methods to map variability of response onto distributions of
parameters to handle aleatoric (e.g. distribution of voids) and epistemic (e.g. the value of
the yield parameter in a plasticity model) sources of variablity. This calibration technique is
specifically useful in modeling AM materials and also quite general to calibrating models
of materials with microstructure where high dimensional spaces describing the location of
voids and other defects are involved.

• We generalized the use classical representation theory to construct neural network models
of plasticity [2] and are currently extending it to Gaussian process models. The use of
representation theory in machine learning is a key use of domain knowledge in creating
models from data. Specifically, it enables direct satisfaction of physical symmetries and
principles so that they do not need to be learned approximately from data. Application of
this technique leads to more stable predictions and a many fold smaller burden on training
data collection.

• Using only images of initial microstructure and a novel hybrid convolutional-recurrent
neural network we are able to predict the stress-strain and full field stress response of
polycrystals with greater than 95% accuracy [3]. These developments usher in a whole new
class of microstructural material models that are many orders of magnitude cheaper to
evaluate. These models enable more rapid uncertainty quantification and more effect
probing and optimization of structure-property relationships. This ML architecture can
used to mine and interpret the wealth of microstructural imaging data being produced.
Experimental data and lower fidelity simulation data could be used in conjunction in the
training of these models.

Following sections document the focus and progress of the project. Sec.2 discusses
microstructural influences on the mechanical response of metals. Sec.3 develops uncertainty
quantification theory to model material variability by mapping it onto distributions of physical
parameters and handling aleatoric aspects of microstructure. Sec.4 develops machine learning
models guided by classical representation theory and incorporating microstructural information.
Finally Sec.5 summarizes the report and briefly discusses late breaking developments.

1.1. Papers

The outcomes of this projects have been and will be documented in numerous peer-reviewed
journal articles, as well as this report.

1.1.1. Published work

• Rizzi, Francesco, Mohammad Khalil, Reese E. Jones, Jeremy A. Templeton, Jakob T.
Ostien, and Brad L. Boyce. "Bayesian modeling of inconsistent plastic response due to
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material variability." Computer Methods in Applied Mechanics and Engineering 353
(2019): 183-200 [1].

• Jones, Reese, Jeremy A. Templeton, Clay M. Sanders, and Jakob T. Ostien. "Machine
learning models of plastic flow based on representation theory." Computer Modeling in
Engineering and Sciences (2018): 309-342 [2].

• AL Frankel, RE Jones, C. Alleman, JA Templeton, Predicting the mechanical response of
oligocrystals with deep learning, Computational Materials Science 169, 109099 (2019) [3].

• CC. Seepersad, C.C., J. Allison, A. Dressler, B. Boyce, D. Kovar, "An Experimental
Approach for Enhancing the Predictability of Mechanical Properties of Additively
Manufactured Architected Materials with Manufacturing-Induced Variability," accepted in
Uncertainty Quantification in Multiscale Materials Modeling (D. McDowell and Y. Wang,
Eds.), Elsevier, 2019.

• A.D. Dressler, E.W. Jost, J.C. Miers, D.G. Moore, C.C. Seepersad, B.L. Boyce,
"Heterogeneities Dominate Mechanical Performance of Additively Manufactured Metal
Lattice Struts", Additive Manufacturing, 2019.

• CC. Seepersad, C.C., J. Allison, A. Dressler, B. Boyce, D. Kovar, “An Experimental
Approach for Enhancing the Predictability of Mechanical Properties of Additively
Manufactured Architected Materials with Manufacturing-Induced Variability,” accepted for
publication in Uncertainty Quantification in Multiscale Materials Modeling (D. McDowell
and Y. Wang, Eds.), Elsevier, 2019.

• A.D. Dressler, E.W. Jost, J.C. Miers, D.G. Moore, C.C. Seepersad, B.L. Boyce,
“Heterogeneities Dominate Mechanical Performance of Additively Manufactured Metal
Lattice Struts”, Additive Manufacturing, 2019.

• S.L.B. Kramer, B.L. Boyce, A. Jones, A. Mostafa, B. Ravaji, T. Tancogne-Dejean, C.C.
Roth, M.G. Bandpay, K. Pack, J.T. Foster, M. Behzadinasab, J.C. Sobotka, J.M. McFarland,
J. Stein, A.D. Spear, P. Newell, M.W. Czabaj, B.W. Williams, C.H.M. Simha, M. Gesing,
L.N. Gilkey, C.A. Jones, R. Dingreville, S.E. Sanborn, J.L. Bignell, A. Cerrone, V. Keim,
A. Nonn, S. Cooreman, P. Thibaux, N. Ames, D.T. O’Connor, M.D. Parno, B. Davis, J.
Tucker, B. Coudrillier, K.N. Karlson, J.T. Ostien, J.W. Foulk III, C.I. Hammetter, S.
Grange, J.M. Emery, J.A. Brown, J.E. Bishop, K.L. Johnson, K.R. Ford, S. Brinckmann,
M.K. Neilsen, J. Jackiewicz, K. Ravi-Chandar, T.A. Ivanoff, B.C. Salzbrenner, "The third
Sandia Fracture Challenge: predictions of ductile fracture in additively manufactured
metal", submitted to Int. J. Fracture, 2018.

• R. Banerjee, K. Sagiyama, G. H. Teichert and K. Garikipati, “A graph-theoretic framework
for representation, exploration and analysis on computed states of physical systems”,
Computer Methods in Applied Mechanics and Engineering, 351, 501-530, (2019)
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1.1.2. In preparation or submitted papers

• C. Alleman, A. Frankel, R. Jones, M. Khalil, “Analysis of evolving length-scales in crystal
mechanics via autocorrelation”.

• C. Alleman, R. Jones, “Variability in Apparent Properties of Polycrystalline Materials”.

• A. Frankel, R. Jones, L. Swiler, "Gaussian process regression of hyperelastic constitutive
relations".

• A. Frankel, R. Jones, "Prediction of stress states in plastic deformation of oligocrystals with
deep learning".

• M. Khalil, G. H. Teichert, C. Alleman, N.M.Heckman, R. Jones, K. Garikipati, and B.L.
Boyce. "Modeling strength and failure variability due to porosity in additively
manufactured metals".

• K. Sagiyama and K. Garikipati “Machine learning materials physics: Deep neural networks
trained on elastic free energy data from martensitic microstructures predict homogenized
stress fields with high accuracy”, Preprint: arXiv.

• X. Zhang and K.I Garikipati, “Machine learning materials physics: Multi-resolution
learning with convolutional and deep neural networks predicts the homogenized elastic
response of materials with evolving microstructures".

• A.M. Roach, B. White, A. Garland, B.H. Jared, J.D. Carroll, B.L.Boyce, “Size-Dependent
Stochastic Tensile Properties in Additively Manufactured 316L Stainless Steel" to be
submitted to Additive Manufacturing.

• N.M. Heckman, H.J. Brown-Shacklee, T.A. Ivanoff, B.H. Jared, John Erickson, J.D.
Madison, Reese Jones, B.L. Boyce, “Evolution and coalescence of void networks in
additively manufactured stainless steel 316L”.

• Nathan M. Heckman, Thomas A. Ivanoff, Ashley M. Roach, Bradley H. Jared, Daniel J.
Tung, Harlan J. Brown-Shaklee, Todd Huber, David J. Saiz, Josh R. Koepke, Jeffrey M.
Rodelas, Jonathan D. Madison, Bradley C. Salzbrenner, Laura P. Swiler, Reese E. Jones,
Brad L. Boyce, “Automated high-throughput tensile testing for process optimization and
process-aware design”.

1.2. Presentations

• C. Alleman. Apparent anisotropy of cubic materials as a function of material and geometric
length-scales, Conference on Computational Plasticity, Barcelona, (2019). Invited.

• C. Alleman. Variability in Apparent Properties of Polycrystalline Materials and its Effects
on Uncertainty in Engineering Analysis, USNCCM, Austin, (2019). Invited.

• C. Alleman. Modeling the mechanical performance of AM stainless steels, SNL AM
Workshop, Livermore, (2019). Invited.
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• A. Frankel, "Predicting the mechanical response of oligocrystals with deep learning",
MLUQ workshop, University of Southern California (2019).

• A. Frankel, "Predicting the mechanical response of oligocrystals with deep learning", 15th
U.S. National Congress on Computational Mechanics in Austin, TX (2019).

• R. Jones. "Modeling material variability with uncertainty quantification and machine
learning techniques", Mechanical engineering department seminar at University of
Colorado in Boulder, CO (2019) Invited.

• R. Jones. "Designing neural network models of mechanical variability due to
microstructural features", Mach Conference in Annapolis, MD (2019) Invited.

• R. Jones. "Modeling material variability with uncertainty quantification and machine
learning techniques", International Conference on Multiscale Materials Modeling in Osaka,
Japan (2018)

• M. Khalil. "Embedded Model Error and Bayesian Model Selection for Material
Variability", SIAM Conference on Uncertainty Quantification, Orange Grove, CA, (2018).

• R. Jones. "Modeling material variability with uncertainty quantification and machine
learning techniques", Keynote in World Congress on Computational Mechanics in New
York, (2018). Invited.

• R. Jones. "Modeling material variability with uncertainty quantification and machine
learning techniques", SIAM Conference on Mathematical Aspects of Materials Science in
Portland, OR (2018). Invited.

• J. Templeton, "Neural Network Models of Multicrystalline Mechanical Behavior", ASC
ML conference, Lawrence Livermore National Laboratory (2018).

• J. Templeton, "Neural Network Models of Multicrystalline Mechanical Behavior", Oak
Ridge National Laboratory, (2018).

• J. Templeton, "Neural Network Models of Multicrystalline Mechanical Behavior", ASC
Headquarters. (2018).

• C. Alleman, "Modeling Plasticity And Failure In Additively Manufactured Stainless Steel",
Mach Conference in Annapolis, MD (2018)

• F. Rizzi, "Bayesian Methods to Capture Inherent Material Variability in Additively
Manufactured Samples", 14th U.S. National Congress on Computational Mechanics in
Montreal, Quebec, Canada (2017).

• R. Jones. "Modeling material variability with uncertainty quantification and machine
learning techniques", Sandia National Laboratories, Albuquerque, NM (2017).

• K. Garikipati. Machine Learning Material Physics: A Data-driven Approach for Predicting
Effective Material Properties in Multi-component Crystalline Solids. US National Congress
of Computational Mechanics, in the minisymposium on Data-driven Modeling Using
Uncertainty Quantification, Machine Learning and Optimization. Austin TX. (2019).
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• K. Garikipati. Graph Theoretic Framework for Representation, Exploration and Analysis
on Computed States of Physical Systems. Keynote at the US National Congress of
Computational Mechanics, in the minisymposium on Data-driven Modeling Using
Uncertainty Quantification, Machine Learning and Optimization. Austin (2019).

• K. Garikipati. Mechano-chemical phase transformations: Computational framework,
machine learning studies and graph theoretic analysis, University of Southern California,
(2019).

• B.L. Boyce, “Opportunities for high-throughput characterization”, ADAPT Workshop,
Colorado School of Mines, August, 2019.

• B.L. Boyce, “Mitigating rare defects in metal additive manufacturing”, Gordon Research
Conference on Heterogeneous Materials, Hong Kong, China, June, 2019.

• B.L. Boyce, S.L.B. Kramer, “The Sandia Fracture Challenge: Learning from Blind
Benchmarks”, VI International Conference on Computational Modeling of Fracture and
Failure of Materials and Structures, Braunschweig, Germany, June 2019.

• B.L. Boyce, “Rare microstructural events limit the mechanical reliability of materials”,
Drexel University, Philadelphia, PA, April, 2019.

• B.L. Boyce “The promise and risk of metal 3D printing”, Drexel workshop on Additive
Manufacturing, April, 2019.

• B.L. Boyce “Rare microstructural events limit the mechanical reliability of materials”,
Graduate Student Enhancement Council, University of Texas at Austin, March, 2019.

• B.L. Boyce “Rare microstructural events limit the mechanical reliability of materials”,
University of California at Irvine, March, 2019.

• B.L. Boyce, “Lessons learned from the Sandia Fracture Challenges,” Purdue Damage
Workshop, West Lafayette, IN, February, 2019.

• B.L. Boyce “Rare microstructural events limit the mechanical reliability of materials”, New
Mexico Tech, Soccoro, NM, February, 2019.

• B.L. Boyce, “Rare microstructural events limit the mechanical reliability of materials”,
University of New Mexico Center for High Technology Materials, Albuquerque, NM, Nov
20, 2018.

• B.L. Boyce, “Rare microstructural events limit the mechanical reliability of materials”,
University of California at Berkeley Department of Materials Science and Engineering,
Berkeley, CA, Nov 8, 2018.

• B.L. Boyce, “Stochastic performance of additively manufactured alloys”, Michigan State
University, May, 2018.

• B.L. Boyce, “Accelerating the process-structure-properties discovery cycle”, TMS Annual
Meeting, Phoenix, Arizona, February 2018.
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• B.L. Boyce, “Rapid discovery of rare failure mechanisms”, International Conference on
Plasticity, San Juan, Puerto Rico, January 2018.

• B.L. Boyce, “High-throughput testing reveals rare, catastrophic defects”, TMS Annual
Meeting, March, 2017.

• B.L. Boyce, “High-throughput testing reveals rare, catastrophic defects”, University of
California at Santa Barbara Materials Science and Engineering Department Seminar,
October, 2016.

2. PHENOMENOLOGY

A significant amount of data is needed characterize distributions of uncertain material parameters.
In this section we describe the high-throughput mechanical tests we employ, a novel in situ study
of how visible and sub-threshold voids evolve with deformation, and an analysis of the
length-scales in relevant microstructures and how they relate to homogenization and extracting a
distribution of responses. The developing high-throughput characterization techniques will be
documented elsewhere (see list of pending papers in Sec.1).

2.1. High-throughput tension dogbones

The experiments of Boyce et al. [4] provide tensile stress-strain data quantifying the mechanical
response up to failure (refer to Fig. 2-1) and corresponding computed tomography (CT) scans that
reveal the internal porosity of the additively manufactured 17-4PH stainless steel dogbone
specimens. One build provided 120 nominally identical replica dogbones with 1mm×1mm×4mm
gauge sections, a subset of each build were imaged with CT prior to mechanical testing. For this
study we examined 105 stress-strain curves and 18 CT scans from the same build.

All the tensile tests were performed at a 10−3/s strain rate effected by grips engaging the dovetail
ends of the specimen seen in the inset of Fig. 2-1. Engineering stress was measured with a load
cell, the cross-section measured by CT and optical techniques, and the strain was determined by
digital image correlation (DIC) of the gauge section. Fig. 2-1 illustrates the ensemble of tensile
tests which display minimal variation in their elastic response, moderate variability in their yield
and hardening behavior, and wide variability in their failure characteristics. From these
experimental stress-strain curves we extracted a number of features F : the effective elastic
modulus Ē from the initial slope, the yield strength σY from a 0.001 offset strain criterion, the
yield strain εY from the strain corresponding to the yield stress, the ultimate tensile strength σU
from the maximum stress, the ultimate tensile strain εU from the strain corresponding to the
maximum stress, the failure strain ε f from maximum strain achieved, and the failure stress σ f
stress corresponding to maximum strain. Model calibration described in Sec.3.2.4 utilized this
data (with the exception of Ē since it is highly correlated with σY/εY ) which is summarized in
Table 2-1. From Fig. 2-1 and Table 2-1 it is apparent that there is significant variability in the
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Figure 2-1 Stress-strain response of dogbone specimens (inset). Fea-
tures demarked with circles: yield (red), maximum/ultimate stress
(blue), failure strain (black).

Parameter Min Mean±deviation Max
Elastic modulus (GPa) Ē 165.0 218.4 ± 22.5 (10.3%) 277.8
Yield strength (GPa) σY 1.02 1.17 ± 0.11 ( 9.8%) 1.54
Yield strain (%) εY 0.53 0.67 ± 0.08 (11.5%) 0.93
Ultimate tensile strength (GPa) σU 1.10 1.23 ± 0.09 ( 7.0%) 1.57
Ultimate tensile strain (%) εU 0.77 4.49 ± 2.24 (50.0%) 9.00
Failure strength (GPa) σ f 1.07 1.20 ± 0.08 ( 6.8%) 1.53
Failure strain (%) ε f 1.27 6.34 ± 2.14 (33.8%) 12.13

Table 2-1 Experimental response features F from 105 tensile tests of
AM 17-4PH stainless steel tensile specimens.

mechanical response, with strain-based features having greater variance than stress-based features
due to the flatness of the post-yield stress curve.

The microstructural source of the variance in mechanical response was partially revealed by the
CT of the 0.75mm×0.75mm×4mm interior of the gauge sections of some of the specimens. The
CT scans were performed on each dogbone independently with 7.5 µm resolution, utilizing the
same scan parameters. Identification of porous voxels was performed by applying a (per sample)
threshold to the per-voxel CT intensity, and voids were identified by the spatial connectivity of
porous voxels. The interior region of the samples appear to have a fairly homogeneous
distribution of voids. However, post-fracture analysis shows that the specimens have a distinct
surface crust which is approximately 0.05mm thick. Within the central CT scanned region, the
void distribution appears to be isotropic, as the spatial correlations averaged across all samples in
different directions through the cross-section. The mean porosity across all samples examined for
this study was ϕ̄ = 0.008 and spatial correlation length was on the order of 50 µm. The average
porosity varied sample to sample ≈ 60% which is reflected in the ≈ 10% variance of the effective
elastic modulus Ē reported in Table 2-1.
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Figure 2-2 Stress-strain curve of AM 316L tested in situ micro-CT test.
Inset: an optical image of the mounted dogbone, and radiographs of
the dogbone during testing (unloaded and post-necking state). The
green box corresponds to the region of the micro-CT data analyzed.

2.2. Evolution of void networks

The stress-strain data for the tensile test is illustrated in Fig. 2-2. The strengths and total
elongation of the sample are within the range of values observed in high-throughput tensile tests
on the same material [5], with yield and tensile strengths of 550 and 650 MPa, respectively, and a
total elongation of 48%. Note that because tomographic scans tended to take on the order of
hours, stress relaxation and load cell drift occurred during these periods, as seen in the vertical
spikes in the stress-strain data. The inset dogbone images represented in Fig. 2-2 illustrate the
region analyzed during deformation. The region of the inset outlined in green represents the
specific region of interest that was compared at the early plastic (1% strain), plastic (13% strain),
and near-fracture (45% strain) regimes. As seen in these images, the necking regime, which was
also the site of fracture in the material, is contained within this regime. The normalized Z-position
of fracture was determined to be ≈0.27.

The overall void evolution is presented in Fig. 2-3. The values for total porosity in Fig. 2-3a
represent lower-bound values, as the minimum resolved pore size is ≈220 µm3. The porosity
tends to increase with increased sample strain, where the resolved porosity within the region of
interest doubles between 1% and 13% strain, and exhibits a more than five-fold increase between
1% and 45% strain. The distribution chart indicates not only an increase in the total porosity, but
also a general increase in the presence of larger voids at higher strains. While the distribution
shapes are similar at 1% and 13% strain, a bimodal distribution is observed in the 45% strain
sample. The cause for this is illustrated in the void maps presented in Fig. 2-3b: from 1% to 13%
strain, there is a uniform increase in the number and size of voids throughout the sample.
However, at 45% strain, the necking region shows a localized increase in void growth; the
localized void growth at the neck is responsible for the bimodal void distribution. The normalized
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Figure 2-3 (a) Cumulative porosity at each strain for the early plastic,
plastic, and near-fracture regimes. These values correspond to the re-
solvable porosity measured by CT, which does not include any voids
with a volume below 220 µm3. (b) Void maps display the spatial evolu-
tion of porosity throughout deformation. The necking region is high-
lighted in green.

void positions at all three strains of interest are presented in Fig. 2-4. The overlapping of voids at
the three different strains indicates the effectiveness of the manual void selection and linear
interpolation method used to correlate the position of voids at different strains. In the X-Y plane
(orthogonal to the loading direction), the voids are relatively evenly distributed at all strains. In
the Z-Y (transverse) plane, a clear localization is observed in the necking regime when the sample
is at 45% strain. Void networks were generated based on these normalized void positions,
generating a total of 443 void networks in the region of interest. Analysis of void evolution maps,
which show the voids contained within a same network at all three strains, provides insight into
the void-network based deformation mechanisms, and how these mechanisms contribute to
overall fracture of the material.

2.2.1. Void correlation and void-network based deformation mechanisms

Based on all of the void evolution maps analyzed in this study, a total of four primary
void-network based deformation mechanisms were observed. The void network evolution maps
presented in Fig. 2-5 illustrate each of these mechanisms, including void growth, void emergence,
void coalescence, and free-surface absorption. Note, the void evolution maps display
two-dimensional projections of the three-dimensional void data, where the intensity of the map
corresponds to the in-plane depth, calculated as the sum of voxels contained within the void at
each point. Each mechanism is described as follows: Void growth: As illustrated in Fig. 2-5a,
voids grew in volume under sample deformation. In general, the direction of growth was largest
along the tensile direction, where most voids at least doubled in size between 1% and 47% strain.
The relatively large growth of voids (e.g. higher than the long-range sample strain) can be
attributed to an enhancement in local plastic behavior due to high stress concentrations created by
voids [6, 7]. This mechanism appears to be largely responsible for the significant increase in

20



Figure 2-4 Spatially correlated position of all voids at all strains. The
diameter of each point is proportional to the equivalent spherical diam-
eter of each void.

overall porosity seen in Fig. 2-3. Void emergence: This mechanism, illustrated in Fig. 2-5b,
represents when voids within the material become resolvable by micro-CT (>220 µm3). This can
occur from two underlying mechanisms, including the formation of new voids as well as the
growth of previously unresolvable voids. Within the testing technique, the two mechanisms
cannot be distinguished, and both are expected to occur. This mechanism is closely related to
microvoid formation in the fracture of ductile materials [8, 9, 10], where defects can combine in
areas of high local strains to form microvoids. The newly emerged voids tended to have relatively
small volumes, with typical volumes below 103 µm3, and were responsible for the increase in
resolvable void quantity from 219 to 762, a ≈3.5x increase. Void coalescence: This mechanism,
illustrated in Fig. 2-5c, represents when two initially separate voids combine to form a single
void. This is similar to microvoid coalescence in ductile materials, where microvoids that have
formed due to localized damage grow together, often to propagate a crack [8, 9]. This is different,
however, in that while microvoid coalescence is often associated with failure, the coalescence of
voids did not always lead to the detrimental failure in this study; instead, coalesced voids simply
contributed to an increase in local damage. Void coalescence appeared to enhance the local void
growth behavior, where the percentage volumetric growth in coalesced voids was higher than that
of non-coalesced voids. Free-surface absorption: This mechanism, illustrated in Fig. 2-5d,
indicates the consolidation of one or several voids and the free-surface of the material. The void
evolution map alone cannot identify this mechanism, as after voids meet with the free surface,
they are no longer classified as voids. By analyzing CT slices, however, one can see that a portion
of the free-surface protrudes into the material with a shape reminiscent of the initial void. Similar
to void emergence, voids displaying this deformation mechanism tended to show relatively large
growth, and the free-surface of the material tended to show higher localized deformation in the
vicinity of these voids. This is analogous to surface defects or cracks contributing to higher stress
concentrations in fracture mechanics [11, 12]. These mechanisms serve as the basis for
understanding how AM metals deform and fracture under uniaxial tension. In the following
section, two void networks which are observed to be critical for material fracture are analyzed
based on these mechanisms to understand how the mechanisms contribute to this specific
sample’s fracture.
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Figure 2-5 Void network evolution maps illustrating the four primary
void-network based deformation mechanisms: (a) void growth, (b) void
emergence, (c) void coalescence, and (d) free-surface absorption. Note
the micro-CT slices in (d) show the same region as the void evolution
maps.
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Figure 2-6 (a) Void network evolution map of critical void network 1
showing void growth and emergence from 1% to 13% strain, and free
surface absorption (coupled with micro-CT images) from 13% to 47%
strain. (b) Relative change in volume compared to the early-plastic
regime for all void-networks in the largest 10% of volumes; critical void
network 1 and 2 show the highest relative growth.

As indicated in Fig. 2-2, the sample was observed to fracture at a Z position of roughly 0.27 in the
normalized coordinate system. Close to the fracture regime, two void networks were identified
that seemingly dominated the void network-based deformation in this sample, termed “critical
void” networks 1 and 2.

Critical void network 1 initially consists of a total of 3 voids close to the free surface of the
material, illustrated in Fig. 2-6. Throughout deformation, the two largest voids within this
network are seen to grow, coalesce, and eventually absorb into the free surface. The spatial
location of this void network is illustrated in blue in Fig. 2-3b, where it can be seen that necking
and fracture occur at the same normalized Z position as this network. As illustrated in Fig. 2-6b,
this network showed the largest relative increase in volume between 1% and 13% strain,
presumably due to the combination of deformation mechanisms. This trend continued at 45%
strain, where the surface cavity created by this network was nearly 20x that of the initial void
network volume. This cavity is expected to have contributed to a large localization in stress.
Critical void network 2 represents the largest void network in the sample, centered roughly on the
fracture plane of the material; the location is represented in red in Fig. 2-3. This void network,
which is far from free-surfaces on the material and initially consists of many relatively
close-packed voids, deforms through a combination of void growth, emergence, and coalescence.
The amount of void emergence is roughly equivalent to that observed in the rest of the sample,
with a ≈3.7x increase in the number of voids in this network. The void growth, however, is higher
than that of other networks, with a more than tenfold increase in volume within this network, and
an analogous increase of more than 12x for the largest void.

A combined analysis of these two critical networks provides a total description of failure within
this dogbone. Because the two large voids in void network 1 were close to each other and the free
surface, the growth of these voids was initially enhanced. These voids absorbed into the free
surface, creating a large strain localization, and surface defect which enhances the effect of the
localization. This localization enhances the deformation at this location (e.g. normalized
Z-position of 0.27), and enhances the deformation of critical void network 2, a network of
highly-connected voids centered at this same Z- position. The enhanced deformation appears to
manifest primarily in the form of void growth in this regime, as void emergence is not
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Figure 2-7 Connectivity search function defined in Equation 2 at 1% strain

substantially changed. The combined deformation of these two networks leads to the eventual
failure of the material in this regime. While analysis of void network deformation lends to an
understanding of the global deformation behavior within this specific sample, extrapolating this
can provide some insight as to what void parameters may influence failure. We speculate as to
how this may be utilized to predict material failure and potentially provide means to qualify
porous AM parts.

2.2.2. Critical void parameters

The basis for analyzing which void parameters contribute to part failure is based on work by
Erickson and Spear, where a search function is utilized to identify spatial void relationships. In
this model, they utilize a spatial radial distribution function to identify local connectivity of voids,
predicting where failure will occur by identifying where this function is maximized within porous
AM parts. Based on this concept, a global search function is defined which can include multiple
parameters to identify potential regimes of failure within porous materials.. For our function, we
assume that failure will originate from some void (n) and so the function is defined spatially at
each void. The global search function, Cn has the form:

Cn = ∑
m

∏
p

fp (1)

where the indices n and m represent voids, where n is the void being analyzed and m is all other
voids. The function fp represents a contributing factor to the search function, where each factor
represents a physically informed scaling factor that ultimately contributes to the material failure,
and the quotient of a finite set of p factors is considered for each void. In the present study,
empirical equations are utilized in each of the factors. However, as the understanding of plasticity
within porous additively manufactured metals improves, plasticity models can help to inform
more appropriate scaling factors. Analyzing the deformation mechanisms in this study reveals
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several key concepts that should be represented in this function. Void Size: The increase in void
volume throughout deformation is largely attributed to the growth of large voids, one of the four
observed mechanisms. In general, larger voids were observed to have a larger increase in volume,
such as the largest void in Critical void network 2, where the growth of just the largest void itself
accounted for ≈5% of the change in porosity. Thus, we consider the first term to represent failure
likely originating from a large void, with the following form for C1, where ESD represents the
equivalent spherical diameter of the void:

f1 = ESDn (2)

Distance to large voids: The proximity of voids to each other was observed to influence two of the
deformation mechanism: emergence and coalescence. In general, the emergence of voids was
seen when there were neighboring large voids, such as the example presented in Fig. 2-5b. In
addition, the coalescence of voids was largely observed when there were two large voids in close
proximity to each other, such as the example in Fig. 2-5c. This is not dissimilar to fracture in
ductile materials, where the formation and growth of microvoids leads to their eventual
coalescence which leads to crack formation [7, 8]. In this case, the close proximity of large voids
can lead to stress concentrations which allow for this localized behavior to occur. To reflect the
enhancement of localized damage due to large voids in close proximity to other large voids, we
introduce the term C2 based on the parameter used by Erickson and Spear where a radial
distribution function is used to quantify void connectivity based on dn,m, the normalized distance
between voids n and m, and the ESD of all other voids:

f2 =
ESDm

expd2
n,m

(3)

Distance to free surface: The absorption of voids into the free surface was only observed in voids
that were initially close to the free surface. Based on fracture mechanics, the voids close to the
free surface enhance the stress concentration larger than those at the center of the sample, and
create an even larger stress concentration once they are part of the free surface [11, 12]. Due to
this, it is critical to weight voids which are closer to the surface more than those closer to the
center. For simplicity, this is done using a normalized linear function, with a maximum value for
voids on the surface, and minimum for voids at the center of the sample; this value, C3, has the
following form:

f3 = 1−dm,sur f (4)

where dm,sur f is the normalized distance of the void to the surface, ranging from 0 to 1. In this
study, these combined functions serve primarily as a search function, identifying regions within
the material where there are large voids close to both the free surface and other large voids. A
normalized plot of the search function at 1% strain is illustrated in Fig. 2-7. The function is
maximum at one of the voids in critical void network 1 and is consistent with the location of
fracture. This supports the premise that the size, location, and distance to neighboring voids
contribute to the stress localization caused by this void network. Using this search function, the
voids in critical void network 2 show relatively high values in the same spatial region as critical
void network 1, indicating their high connectivity. The preference of these voids to grow into a
largely connected network under tensile deformation is seemingly governed by this initial
connectivity of voids. While the global search function as applied in this study serves well to
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Figure 2-8 The grainwise response of a polycrystalline aggregate un-
der uniaxial-stress elastic loading. Left: the grain morphology of the
aggregate, colored by grain ID. Right: the stress-strain curves from
each grain.

identify regions within the material where there are large voids that are simultaneously close to
other large voids and close to the free surface, the equation used does not necessarily represent the
quantitative deformation behavior within the material. Future studies may consider a more
numerical understanding of how void-network based mechanisms contribute to localized damage
and ultimately failure within AM metals. These equations may be largely material dependent,
however, as for perfectly brittle materials, the elastic contributions of void networks should be
dominating, and for plastic materials (such as in this study), the relationships governed by the
plastic deformation mechanisms will be more controlling. In addition, the list of parameters
discussed in this manuscript include only those directly related to the mechanisms observed in
this study and is not exhaustive. Factors such as void roughness, aspect ratio, surrounding grain
structure, etc. are all expected to have non-negligible contributions to damage evolution of voids.
In addition, surface roughness has been speculated to play a large role in the mechanical behavior
of AM metals with similar geometries to that used in this study [13].

2.3. Homogenization and asymptotic response of microstructure

The unit of study in this section is an idealization of polycrystalline microstructure such as that
shown in Fig. 2-8. Two simplifications are made in the proceeding analysis. First, the sub-grain
response is ignored, so that the micromechanical calculations are based on grain averages.
Second, the microstructure is idealized as a collection of cube-shaped grains to simplify some
parts of the calculation. For example, the permutations of a set of cube-shaped grains are finite in
number, whereas general grain morphologies do not admit finite permutations of the
orientations.

Consider a spatially-varying material property 0 < P(xxx)< ∞. The cumulative distribution
function (CDF) FP(p) gives the probability that the property P measured at a material point xxx is
less than or equal to a value p. Now, consider a material sample with P(xxx) drawn independently
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for each xxx from the distribution DP with CDF FP. For a continuum with P(xxx) independent of
P(xxx′) for all x′ 6= x, there are uncountably infinitely many arrangements of P(xxx) that satisfy the
same sample distribution. For practical scenarios, there is usually a limit to this continuum
definition of P, so that it may only be meaningful to examine a finite set of arrangements. For
example, the definition of a material property may have a lower limit v on the volume of material
that may be considered to exhibit that property. In this case, for a body with volume V = n · v,
there are n! permutations of the field P(xxx) that have the same sample distribution. For many
homogenization techniques, the input data is just the sample distribution, and information about
the spatial arrangement is discarded. For this reason, the analysis below considers separately the
bias error due to model lack-of-fit and the irreducible error that derives from spatial arrangement
for some idealized cases. Of course, homogenization techniques can include input data related to
spatial arrangement, but wherever a reduced-order model is employed, some version of this
concern remains.

The analysis of convergence of apparent to effective properties focuses on the scaling of the
variance over sets S eqv of statistically-equivalent spatial arrangements σ2

P(l) as a function of a
material lengthscale l. The existence of a representative volume element (RVE) for a property P
thus requires the following conditions be met as l→ ∞:

1. The apparent property Papp(l) goes to the effective property Peff which is equal to the
expectation of P over S eqv, which must be finite.

2. The variance σ2
P over S eqv goes to 0.

The RVE length lRVE
P (δ) is then defined such that for δ > 0,

l > lRVE
P (δ)→ σ

2
P(l)< δ (5)

This definition of RVE differs significantly from those previously put forward in the literature.
First, the proposed definition does not mention the idea that the response of the RVE should be
representative of the entire body. Although this seems like a deviation from the original intent of
the RVE concept, meaningful definition of the response of the entire body is only possible in
general for macroscopically homogeneous materials. In place of this overly restrictive condition,
the proposed definition naturally allows for variation in material properties in a given body and
allows for comparison of lRVE

P and gradient lengths of l∇
P for that body. This type of comparison

enables a determination of the conformity of a particular specimen to RVE assumptions and thus
determines the appropriateness of a homogenized constitutive law. For example, we can find a
δ(l), for l > 0 such that

l′ > l→ σ
2
P(l
′)< δ(l) (6)

If the function σ2
P(l) is strictly decreasing, δ(l) can be taken simply as the inverse of lRVE

P .
Otherwise, we can make δ(l) take on unique values by finding the minimum δ for a given l. This
allows the extension of (5) to cover practical cases where l is dictated by computational
limitations or limited by l∇

P . Essentially, (5) and (6) define an RVE subject to a limit on
uncertainty on the one hand, and quantify the uncertainty in an RVE representation at a given
lengthscale. We then do not require a monolithic interpretation of what it is to be representative;
instead, we can quantify how representative a given volume element is. Of course, we can

27



arbitrarily choose a δ and rigidly define an RVE length, but we must recognize some degree of
arbitrariness in this choice.

The second conceptual deviation in the proposed definition is in the insertion of the
homogenization method into the definition of the RVE via the sets S eqv. Under the proposed
definition, homogenization procedures which require different input data may give rise to
different S eqv, and in turn different lRVE

P . This effectively makes the RVE a property of the
material constitutive response and homogenization technique rather than the material itself.
Again, this may seem to be outside the spirit of the original conception of the RVE, but it endows
a mathematical rigor and generality that is absent when conceiving of a RVE for so-called
“material behavior” that is conceptually independent of any constitutive law. Given that RVEs are
almost exclusively used for the mathematical analysis of the application of homogenized
constitutive laws, it is appropriate to trade the vaguer but perhaps more intuitively satisfying
original definition for the more rigorous and more easily applied proposed definition. For
example, given a particular constitutive law, homogenization procedure, and degree of
uncertainty, we can say quantitatively whether the RVE concept is feasible for a given instance of
the material by comparing lRVE

P and l∇
P . This extends the concept of scale separation from the

asymptotic regime to apply to any scenario where the aforementioned quantities can be calculated
in a meaningful way.

The detailed implications of the RVE definition above are explored below for some idealized
cases. Of course, more realistic cases may elude the full analysis suggested above, but it will be
shown that more realistic cases can be analyzed within the context of the idealized results in order
to provide meaningful situation.

2.3.1. Apparent elastic moduli

The first material properties to be considered here are the elastic moduli. Specifically, we
compute the apparent (anisotropic) elastic moduli of some idealized microstructures and analyze
the convergence of these values to effective moduli. We use the stainless steel constants in [14] as
an example.

We consider a single set of m rotations, where m is a perfect cube. An ensemble of n sets of
rotations is then considered, where each set of rotations is denoted Ri with i = 1, . . . ,n. For the
techniques considered here, statistically equivalent sets S eqv

i of spatial arrangement can be created
as follows. Each set of rotations Ri can be assigned in m! ways to a unit cube microstructure with
grain size d = m−1/3. Each such spatial arrangement is denoted Si j ∈ S eqv

i with j = 1, . . . ,m. For
each Si j, the elastic modulus is computed via finite element approximation.

As an example, the sample cumulative distribution function (CDF) for R1 with m = 2000 is
shown in Fig. 2-9. For plotting purposes, the theoretical minimum and maximum single crystal
moduli are appended to the sample and assigned cumulative probabilities of 0 and 1, respectively.
Taking n = 100, a set of samples are generated, and the CDFs are shown in Fig. 2-10. Again, the
standard estimates for apparent elastic moduli ignore spatial arrangement, so that there is a single
set of estimates for each Ri. Typically, analyses of the effectiveness of these estimates conflate the
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Figure 2-9 CDF of computed elastic modulus Ex for idealized eight-
grain microstructures S1 j with rotations R1.
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Figure 2-10 CDFs of computed elastic modulus Ex for idealized eight-
grain microstructures Si j with rotations Ri.
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Figure 2-11 CDF of computed elastic modulus Ex for idealized eight-
grain microstructures Si j with combined orientation and arrangement
sampling.

effects of variability due to sampling rotations and the variability due to sampling spatial
arrangements. Here, these effects are considered separately.

First, consider the typical method of sampling, which returns n sets of rotations, each in a
particular spatial arrangement. This corresponds to sampling over P∼U(1,m) and returning SiPi

for each i = 1, . . . ,n. The CDF for such a sample is shown in Fig. 2-11. In order to produce
statistical data on apparent modulus, and in fact, to provide a solution to the problem of what to
predict as the moduli for a given microstructure, it is necessary to introduce a framework for such
calculations. For this study, some of the methods commonly available in the literature are
employed. A summary follows.

2.3.2. Approximation of the apparent elastic tensor

In a region k of a composite material, the elastic constitutive relation is given by

TTT ∗k = Lk : EEEe
k (7)

If the volume fraction of region k is ck, the average elastic strain in the body is

ĒEEe
=

N

∑
k=1

ckEEEe
k (8)

The average stress is likewise

T̄TT ∗ =
N

∑
k=1

ckTTT ∗k =
N

∑
k=1

ckLk : EEEe
k (9)

We postulate the existence of concentration tensors Ak such that

ĒEEe
k = Ak : ĒEEe (10)
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Combining (9) and (10),

T̄TT ∗ =
N

∑
k=1

ckT̄TT ∗k =

(
N

∑
k=1

ckLk : Ak

)
: ĒEEe (11)

Following (11), we define

Leff =
N

∑
k=1

ckLkAk (12)

so that
T̄TT ∗ = Leff : ĒEEe (13)

From the case where the material properties are uniform, we derive the constraint

I=
N

∑
k=1

ckAk (14)

Given the equivalence
Lk :

(
ĒEEe

+ ẼEEe)
= Lref :

(
ĒEEe

+ ẼEEe−ΛΛΛk
)

(15)

We postulate the existence of the Eshelby tensor Sk [15], such that

ẼEEe
= Sk : ΛΛΛk (16)

From (15) and (16),

Lk :
(
ĒEEe

+Sk : ΛΛΛk
)
= Lref :

[
ĒEEe

+(Sk− I) : ΛΛΛk
]

(Lk−Lref) : ĒEEe
= [Lref : (Sk− I)−Lk : Sk] : ΛΛΛk(

L−1
ref : Lk− I

)
: ĒEEe

=
[
I : (Sk− I)−L−1

ref : Lk : Sk

]
: ΛΛΛk(

L−1
ref : Lk− I

)
: ĒEEe

=
[
I−
(
L−1

ref : Lk− I
)

: Sk

]
: ΛΛΛk

ĒEEe
=

[(
L−1

ref : Lk− I
)−1
−Sk

]
: ΛΛΛk

(17)

We define the interaction tensor Tk such that

EEEe
r = ĒEEe

+ ẼEEe
= Tk : ĒEEe

ref (18)

Then from (17) and (18),

Tk =
[
I+Sk : L−1

ref : (Lk−Lref)
]−1

(19)

A class of approximations use the Eshelby tensor S to derive an interaction tensor A that produces
an effective elasticity tensor. The dilute approximation that each phase is an isolated
inhomogeneity, so that the reference strain is approximately equal to the average strain in the
body ĒEEe. Then, comparing Equations (10) and (18),

Adilute
k = Tk (20)
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The Mori-Tanaka approximation [16] assumes that the reference strain ĒEEe is approximately equal
to the (uniform) strain ĒEEe

0 in the matrix phase (r = 0), so that

EEEe
k = Tk : ĒEEe

0 (21)

Then

ĒEEe
=

N

∑
k=1

ckEEEe
k =

N

∑
k=1

ckTk : ĒEEe
0 (22)

Combining (21) and (22),

EEEe
k = Tk :

(
N

∑
k=1

ckTk

)−1

: ĒEEe (23)

That is,

Amt
k = Tk :

(
N

∑
k=1

ckTk

)−1

(24)

The self-consistent approximation [17] assumes

Lref = Leff (25)

ĒEEe
ref = ĒEEe (26)

so that
Asc

k =
[
I+ S̄k :

(
L̄−1 : Lk− I

)]−1
(27)

where S̄k is constructed using L̄.

In Equation (12), the index i ranges over the phases, from 0 for the matrix, and through 1, . . . ,N
for N inhomogeneities. Then ci is the volume fraction of the inhomogeneity i, while Li is the
elasticity tensor, and Ai is the interaction tensor. The Ai are constrained so that

N

∑
i=0

ciLiAi = I (28)

Given (28), the interaction tensor for the matrix can be determined a priori as

A0 =
1
c0

(
I−

N

∑
i=1

ciLiAi

)
(29)

We consider four estimates of the apparent elastic moduli:

1. The isostrain estimate (Voigt bound [18]).

σσσ(xxx) = C(xxx) : 〈εεε〉 (30)

Capp
V =

1
V

8

∑
i=1

viCi (31)
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Figure 2-12 Predictions of apparent moduli from the four methods detailed in Eqs (31)-(35).

2. The isostress estimate (Reuss bound [19]).

εεε(xxx) = C−1(xxx) : 〈σσσ〉 (32)

Capp
R =

(
1
V

8

∑
i=1

viC−1
i

)−1

(33)

3. The bounds-mean estimate (Hill average [20]).

Capp
BM =

1
2
(
Capp

V +Capp
R
)

(34)

4. The self-consistent estimate [17].

Capp
SC =

8

∑
i=1

viCi : Ai

=
8

∑
i=1

viCi :
{
I+S

(
Capp

SC
)

:
[(
Capp

SC
)−1 : Ci− I

]}−1
(35)

Here, Capp
XX are the estimated apparent elastic tensors, and S(C) is the Eshelby tensor [15] for a

medium with elastic tensor C. For the ensemble with sample distribution shown in Fig. 2-11, the
predictions of apparent modulus are shown in Fig. 2-12. It is immediately obvious from Fig. 2-12
that there is significant variability in the quality of the predictions. This is even true for a
particular observed modulus. That is to say, there are multiple microstructures that have the same
apparent modulus and which yield different predictions for apparent modulus.

The limiting case is for a single crystal. First, it is recognized that any observed modulus between
the minimum and maximum single crystal moduli can be observed for a single crystal of some
orientation. This result is due to the smoothness of single crystal modulus as a function of
orientation and the intermediate value theorem. The variation in single crystal elastic modulus
across orientation space is depicted in Fig. 2-13, where the smooth, nonlinear variation is evident.
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Figure 2-13 Variation in elastic modulus Exx over the standard triangle.
The [001], [011], and [111] moduli are shown on the figure. Contours
represent 10 GPa steps.

Figure 2-14 Maximum isostrain and minimum isostress predictions of
apparent moduli across the range of potentially observable moduli.
Left: Approximation of observed modulus via (34). Right: DNS cal-
culation of observed modulus.

There, it can be clearly seen that intermediate values of modulus can be obtained, for example, by
traversing the arc from the [001] orientation to the [111] orientation.

The next noteworthy point is that the error in the approximation made here is finite. This is
guaranteed to be true due to the finite positive values taken on by the moduli. For the isostrain and
isostress approximations, the arithmetic and harmonic means respectively ensure finiteness in the
approximations. For the self-consistent approach, the key ingredient is the fact that ∑

8
i=1 viAi = I

by construction. More precise bounds are investigated here numerically, where the maximum
upper bound and minimum lower bounds are shown in Fig. 2-14.

The approximation to the extremal bounds is computed by constructing an ensemble of 100
eight-grain microstructures for each target observed modulus and returning the maximum and
minimum approximations. Each of the 100 samples corresponds to solving an unconstrained
optimization to determine the set of eight rotations that will produce the target modulus,
approximated by the bounds-mean computed for that set of rotations. Since this solution is
generally non-unique, repeating this process with a randomly seeded initial guess produces a
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population of samples with potentially different isostrain and isostress approximations. The
solutions are then simulated to compute the observed modulus, which deviates from the predicted
value by a maximum of around 25%. The result is the slightly asymmetric lenticular-shaped
region shown in Fig. 2-14.

The maximum and minimum bounds converge to the maximum and minimum single crystal
moduli at the endpoints of the range, where the isostress and isostrain conditions are identical.
Thus, the potentially observable polycrystal moduli are bounded above and below by the
maximum and minimum single crystal moduli.

For each modulus yi j, take the self-consistent estimate xi as a model, and consider

yi j =axi +b+ εi j

=ŷi + εi j
(36)

a and b are determined from linear regression, and where εi j is the error associated with the
estimate. The sum of squared errors, ε2 is then a useful measure of the effectiveness of the model,
and the coefficient of determination R2 can be defined in terms of ε2 as

R2 = 1− ε2

∑
n
i=1 (yiPi− ȳ)2 (37)

where ȳ is the average over spatial arrangements SiPi for and corresponding rotations Ri. For the
sample shown in Fig. 2-11, R2 ≈ 0.962. However, some of the error is coming from a deficiency
in the fit, and some of the error is coming from the inherent uncertainty in the modulus due to
variability arising from the spatial arrangement of a given set of rotations. To get at the latter
source, consider the following partition of ε2, with ȳi as the mean over spatial arrangements Si j
for a given set of rotations Ri:

ε
2 =

n

∑
i=1

m

∑
j=1

(yi j− ȳi)
2 +

n

∑
i=1

(ȳi− ŷi)
2 (38)

Here, the first summand is the pure error due in this case to spatial-arrangement induced
variability, and the second is the lack of fit error. The expected value of ε2 is then decomposed
as

E[ε2] =E

[
n

∑
i=1

m

∑
j=1

(yi j− ȳi)
2

]
+E

[
n

∑
i=1

(ȳi− ŷi)
2

]

=
n

∑
i=1

E

[
m

∑
j=1

(yi j− ȳi)
2

]
+E

[
n

∑
i=1

(ȳi− ŷi)
2

]

=m
n

∑
i=1

s2
i +E

[
n

∑
i=1

(ȳi− ŷi)
2

] (39)

where s2
i is the sample variance over spatial arrangements Si j of a given set of rotations Ri. Taking

m = 1,

E[ε2] =
n

∑
i=1

s2
i +E

[
n

∑
i=1

(ȳi− ŷi)
2

]
(40)
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Figure 2-15 CDFs of isostrain-estimated elastic moduli (Left: xx, Right:
xy) for idealized microstructures with varying numbers of grains.

100 150 200 250 300
Modulus (GPa)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Pr
ob

ab
ili

ty

1 Grain
8 Grains
27 Grains
64 Grains
125 Grains
216 Grains
343 Grains
512 Grains

50 75 100 125
Modulus (GPa)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Pr
ob

ab
ili

ty
1 Grain
8 Grains
27 Grains
64 Grains
125 Grains
216 Grains
343 Grains
512 Grains

Figure 2-16 CDFs of isostress-estimated elastic moduli (Left: xx, Right:
xy) for idealized microstructures with varying numbers of grains.

It is clear that the model which minimizes the lack of fit error is ŷi := ȳi, in which case

E[ε2] =
n

∑
i=1

s2
i (41)

Now define an error measure e, which estimates the lack of fit error, as

e := ε
2−

n

∑
i=1

s2
i (42)

so that

E[e] = E

[
n

∑
i=1

(yi− ŷi)
2

]
(43)

With the preceding analysis, there is an estimation in hand of the aggregate elastic properties
derived directly from the microstructure and analysis of the variability to be expected from
sample to sample as a function of the number of constituents in the aggregate. Implicit in this is
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Figure 2-17 Convergence of averages of isostrain-estimated (Left) and
isostress-estimated (Right) moduli with increasing numbers of grains.
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Figure 2-18 Normalized variances of isostrain-estimated (Left) and
isostress-estimated (Right) moduli as a function of number of grains.
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Figure 2-19 Convergence of averages of DNS-computed moduli with in-
creasing numbers of grains.
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Figure 2-20 Normalized variances of DNS-computed moduli as a func-
tion of number of grains.
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Figure 2-21 Comparison of estimated and computed xx moduli.
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the notion of a material length-scale upon which the scaling of the variance is determined. It is the
material length-scale which allows for the determination of the strength of the interactions
between the constituents as a function of some physical quantity. Quantification of these
interactions is required to move beyond simple averaging schemes such as (31) and (33) to more
accurate estimations. The fact that the combination of these averages in (34) produces good
estimates is somewhat of an accident; it seems that the enforcement of equilibrium and
compatibility in an aggregate produces constraints that split the difference between the isostrain
and isostress assumptions. The success of the self-consistent scheme (35) is not an accident, as it
takes into account some version of the interactions between the constituents in an aggregate.
However, extending this notion to plastically-deforming materials is not straightforward, so the
following sections examine the mechanism underlying the self-consistent approximation:
material points interact with each other over some distance, with the strength of the interaction
decaying with increasing distance. Perhaps in understanding the scaling of this interaction, some
insight into the general non-linear problem can be attained.

2.4. A notion of material length scale

The notion of a material length-scale features in many regularized theories of constitutive
behavior and damage mechanics. However, the physical dimension corresponding to this concept
is usually taken as a constant, rationalized by reference to some physical phenomenon after the
fact. In practice, the material length-scale is a fitting parameter, and the a posteriori
correspondence between the parameter value and some physical length-scale is, at best, taken as
validation of the theory rather than incorporating this correspondence into the base of the theory.
On top of the discomfort this may introduce is another set of challenges introduced by the
possible evolution of the material length-scale. The paradigm previously mentioned makes the
rationalization of any scheme to evolve the value of the material length-scale parameter difficult,
and if such dynamics is incorporated into the theory, it must be close to strictly empirical or ad
hoc. On the other hand, one might choose to examine the material length-scale and its evolution
and to subsequently form a theory around this a priori determination of appropriate values and
dynamics of the material length-scale. This manuscript represents an attempt at this endeavor of
understanding the concept of a material length-scale for a particular set of phenomena and
erecting a framework for quantifying the length-scale and its evolution.

The basis of this investigation is the autocorrelation function, which measures the likelihood that
the value of some field at a point will take on a value similar to the values of the field in the
neighborhood of the point. The notion of autocorrelation is perhaps more common in the analysis
of time-series, where there is a wealth of theory and practical application in the literature.
Application of the autocorrelation to spatial data is also well established, for example in geology,
but applications in continuum solid mechanics are sparse. Nevertheless, it is argued here that
autocorrelation is an effective lens through which to view material-length scales and provides
valuable insight into heterogeneous deformations. In the following section, some basic
mathematical preliminaries are discussed, and concepts are developed and applied to simulated
random fields. Subsequently, the framework is applied to idealized problems in crystal
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elasto-viscoplasticity, and some conclusions are drawn with respect to material length-scale and
its evolution.

2.4.1. Mathematical preliminaries and definition of length scale

In the following exposition, it is assumed that there is a scalar random field X which takes on a
finite value X(ttt) at every point ttt ∈ B for some finite d-dimensional body B ⊂ Rd . The field X is
taken to be spatially homogeneous; that is, the probability density of X at a point ttt1 is identical to
the probability density of X at a point ttt2 for all ttt1, ttt2 ∈ B . It is also assumed that X is ergodic; that
is, sampling the spatial values of X over B is equivalent to sampling the distribution of X , except
for any effects of the finite size of B . A brief review of the relevant treatments of these random
fields is given below; a more thorough treatment can be found, for example, in [21].

The covariance function for a random field X (ttt) is defined as

B(ttt, ttt ′) := Cov
[
X(ttt),X(ttt ′)

]
= E

[
X(ttt)X(ttt ′)

]
−E [X(ttt)]E

[
X(ttt ′)

] (44)

Because the field X (ttt) is statistically homogeneous, the covariance function depends only on the
lag vector τττ = ttt− ttt ′, and ergodicity ensures that the expectation can be obtained by a spatial
integral. For the finite body B , the covariance function is approximated by

B(τ)≈ 1
|Bτ|

∫
Bτ

X(ttt)X(ttt− τττ)dt (45)

That is, the covariance function is approximated by an integral over a subset of the body B ,
denoted Bτ and defined as

Bτ = {ttt : ttt ∈ B and ttt− τττ ∈ B} (46)

A commonly explored form for the covariance function is the squared-exponential function, given
in two dimensions by

BSE(τ1,τ2) = σ
2 exp

(
−

τ2
1 + τ2

2
2d2

)
(47)

Taking τττ = 000 in Equation (45), we obtain an approximation of the variance σ2 = B(000), so that the
normalization of the covariance function yields the autocorrelation function:

ρ(τττ) =
B(τττ)
B(000)

(48)

For the squared-exponential covariance function, the autocorrelation function is thus

ρSE(τ1,τ2) = exp
(
−

τ2
1 + τ2

2
2d2

)
(49)

For reference, the landscape of (49) is shown in Fig. 2-22. The spectral density function is defined
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Figure 2-22 Values of the two-dimensional squared-exponential auto-
correlation function as a function of the normalized lag components
τ1/d and τ2/d.

as the Fourier transform of the covariance function,

S(ωωω) = F {B} (50)

For the squared-exponential covariance function, the spectral density function is

SSE(ω1,ω2) =
σ2d2

2π
exp
{
−d2

2
(
ω

2
1 +ω

2
2
)}

(51)

By the convolution theorem,
S(ωωω) = F {X}F {X} (52)

Thus, the covariance function can be recovered via the inverse Fourier transform,

B(τττ) = F −1{S}= F −1{F {X}F {X}} (53)

One limitation of the formula (45), as seen in (46) is that the approximation worsens with
increasing magnitude of τττ, given that the subset Bτ ‘shrinks’ with increasing magnitude of τττ,
providing a smaller finite sample of the random field X (ttt). Because brute-force computation via
(45) scales badly, it is convenient to use (53); given a finite sample of the random field X over the
body B , the covariance function can be efficiently estimated by applying fast Fourier transforms
to the field data. This process is illustrated by way of application to some synthetic data in the
following.

2.4.2. Synthetic random fields

To apply the formulae of the previous section, it is necessary to generate some field data for
analysis. In the interest of verifying the algorithms to be used, it is desirable to generate field data
with known characteristics. Two methods to generate such data are explored here for a structured
two-dimensional grid.

Given an autocorrelation such as (49) and a structured two-dimensional M×N grid with spacing
(∆τ1,∆τ2), a correlation matrix can be constructed, with entries

Ai j = ρ(τττi− τττ j) (54)
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Figure 2-23 Highest-energy KL modes in order of decreasing energy.
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Figure 2-24 The fraction of variance explained (energy) as a function of
the number of KL modes included for .

where 1≤ i≤MN and 1≤ j ≤MN each index all of the points in the grid. The eigenvalues λk
and eigenvectors vvvk of A allow for the construction of a field XXX via the Karhunen-Loève
Expansion (KLE),

XXX =
MN

∑
k=1

wk
√

λkvvvk (55)

where wk are drawn from a given distribution, taken here to be N (0,1). The highest energy KL
modes are shown in Fig. 2-23. The KLE is slow to converge for the squared-exponential
covariance function, as shown in Fig. 2-24. Nevertheless, it can be shown that the KLE is optimal,
in the sense that it captures a given amount of energy with the fewest possible number of modes.
An additional difficulty is the computation of the eigenmodes, which scales as nd , where l/n is
the resolution for a given domain-size l and number of points n, and d is the dimensionality of the
domain. The memory demands of this problem make the computational cost of generating
random fields in this way intractable for system sizes larger than about n = 100 in 2D. By taking
advantage of (53), it is possible to simulate much larger fields using an FFT-based technique, as
described below.

Given an autocorrelation function ρ, such as (49), with associated spectral density S, such as (51),
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Figure 2-25 Longest wavelength SRM modes in order of decreasing wavelengths.

it is possible to generate a field f (x1,x2) via the spectral representation method (SRM),

f (x1,x2) =
√

2
N1−1

∑
n1=0

N2−1

∑
n2=0

An1n2 cos
(

n1κ1u

N1
x1 +

n1κ2u

N2
x2 +Φ

(1)
n1n2

)
+ Ãn1n2 cos

(
n1κ1u

N1
x1−

n1κ2u

N2
x2 +Φ

(2)
n1n2

) (56)

An1n2 =

√
2S
(

n1κ1u

N1
,
n1κ2u

N2

)
κ1u

N1

κ2u

N2
(57)

Ãn1n2 =

√
2S
(

n1κ1u

N1
,−n1κ2u

N2

)
κ1u

N1

κ2u

N2
(58)

where Φ(1) and Φ(2) are two independent sets of random phase angles distributed uniformly on
[0,2π], and κ1u,κ2u are cutoff values in k-space beyond which it is assumed that S≈ 0. It can be
shown [22] that f has an autocorrelation function identical to ρ in the limit as N1,N2→ ∞. The
first few SRM modes are shown in Fig. 2-25.

2.4.3. Estimates of length-scale

Given a correlation structure, a natural next step is to quantify the decay of the autocorrelation in
order to determine some measure of a length-scale over which values are significantly correlated.
A brief discussion of the mathematics of one such determination follows; a detailed exposition is
available, for example, in [21].

Given the random field X (t), a new random field can be defined via:

XT (t) =
1
|T |

∫
T

X(τ)dT (59)
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Here, t is the center of an n-orthotope (line segment, rectangle, rectangular prism) T ⊂ B ⊂ Rd

with extent T = (T1,T2, . . . ,Td). In two dimensions,

XT (t1, t2) =
1

T1T2

∫ t1+
T1
2

t1−
T1
2

∫ t2+
T2
2

t2−
T2
2

X(τ1,τ2)dτ2dτ1 (60)

The variance σ2
T of the field XT is related to the variance σ2 of the field X as

σ
2
T = γ(T )σ2 (61)

In two dimensions, the correlation measure (characteristic area) α is defined as

α = lim
T1,T2→∞

T1T2γ(T1,T2) (62)

Equivalently, for the situations investigated here,

α =
∫

∞

−∞

∫
∞

−∞

ρ(x1,x2)dx1dx2 (63)

or

α =

(
2π

σ

)2

S (0,0) (64)

For an isotropic correlation structure, a single scale of fluctuation can be defined as

θ =
√

α (65)

For a separable correlation structure, with

ρ(τ1,τ2) = ρ1 (τ1)ρ2 (τ2) (66)

The one-dimensional scales of fluctuation θ(1) and θ(2) are given by

θ
(1) =

∫
∞

−∞

ρ(x1,0)dx1 (67)

θ
(2) =

∫
∞

−∞

ρ(0,x2)dx2 (68)

respectively, and
α = θ

(1)
θ
(2) (69)

As an example an ellipsoidal correlation structure, which is separable but not isotropic, admits the
following of an autocorrelation function

ρ(τ1,τ2) = exp
{
−
(

τ1

a

)2
−
(

τ2

b

)2
}

(70)

Of course, there is no guarantee that the principal coordinates x1 and x2 are aligned with the
reference coordinates, so that in practice, the autocorrelation may behave as

ρ(x1,x2) = exp

{
−
(

x1 cos(θ)+ x2 sin(θ)
a

)2

−
(

x2 cos(θ)− x1 sin(θ)
b

)2
}

(71)
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The components of the (symmetric) moment tensor MMM are given by

[MMM] =

[
I11 I12
I12 I22

]
(72)

Ii j =
∫

∞

−∞

∫
∞

−∞

xix jρ(x1,x2)dx1dx2 (73)

These components must be approximated for a finite (square) sample as

Ii j ≈
∫ L/2

−L/2

∫ L/2

−L/2
xix jρ(x1,x2)dx1dx2 (74)

The principal axes of correlation are determined from the eigenvalue analysis

det(MMM−λ jIII) = 0 (75)
MMM · vvv j = λ jvvv j (76)

where λ1 and λ2 are the eigenvalues corresponding to the eigenvectors vvv1 and vvv2, respectively.
For (70) and (71), [

x1
x2

]
=

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
·
[

τ1
τ2

]
(77)

The major semi-axis is oriented in the τ1-direction with length a, and the minor semi-axis is
oriented in the τ2-direction with length b. In this case, the components of the moment tensor are
given by

Ix1x1(θ) =
π

2

(
cos2(θ)

b2 +
sin2(θ)

a2

)
a3b3 (78)

Ix1x2(θ) =
π

4
(
a2−b2)absin(2θ) (79)

Ix2x2(θ) =
π

2

(
cos2(θ)

a2 +
sin2(θ)

b2

)
a3b3 (80)

(81)

The eigenvalues are given by

λ1 =
π

2
a3b = Ix1x1(θ = 0)

λ2 =
π

2
ab3 = Ix2x2(θ = 0)

(82)

with λ1 ≥ λ2. The corresponding eigenvectors are

vvv1 =

[
cos(θ)
sin(θ)

]
vvv2 =

[
−sin(θ)
cos(θ)

] (83)
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Figure 2-26 Simulated random field with box length / correlation length
= 20 and correlation length / pixel size = 2.
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Figure 2-27 Correlation structure of simulated random field with box
length / correlation length = 20 and correlation length / pixel size = 2.

Thus, the alignment of the correlation structure with respect to the spatial orientation is
characterized by θ, which can be approximated from vvv1 and vvv2, and the constants a and b can be
determined as

a =

(
4λ3

1
π2λ2

)1/8

(84)

b =

(
4λ3

2
π2λ1

)1/8

(85)

Here, an ellipsoidal correlation structure is assumed for short lags in order to make certain
approximations to facilitate the inference of length-scales from finite samples, as discussed
next.

An example of a simulated random field with correlation as in (49) and generated with the KLE
method is shown in Fig. 2-26. The correlation structure of this field is shown in Fig. 2-27, where it
can be seen that there is significant pollution due to the effects of the finite size of the sample. A
problem arises in evaluating the correlation of points with lag approaching the size of the
simulated domain. Either the number of averaging points must be reduced, or the data must be
padded with an artificial field which may not obey the correlation structure of simulated field. It is
of course possible to generate larger domains for theoretical investigation, but there is no
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Figure 2-28 Approximation of the correlation structure of simulated
random field with box length / correlation length = 20 and correlation
length / pixel size = 2.
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Figure 2-29 Corrected approximation of the correlation structure of
simulated random field with box length / correlation length = 20 and
correlation length / pixel size = 2.

guarantee that a real field of interest will have a domain size significantly larger than its
correlation length. Here, an attempt to circumvent this difficulty for a limited class of correlation
structures is outlined.

It is assumed that the correlation structure of the field possesses at least ellipsoidal symmetry, and
then the process proceeds as follows. First, the correlation structure of the field is analyzed using
the domain padding technique. Then, convex hulls are generated for a number of correlation
cutoffs, and the area and moments of these hulls is computed in order to extract equivalent circle
radii and equivalent ellipse axes. The results are shown in Fig. 2-28. In the figure, it is clearly
seen that this procedure underestimates the true radius (axes) due to the polygonal approximation
of the convex hull. Now, the ratio of the area of a circumscribed circle to an inscribed regular
polygon with n vertices is

Acirc

Apoly
=

2π

nsin
(2π

n

) (86)

Taking the square-root of this ratio as a correction factor, the approximation is improved, as
shown in Fig. 2-29. From Fig. 2-29, it is clear that the approximation of the correlation is not at all
accurate beyond about 2.5 times the length-scale d. Thus, the correlation computation is repeated
with a field reduced in size from the full field by 2.5d at each edge, and using no padding of the
domain. This results in a much smaller window on the correlation structure, but the
approximation is greatly improved, as seen in Fig. 2-30. This again clearly improves the quality
of the approximation. For the final step, the values of r (or a and b) for which there is a change in
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Figure 2-30 Corrected, reduced approximation of the correlation struc-
ture of simulated random field with box length / correlation length = 20
and correlation length / pixel size = 2.
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Figure 2-31 Corrected, reduced approximation of the correlation struc-
ture of simulated random field with box length / correlation length = 20
and correlation length / pixel size = 2, 3, 4.

the correlation are extracted, yielding the final set of data shown in Fig. 2-31. Also shown in
Fig. 2-31 is the convergence with respect to the pixel size. Evidently, a pixel size of 0.25d yields a
reasonably converged set of data for this problem.

With this theoretical and computational machinery in hand, the next step is to analyze a problem
of some value. The first choice is a problem in 2D crystal elasticity, as described next.

The computation of elastic response is relatively inexpensive, so a large microstructure is created
in order to fully characterize the correlation structure of the mechanical fields, and to insulate this
calculation from any pollution of boundary effects. The microstructure, shown in Fig. 2-32, is
comprised of 16384 square-shaped grains arrayed in a 128-grain by 128-grain grid. Each grain is
discretized with 64 quadrilateral elements with square aspect, arrayed in an 8 by 8 grid. The total
number of 2D finite elements is thus around 1M. An elastic step is simulated with a finite time
step, and the mechanical fields are recorded.

The stress field is shown component-wise in Fig. 2-33. It is seen in the figure that the fields are
heterogeneous, with some correlation structure that appears as an irregular waviness. This
structure is clearly illuminated in the plots of the autocorrelations in Fig. 2-33. Some interesting
qualitative features can be seen in the plots of autocorrelation. First, the orientation-dependence
of the correlation structures for the normal stresses clearly reflects the waviness apparent in the
fields. For the xx-component of the stress, the waves appear to be aligned in the y-direction (as if
moving in the x-direction). There are faint vertical lines in the plot of the xx- stress
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Figure 2-32 Idealized two-dimensional microstructure with 16384 =
1282 grains, each represented by 64 = 82 finite elements. Left: full
microstructure. Right: portion of microstructure enlarged to show de-
tail.

Figure 2-33 Fields (top row) and autocorrelations (bottom row) for
stress components -xx (left column), -xy (middle column), and -yy (right
column).
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Figure 2-34 Fields (top row) and autocorrelations (bottom row) for rate
of deformation components -xx (left column), -xy (middle column), and
-yy (right column).

autocorrelation, indicating that this order persists over a length-scale much larger than the grain
size. Also, there is a weak negative correlation evident between the values in one grain and the
adjacent grain in the x-direction (x-adjacent), indicating that regions of high stress intensity are
x-adjacent to regions of low stress intensity, reinforcing the intuitive notion of waviness. For the
yy-stress the story is similar, but rotated into the y-direction. For the xy-component of the stress,
there is positive correlation with grains in the diagonal neighboring positions and week negative
correlation with grains in the x- and y-adjacent neighboring positions. It is tempting to conclude
on the basis of these structures that there exists a short-range order induced by the governing
equations and a superposed long-range order induced by the microstructure, but deeper analysis
would be required to fully realize such conclusions and provide some quantification of these
effects.

The components of the rate of deformation are shown in Fig. 2-34. It is immediately evident that
the qualitative analysis of the stress component fields applies to the components of the rate of
deformation, but with a rotation of the structure (90◦ for the normal components, and 45◦ for the
shear component).

The internal power Ẇ = σσσ : DDD field is shown in Fig. 2-35. The local correlation structure has an
interesting landscape that bears further analysis. The long-range structure is quite clear; there
appear points of relatively high correlation at every point in the figure with x-lag and y-lag equal
to an integer multiple of the grain size. It is very tempting to conclude that this long-range
structure relates to the stress-concentration that appears at grain boundaries and quadruple points.
The quantification of this effect is an ongoing effort, but the results that follow suggest that there
is an important phenomenology revealed by this observation. To illustrate this and other salient
points, the analysis turns to the elasto-viscoplastic response next.

In light of the rapid decay of the autocorrelation evident in the results in the previous section, and
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Figure 2-35 Field (left) and autocorrelation (right) for internal power.

Figure 2-36 Stress response of 4×4 microstructure given as function of timestep.

driven by a desire to reduce the computational cost for the more involved elasto-viscoplastic
calculations, a much smaller microstructure is examined in this section. Here, the finite element
domain consists of 16 = 4×4 grains, each discretized with 256 = 16×16 quadrilateral elements.
Simulations are run over many steps, well into the regime of post-yield plasticity. Here the focus
is on the mechanical behavior in the vicinity of yield, which reveals interesting properties of the
autocorrelation of the mechanical fields.

For reference, the stress as a function of timestep is plotted in Fig. 2-36. The internal power fields
are plotted for a few representative timesteps in Fig. 2-37. The fields before step 20 and after step
50 are qualitatively similar to those shown in Fig. 2-37, although the absolute magnitude of the
fields change. Around yield, though, there is a significant shift from the elastic toward the
(nearly) fully viscoplastic behavior. The autocorrelation function values corresponding to these
snapshots are shown in Fig. 2-38. There is a clear shift in the plots in Fig. 2-38 from a correlation
structure that is initially biased toward the x-direction, through a more isotropic structure near
yield, to a structure that is biased in the y-direction in the post-yield regime. Looking ahead, it
seems likely that the post-yield structure is setting up the microstructure to localize along a
y-oriented band of high power intensity, as would be expected. In the regime investigated here,
what is clear is that a semi-permanent structure develops in the power field, as evidenced by the
estimate of the correlation length shown in Fig. 2-39. In the figure, it can be seen that the
correlation length of the internal power field is maintained at around the grain size d over the
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Figure 2-37 Power field for timesteps 20, 30, 40, 50.
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Figure 2-38 Autocorrelations for the internal power at timesteps 20, 30, 40, 50.
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Figure 2-39 The evolution of the estimated correlation length.

course of the simulation, and that it is very stable in both the fully elastic and the (nearly) fully
viscoplastic regimes. To investigate points beyond the end of this stable regime, a more realistic
microstructure is considered in the following section.

3. UNCERTAINTY QUANTIFICATION METHODS FOR
REPRESENTING MATERIAL VARIABILITY

In this section we describe techniques to model a distribution of mechanical responses by
mapping the variability onto physical, interpretable material parameters of a chosen model. We
also outline how to use Bayesian model section to select the most plausible model from a set of
models given data, and how to handle high-dimensional uncertainties such as the specific
locations of voids simultaneously with parameter distributions.

3.1. Physical parameter distributions

We adopt a Bayesian approach to the calibration problem [23, 24, 25, 26, 27, 28], which involves
searching for the plausible parameters θθθ of the selected model given data. In contrast to
least-squares fitting resulting in a single set of parameter values, in a Bayesian perspective the
parameters are considered random variables with associated probability density functions (PDFs)
that incorporate both prior knowledge and observed data. The choice of Bayesian methods is well
motivated by the data, which agree with the chosen model to a high degree but uncertainty is
present in the model parameters both within and across all batches. Bayesian calibration results in
a joint posterior probability density of the parameters p(θθθ|D,M) based on the observations D
given the model choice M. The parametric uncertainty reflected in the posterior PDF depends on
the consistency of the model with the data and the amount of data. As mentioned in the
Introduction, we aim to quantify the material variability using this probabilistic framework and
physical interpretations of the model parameters.
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3.1.1. Bayesian inference for parameter calibration

Consider our model M for the engineering stress σ = M(ε;θθθ), being a full finite element plasticity
model with an underlying plasticity model, where ε is the independent variable and θθθ is the vector
containing physical parameters {E,Y,H,K,B} as well as auxiliary and nuisance parameters
which will be defined later. By setting {H,K,B} or {K,B} to zero we can form a nested sequence
of models with 2, 3, or 5 parameters with perfect plastic, linear hardening, or saturation hardening
phenomenology, respectively. Given that we only have one dimensional tension data (no
information on lateral contraction), we fix the Poisson’s ratio to a commonly accepted value for
steel, ν = 0.3; however, we allow the Young’s modulus, E, to vary so that the locus of yield points
is not constrained to a line. We also allow for geometric variability through a non-dimensional
cross-section correction factor, A, that influences the model output linearly, σ = A×M(ε;θθθ), and
include A in the parameter set θθθ. This geometric correction is motivated by the fact that the
observed engineering stress data was computed using an average cross-sectional areas based on
the outer dimensions of each sample, and can be interpreted as the ratio of the effective load
bearing area of the sample to its measured average area. The correction factor A aims to mitigate
the effect of utilizing one nominal value for cross-sectional area per sample rather than utilizing a
more accurate spatially-varying area profile for each sample and the fact that the outer dimensions
lead to an overestimate of actual load bearing area of the AM tensile specimens due to the
physical imperfections. Since the gauge length, and hence the strain, are relatively error free, we
do not include a correction factor for it in the calibration parameters.

In a Bayesian setting for model calibration and selection, Bayes’ rule is used to relate the
information contained in the data and prior assumptions to the parameters in the form of a
posterior probability density function as

p(θθθ|D,M) =
p(D|θθθ,M) p(θθθ|M)

p(D|M)
. (87)

Here p(D|θθθ,M) is the likelihood of observing the data D given the parameters θθθ and model M,
p(θθθ|M) is the prior density on the parameters reflecting our knowledge before incorporating the
observations, and p(D|M) is the model evidence (which we will compute for model selection
purposes). It is important to note that the denominator is typically ignored when sampling from
the posterior since it is a normalizing factor, independent of θθθ, that ensures the posterior PDF to
integrate to unity; however, this term, known as the model evidence, plays a central role in model
selection, as will be described later. In this context, we will employ uninformative (or weakly
informative) prior densities due to lack of prior knowledge of the model parameters in the present
context of the response of AM tensile specimens. Experimental data influences the resulting
posterior probability only through the likelihood p(D|θθθ,M), which is based on some normalized
measure of the distance between the data D and the model predictions M(ε;θθθ). The likelihood
plays an analogous role to the cost/objective function in traditional fitting/optimization in the
sense that it describes the misfit between model predictions and observational data. Specific
forms of the likelihood will be discussed in Sec.3.1.2. As Eq. (87) suggests, the outcome is
conditioned on the model chosen, leading to questions regarding model comparison and selection
which will be discussed in Sec.3.1.3. In general, given the complexities of the model M, the
posterior density p(θθθ|D,M) is not known in closed form and one has to resort to numerical
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methods to evaluate it. Markov chain Monte Carlo (MCMC) methods [29, 30] provide a suitable
way to sample from the posterior density, while kernel density estimation, for example, can be
used to provide subsequent estimates of the posterior PDF.

3.1.2. Accounting for material variability using error models

We want quantify the effect of material variability induced by the additive manufacturing process
on the predicted mechanical response. To do this we use a Bayesian model calibration framework
with statistical error models that provide stochastic model predictions. There are many
approaches to model error characterization and quantification. In a Bayesian framework, Kennedy
and O’Hagan [23] developed a framework for characterizing model error by employing a linear
stochastic model in the form of an additive Gaussian process discrepancy term (see
also [31, 32, 33]). Despite its flexibility, this additive error model cannot guarantee that the
stochastic model predictions indeed satisfy the underlying governing equations and physical
constraints (e.g. positivity of solution fields). Secondly, the discrepancy terms are calibrated to
specific output responses and not generally relevant in characterizing variability of unobserved
model outputs (or parameters).

An alternative strategy of increasing popularity is to embed the variability into the physical model
itself, rendering it a stochastic model. This approach essentially assigns statistical bias correction
terms to internal model components or parameters (see, for example,
[34, 35, 28, 36, 37, 38, 39, 40]). Note that, while this approach alleviates the aforementioned
limitations of the additive error model, the stochastic model predictions are bound to the original
structure of the model and thus susceptible to possible deficiencies relating to the model structure
itself (e.g. due to unmodeled physics [41, 42]).

We will consider these two approaches in representing the effects of material variability. Since
each strategy leads to qualitatively different predictions, interpretations, and realizations, we are
interested in how each is able to capture intrinsic material variability. In this section, we will
discuss how, given that plastic strain is a coarse metric of the inelastic deformation in additively
manufactured materials, discrepancies between the observed data and the model predictions can
be interpreted physically.

Consider the k-th stress-strain curve from the i-th batch which consists of a sequence of stress
observations {σ(i,k)

j }
nε−1
j=0 obtained at the strain locations {ε j}nε−1

j=0 . A widely-adopted approach is
to express the discrepancy between a noisy observation and the true stress using an additive
measurement noise model, as in

σ
(i,k)
j = M(i,k)

t (ε j)+η
(i,k)
j , (88)

where M(i,k)
t is the true stress and {η(i,k)

j }
nε−1
j=0 are independent and identically distributed (i.i.d.)

Gaussian random variables that capture the measurement errors. This i.i.d. assumption is a
justifiable one since one can argue that the batches are independent. Furthermore, within a given
batch, we assume all the Ni stress-strain curves are independent since each experiment is a
self-contained test, performed on separate specimens.
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The true stress can also be approximated by a model prediction, M(ε j;θθθ), and additive model
error, δ

(i,k)
j , given by

M(i,k)
t (ε j) = M(ε j;θθθ)+δ

(i,k)
j , (89)

with corresponding model parameter vector θθθ. This is a commonly used method due to its
simplicity [23]. Combining Eqs. 88 and 89, we get the relationship between model predictions
and observed stress:

σ
(i,k)
j = M(ε j;θθθ)+δ

(i,k)
j +η

(i,k)
j . (90)

A structure for the model error, δ
(i,k)
j , is more difficult to prescribe than that for the measurement

error. Given that this additional term is not physically associated with the presumed sources of
non-measurement (material and other physical) variability, its applicability outside the training
regime is tenuous. Furthermore, the additive combination of the two error terms can lead to
challenges in disambiguation in a parameter estimation context (resulting in identifiability-related
issues). To alleviate such issues, one commonly-used simplifying assumption is to also assume an
i.i.d. Gaussian model errors, δ

(i,k)
j . Under this assumption, the two sources of errors can be

combined into one error term, ζ
(i,k)
j , as in

σ
(i,k)
j = M(ε j;θθθ)+ζ

(i,k)
j . (91)

In lieu of a completely characterized error model (which is rarely obtained in practice), the i.i.d.
zero-mean Gaussian random variables ζ

(i,k)
j are completely characterized by an unknown variance

given by ς2. Given the full data set for the i-th batch (denoted by Di), the resulting parameter
likelihood has the form:

p(Di|θθθ,M) =
nε−1

∏
j=0

Ni

∏
k=1

(2πς
2)−1/2 exp

−(σ
(i,k)
j −M(ε j;θθθ))2

2ς2

 . (92)

The standard deviation ς of the joint error attributed to modeling error as well as observational
noise can be either fixed in advance based on prior knowledge or inferred along with the other
unknown parameters θθθ. Moreover, it can be assumed to be either constant or varying with the
strain value.

As mentioned, the use of an additive model error term in Eq. (89) can lead to violations of
physical laws and constraints [43, 44] and other difficulties. In order to avoid these difficulties, we
embed the model variability/discrepancy in key parameters, essentially converting the unknown
parameters into random variables that introduce variability in model predictions due to their
uncertain nature. This approach, as detailed in [28], represents selected parameters using
polynomial chaos expansions (PCE). In our context, we will assume a uniform distribution for
each parameter in Eq. (91), given by the first-order Legendre-Uniform PCE:

θi = αi,0 +αi,1ξi , (93)

in which αi,0 represents the mean term and αi,1 dictates the level of variability in θi which
contributes to the variability in the observed responses. We will also consider the model selection
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problem as to whether or not to embed the variability in θi, which amounts to keeping the αi,1
term or setting it explicitly to zero. These coefficients (one or two per parameter) need to be
inferred from the experimental observations. Such embedding of variability, along with an
additive measurement noise term, can account for both material variability and measurement
errors, respectively. A noticeable advantage of this approach, when compared to employing
additive error alone, is that the material variability is explicitly captured by the model parameters
and hence we can propagate the calibrated parametric variability through numerical simulations
to any output of interest. Note that this use of a PCE is distinct from its use in the surrogate
modeling, where the extent of θθθ will selected to cover the feasible range of the parameters and not
inferred, as it is in this context. Also note that higher order expansions of θi are capable of
capturing correlations in the embedded variability. We employ the first order representation
Eq. (93) to minimize the number of unknowns αi, j that need to be calibrated.

The problem of calibrating such an embedded variability model is equivalent to that of estimating
the probability density functions of the parameters in which the variability is embedded.
Specifically, our objective is to estimate ααα = {αi,0,αi,1, . . .} that parametrize the density of θθθ.
This is in contrast to the additive error formulation of Bayesian inference for parameter
estimation, in which one infers the model parameters and not their density. Also, the data for our
present calibration problem motivates the embedded approach since it suggests the uncertainties
are aleatory/irreducible rather than epistemic/reducible. Specifically, the similar mechanical
responses primarily vary sample-to-sample, as opposed to varying within the response of a
particular sample, which suggests variations of material properties across specimens as opposed
to a stochastic process active in each specimen.

In this context, the model calibration problem thus involves finding the posterior distribution on ααα

via Bayes’ theorem Eq. (87)

p(ααα|D,M) =
p(D|ααα,M) p(ααα|M)

p(D|M)
, (94)

where ααα has been substituted for θθθ, p(ααα|D,M) denotes the posterior PDF, p(D|ααα,M) is the
likelihood PDF, and p(ααα|M) is the prior PDF. Note that ααα reduces to the classical parameter
vector θθθ when no embedding of variability is performed (θi = αi,0 and αi, j = 0 for j > 0). Among
the different options detailed in Ref. [28] for the likelihood construction, we employ the
marginalized likelihood, which for the i-th batch Di, can be written as

p(Di|ααα,M) =
1

(2π)
Ninε

2

nε−1

∏
j=0

Ni

∏
k=1

1
ς j(ααα)

exp

−(µ j(ααα)−σ
(i,k)
j )2

2ς2
j(ααα)

 , (95)

where

µ j(ααα) = Eξξξ[M(ε j;θθθ(ααα,ξξξ))] (96)

and

ς
2
j(ααα) = Vξξξ[M(ε j;θθθ(ααα,ξξξ))]+ ς

2 (97)
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are the mean and variance of the model predicted stress at fixed ααα and strain point ε j. These
moments are computed using the quadrature techniques that are commonly relied upon in
uncertainty propagation, as in the input characterization, Eq. (93); see Ref. [28] for detailed
description of the methodology involved in likelihood evaluation.

3.1.3. Bayesian model selection

The expansion in Eq. (93) resulting from the embedded model discrepancy approach is general in
that it does not impose limitations on which parameters should embed the variability.
Furthermore, as mentioned in Sec.3.1.1, we can model the stress using 2, 3, or 5 physical
parameters. We have also chosen to examine the inclusion of a cross-section correction factor, A,
which could also be chosen as another parameter in which to embed an variability. Therefore,
there are three physical models that are competing to fit the data, with up to 6 physical
parameters, all of which are competing to be bestowed with an embedded variability term. This
amounts to a total of 88 plausible models that are competing to fit the given data. Since
determining the optimal model and optimal set of parameters for embedding of model variability
a priori is not possible, we perform model selection using Bayes factors [45, 46]. This method of
model selection is a data based approach that selects the optimal model as the one that strikes the
best balance between data-fit and model simplicity [47, 48]. This balance is monitored using the
so-called model evidence, or marginal likelihood, for each model M, given by

p(D|M) =
∫

p(D|ααα,M) p(ααα|M)dααα . (98)

The computation of the model evidence p(D|M) is typically neglected in Bayesian calibration as
it acts merely as a normalizing factor in Bayes’ rule, Eq. (87). The model evidence acts as a
quantitative Ockham’s razor that, when maximized, performs an explicit trade-off between the
data-fit and the model simplicity [47]. This is elucidated when examining the logarithm of the
model evidence [49, 50]:

E[ln p(D|M)] = E[ln p(D|ααα,M)]−E
[

ln
p(ααα|D,M)

p(ααα|M)

]
(99)

where the expectation E[·] is with respect to the posterior PDF, p(ααα|D,M). The first term on the
right hand side of Eq. (99) quantifies the data-fit and is known as goodness-of-fit. The second term
is equal to the relative entropy (or Kullback-Leibler divergence) between the prior and posterior
PDFs, also known as the information gain [51]. Given sufficient data D , the information gain is
normally higher for more complex models (models with more parameters or with parameters of
greater prior PDF support reflecting poor prior knowledge as to their values). Hence, the
information gain term quantifies model complexity by examining the relative difference between
prior and posterior PDFs. This is in contrast to the frequentist approach where model complexity,
in general, only depends on the number of model parameters rather than their relative prior
supports [51].
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Model selection using Bayes factors involves the pairwise comparison of plausible models, with
Bayes factor defined as the ratio of their evidences given by

B(Mi,M j) =
p(D|Mi)

p(D|M j)
=

∫
p(D|ααα,Mi) p(ααα|Mi)dααα∫
p(D|ααα,M j) p(ααα|M j)dααα

(100)

with B(Mi,M j)> 1 indicating that model Mi is more likely while B(Mi,M j)< 1 indicates that M j
is the more likely model. One can supplement the evidence with prior belief on these models
(called prior model probability) and in that case we would be interested in the ratios of posterior
model probabilities. In our context, we assume that all models have equal prior probabilities
ahead of analyzing the data and thus Bayes factor is a suitable way to compare the available
models.

The key challenge is to compute the model evidence efficiently and accurately. In this
investigation, we will modify a technique known as adaptive Gauss-Hermite quadrature
[52, 53, 40, 54] by employing importance sampling for integration rather than Gauss quadrature,
due to the poor scalability of quadrature techniques in higher dimensions. In an importance
sampling framework, we utilize a multivariate normal distribution q as a proposal/sampling
distribution, with a mean vector µµµ and covariance matrix ΣΣΣ equal to the posterior mean and
posterior covariance of ααα, i.e.

q(ααα) =
1√

(2π)dα|ΣΣΣ|
exp
(
−1

2
(ααα−µµµ)ᵀΣΣΣ

−1 (ααα−µµµ)
)
. (101)

The model evidence η, being an integral over the parameter space, can now be estimated using
importance sampling with q as the proposal distribution. To do this, we reformulate the evidence
as

η =
∫

p(D|ααα,M) p(ααα|M)dααα =
∫ ∫

p(D|ααα,M) p(ααα|M)

q(ααα)
q(ααα)dααα , (102)

and utilize the change of variable ααα = Lα̃αα+µµµ, with L being the lower triangular matrix in the
Cholesky decomposition of the covariance matrix, ΣΣΣ = LLᵀ, to obtain the following formulation
for the evidence:

η =
∫ ∫

p(D|Lα̃αα+µµµ,M) p(Lα̃αα+µµµ|M)

exp
(
−1

2 α̃αα
ᵀ
α̃αα
) exp

(
−1

2
α̃αα
ᵀ
α̃αα

)
|L|dα̃αα . (103)

η can now be approximated using Monte Carlo sampling strategy as

η≈ 1
NLH

NLH

∑
k=1
|L|

∫
p(D|Lα̃ααk +µµµ,M) p(Lα̃ααk +µµµ|M)

exp
(
−1

2 α̃ααk
ᵀ
α̃ααk
) , (104)

where α̃ααkkk, k = 1, . . . ,NLH , are Latin Hypercube samples [55] drawn from a standard multi-variate
normal distribution. For the estimator in Eq. (104) to be accurate, we need good estimates for the
posterior mean vector and covariance vector, µµµ and ΣΣΣ), which can be obtained adaptively using
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the iterations:

µµµn =
1

NLH

NLH

∑
k=1

[
|Ln−1|

p(D|Ln−1α̃ααk+µµµn−1,M)p(Ln−1α̃ααkkk+µµµn−1|M)

exp(− 1
2 α̃ααkkk

ᵀ
α̃ααkkk)

×(Ln−1α̃ααkkk +µµµn−1)

]
(105)

ΣΣΣn =
1

NLH

NLH

∑
k=1

[
|Ln−1|

p(D|Ln−1α̃ααk+µµµn−1,M)p(Ln−1α̃ααkkk+µµµn−1|M)

exp(− 1
2 α̃ααkkk

ᵀ
α̃ααkkk)

×(Ln−1α̃ααkkk)(Ln−1α̃ααkkk)
ᵀ

]
(106)

ηn =
1

NLH

NLH

∑
k=1
|Ln|

p(D|Lnα̃ααk +µµµn,M)p(Lnα̃ααkkk +µµµn|M)

exp
(
−1

2 α̃ααkkk
ᵀ
α̃ααkkk
) (107)

where n denotes the iteration number. For each individual model, these iterations start with an
initial guess for the posterior parameter mean vector and covariance matrix. We obtain those from
an initial run of a Markov chain Monte Carlo sampler over the parameter posterior. The iterations
stop with a termination criterion on the evidence η. For this application, the termination criteria is
met when the relative change in η is less than 10−6.

3.1.4. Surrogate modeling

The sampling of the parameters’ posterior probability density and the evaluation of the Bayesian
model evidence involves many evaluations of the computational model. Since the finite-element
based forward model is relatively expensive to query (each tension simulation takes
approximately 1 cpu-hour), the inverse problem of parameter estimation and model selection via
direct evaluation becomes infeasible. Instead, we construct inexpensive-to-evaluate, accurate
surrogates for the response of interest using polynomial chaos expansion (PCE) [56, 57, 58].
Marzouk et al. [59] have shown that such surrogates can be effectively constructed using UQ
techniques with a presumed uniform density on the parameters’ range of interest.

Since rough bounds of each of the parameters can be estimated from the data and knowledge of
similar materials, we represent the unknown parameters θθθ using a spectral PCE in terms of a set of
independent and identically distributed standard uniform random variables ξξξ∼ [−1,1]dθ , as in

θθθ(ξξξ) =
Pθ

∑
i=0

θθθiΨi(ξξξ), (108)

where dθ represents the dimensionality of θθθ, ΨI(ξξξ) are the orthogonal PC basis elements
(Legendre polynomials in this case), and Pθ defines the number of terms in the expansion.
Eq. (108) is, essentially, a linear transformation that maps standard uniform random variables to
the unknown parameters over their range of interest. A corresponding expansion of the model
response, acting as a polynomial-based surrogate model, can be written as

M(ε j;ξξξ)≈
PM

∑
i=0

σi(ε j)Ψi(ξξξ) , (109)

and is constructed as a function of the physical parameters, {E,Y,H,K,B}, at each value of
engineering strain ε j at which data is available. The PC coefficients for the inputs, θθθi, and outputs,
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σi(ε j), of the model can be obtained, using one of two approaches: Galerkin projection or
stochastic collocation. We utilize a non-intrusive stochastic collocation method with regression
[60] to estimate the unknown PC coefficients as it does not require modification of the existing
computational models and simulators. Details on this procedure are given in Ref. [55], with an
application of PCE surrogate modeling with computationally intensive numerical models in
Ref. [61].

3.2. Model parameter distributions and aleatoric material uncertainty

Since the CT scans where only able to resolve voids with diameters larger that the 7.5 µm pixel
size and there is evidence [5] that a population of sub-threshold pores exist initially, and can grow
and nucleate, we employed a hybrid modelling approach. Specifically, we chose to represent the
resolvable pores explicitly in finite element meshes and the sub-threshold pores via damage, an
implicit homogenized porosity field governed by an evolution equation. The selected viscoplastic
damage constitutive model is described in Refs. [62, 63, 64, 65]. Coupling between the explicit
and implicit voids is provided by an “element death” mechanism that allows highly damaged
elements to act like voids by no longer contributing to the local stress response and therefore
adding to the explicit porosity. For efficiency we only simulate the gauge section with simple
tension effected by minimal Dirichlet boundary conditions. To enable sufficient sampling of the
porosity realizations and avoid the added complexity of boundary reconstruction schemes, we
chose to voxelate the porosity on structured mesh. We set the mesh resolution to be comparable to
the CT scan resolution, this aspect will be discussed in more detail in Sec.3.2.1. Furthermore, the
CT scans do not cover the entire gauge section nor the distinct crust and are limited in number, so
we created a model, detailed in Sec.3.2.1, to provide sufficient statistically similar realizations for
the uncertainty quantification discussed in Sec.3.2.4.

Given the observed phenomenology and the need to model a population of sub-threshold voids
that may nucleate and growth, we selected an isothermal variant of the Bammann-Chiesa-Johnson
(BCJ) viscoplastic damage model [62, 63, 64, 65]. In the context of small strain plasticity
appropriate for metals, stress σσσ is given by a linear elastic mixture rule:

σσσ = (1−φ)C(εεε− εεεp) , (110)

based on void fraction φ, where C is the (isotropic) elastic modulus tensor with components
[C]i jkl = E/(1+ v)

(
v/(1−2v)δi jδkl +1/2(δikδ jl +δilδ jk)

)
which depends on Young’s modulus

E and Poisson’s ratio v. Here εεε is the total strain, εεεp is the plastic strain, and εεε− εεεp is the elastic
strain. The plastic strain εεεp evolves according to:

ε̇εεp =

√
3
2

f sinhn
(

σ/(1−φ)−κ

Y
−1
)

s
‖s‖

(111)

with the isotropic hardening κ governed by:

κ̇ = (H−Rκ) ε̇p (112)
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with κ(t = 0) = κ0. Here, s = devσσσ is the deviatoric stress, σ≡
√

3
2s · s is the von Mises stress, Y

is the yield stress, f is the flow coefficient, n is the flow exponent, H is the hardening modulus, R
is the recovery coefficient, and ε̇p =

√
2/3ε̇εεp · ε̇εεp is the equivalent plastic strain rate. Recovery is

associated with dislocation annihilation and related processes.

The implicit void volume fraction φ is associated with material damage and is related to void
concentration η and the average void size ν by φ≡ ην/(1+ην). For nucleation, the void
concentration η (a number density) evolves according to:

η̇ =

(
N1

(
22

33 −
J2

3

J3
2

)
+N3

p
σ

)
ηε̇p (113)

where p = 1/3σσσ · I is the pressure, J2 = 1/2trs2 = 1/3σ2 and J3 = 1/3trs3. The N1 component
responds to torsion, and the N3 component corresponds to nucleation due to tension/compression
(triaxiality), refer to Ref. [63, Table 2]. The growth of the average void size ν is given by:

ν̇ =

√
2
3

1+ην

η

(
(1+ην)m+1−1

)
sinh

(
2(2m−1)

2m+1
p
σ

)
, (114)

where m is the damage exponent. As shown in Karlson et al. [65] and in Brown and Bammann
[64], Eq. (114) can be extended to include the effect of newly nucleated voids, assuming them to
have volume ν0:

ν̇ =

√
2
3

1+ην

η

(
(1+ην)m+1−1

)
sinh

(
2(2m−1)

2m+1
p
σ

)
− (ν−ν0)

η̇

η
. (115)

Then, Eq. (113) and Eq. (115) can be combined, and using arguments in Brown and Bammann
[64] in the limit of vanishing volume of newly nucleated voids, the evolution relation for the void
volume fraction (porosity), φ is obtained:

φ̇ =

√
2
3

ε̇p
1− (1−φ)m+1

(1−φ)m sinh
(

2(2m−1)
2m+1

p
σ

)
+(1−φ)2

η̇ν0. (116)

Lastly, once the void fraction φ exceeds a threshold φmax the material (as discretized by the finite
element) is considered completely failed.

3.2.1. Microstructures

To develop models that are consistent with experimentally-observed failure metrics while
accounting for the resolvable porosity, we need a means of generating mesh-based realizations of
the visible porosity. Various approaches have previously been proposed in literature to model
randomly porous media [66, 67, 68]. We will use a Karhunen-Lóeve expansion (KLE) (see e.g.
Ref. [69]) to model porous media as a random process through an intermediate Gaussian random
process. KLE is a mean-square optimal representation of square-integrable stochastic processes
and has been widely-used in many engineering and scientific fields. Much like a Fourier series
representation, KLE represents a stochastic process using a linear combination of orthogonal
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functions; however, KLE differs from Fourier series in that the coefficients are random variables
(as opposed to deterministic scalar quantities) and the basis depends on the correlation function of
the process being modeled (as opposed to pre-specified harmonic functions).

In particular, we follow the methodology proposed by Ilango et al. [70] to construct KLE models
for the porosity process of the core and crust regions. Given the experimental data, we assume
that the binary random process modeling porosity ϕ(x) is homogeneous and isotropic [71, 67],
with a two-point correlation function given by

Rϕϕ (x1,x2) = E [ϕ(x1)ϕ(x2)] = Rϕϕ(r) (117)

where r = ‖x1−x2‖ is the distance between positions x1 and x2. Under these assumptions, we
can approximate the statistics: mean porosity ϕ̄ and spatial correlation Rϕϕ, as ensemble averages
utilizing the available CT scans of the porous media as described in Ref. [67]. Then, with a KLE
representation of ϕ(x), we can generate realizations by sampling ϕ(x) on structured mesh
covering the nominal gauge section of the tensile specimens and at a resolution commensurate
with the CT voxels. Specifically, we generated realizations of these processes on a structured grid
135×135×534 voxels identical to the CT scan with 7.5µm pixel resolution, where the outer 10
voxels in cross-section were designated as the crust.

Starting with the core region, we obtained a mean porosity of ϕ̄= 0.008 and the experimental
correlation function Rϕϕ(r) as a function of distance r between voxels. There is noise in the
underlying experimental data which is predominantly attributed to (a) a finite sample of
specimens being analyzed and (b) the process of obtaining and post-processing CT images. In
order to filter out this noise while satisfying physical constraints relating to correlation functions,
we fit the data to the widely-used power-exponential correlation function [72, 73]:

R(r) = exp
(
−
( r

κ

)ν)
, (118)

where κ > 0 is the correlation length and ν≤ 2 is a tunable parameter. Calibration of this
correlation function to the experimental data resulted in a correlation length κ = 0.0526mm and
power ν = 1.122. In order to capture 99.99% of the energy of the process, the KLE for the core
region is truncated at 10,676 terms out of a total of 69,984.

A similar model was constructed for the crust region. Lacking CT data of the crust, we assumed
the correlation length of its binary porosity process is approximately the same as that for the core
region, with a mean porosity that is ten times of that of the core. This results in a truncated KLE
for the intermediate Gaussian process with 32,366 terms to capture 99.99% of the energy of the
process.

3.2.2. Calibration parameter selection

In order to reduce the high dimensionality of the tunable constitutive model parameters
{E,ν,Y, . . .}, we fixed a number of parameters based on numerical stability considerations, expert
knowledge, and preliminary sensitivity studies. Table 3-1 summarizes the division into parameters
that will be calibrated θθθ and those that are fixed.
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In making this determination, we take the perspective that the basic elastic-plastic parameters E,
ν, Y represent the well-determined, intrinsic properties of the fully dense, undamaged materials
and hence are fixed, pre-determined constants; consequently, we allow other parameters to
account for the observed variable response. For instance, we designated the initial damage φ0 as
parameter for calibration to account for variance in the observed effective modulus Ē, refer to
Table 2-1. Likewise, the initial hardening κ0 has a confounding effect in determining the observed
yield stress σY (refer to Eq. (111)), so it, alone, was allowed to largely determine this feature.
Preliminary studies allowed us to set the maximum damage for element death parameter φmax at
0.5 to emulate the failure characteristics of the experimental data. We found the model response
was not particularly sensitive to this value. Additional preliminary sensitivity studies using Sobol
indices ranked the sensitivity of the torsion nucleation parameter N1 orders of magnitude below
competing parameters, whereas the sensitivity of the failure features to the triaxiality nucleation
parameter N3 was highly ranked; hence, N1 was fixed and N3 was left for calibration.

To specify the initial density η0 and initial size at nucleation, ν0, of the unresolved voids we took
the value η0ν0 = 10−4 for a similar material from [65], estimated ν0 = 0.1 µm3 based on the size
of the CT voxels (421.5 µm3), and arrived at ≈ 30 voids per finite element. This population is
sufficient to satisfy the basic premise of the damage model, i.e. that there is an ensemble of
uncorrelated voids present.

The remaining parameters, flow exponent n, damage exponent m, flow coefficient f were fixed at
published values, see e.g. Ref. [65]; preliminary studies showed that the response was relatively
insensitive to f as well.

Physical reasoning and accepted values for similar materials were used to center the calibration
parameters θθθ = {R,H,κ0,φ0,N3}. Both the hardening H and recovery R parameters were
included in this set to capture the range of post yield slopes and maximum stresses observed in
the data (refer to Eq. (112)). The ranges of the calibration parameters were obtained through an
iterative process involving the bounds of parameter space explored by the Monte Carlo sampler
described in Sec.3.2.4.

3.2.3. Surrogate model

To calibrate likely values for the parameters θθθ given the experimental data, we will use Bayesian
model calibration techniques developed in Sec.3.2.4. This statistical inversion relies on the joint
sampling of the posterior probability density function (PDF) of the parameters θθθ using Markov
chain Monte Carlo (MCMC) sampling-based strategies. The joint characterization of the
posterior parameter PDF of 5 independent parameters usually requires at least 106 samples, where
each sample is forward model simulation of the computationally-intensive finite element model.
One popular strategy that reduces this computational burden relies on surrogate models of the
response of the expensive physical simulations. Such surrogates capture the complex, often
nonlinear, mapping from the unknown parameters θθθ to observable, system outputs F are
relatively cheap to evaluate an are of sufficient accuracy.

In a previous study [1], we employed a polynomial chaos expansion (PCE) [56, 57] to construct
surrogates over the domain of plausible values of unknown parameters. Such methodology
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Parameter Value
Young’s modulus (GPa) E 240
Poisson’s ratio v 0.27
Yield strength (MPa) Y 600
Initial void size (µm3) ν0 0.1
Initial void density (µm−3) η0 10−3

Flow exponent n 10
Damage exponent m 2
Torsion nucleation N1 10
Flow coefficient f 10
Maximum damage φmax 0.5
Isotropic dynamic recovery R [0.1,10]
Isotropic hardening (GPa) H [2,10]
Initial hardening (MPa) κ0 [200,600]
Initial damage φ0 [0.0001,0.2]
Triaxiality nucleation N3 [5,15]

Table 3-1 Parameter values for fixed parameters (upper) and ranges for
calibration parameters (lower) θθθ = {R,H,κ0,φ0,N3}.

exploits global polynomial basis which non-optimal for capturing strongly nonlinear input-output
mappings. Specifically, PCE surrogates require higher-order basis to capture the nonlinearities
accurately, implying an exponential growth in the number of unknown PCE coefficients to tune
(proportional to number of forward model simulations required to calibrate such surrogates). We
first attempted the construction of third-order PCE surrogates in the 5-dimensional parameter
space. The PCE coefficients were obtained using Galerkin projection utilizing 241 simulations
corresponding to quadrature points obtained using Smolyak’s sparse tensorization and nested
Clenshaw-Curtis quadrature formula. The accuracy was measured using normalized
root-mean-square error with 100 additional simulations corresponding to Monte Carlo samples in
parameter space. Such surrogates were exhibiting slow convergence against increasing PCE order
from 1 through 3, with the 4-th order PCE surrogates requiring a prohibitive 801 simulations.

Instead, we chose to utilize Radial Basis Functions (RBF) [74, 75, 76], being one of the most
capable multidimensional approximation methods [77], to construct surrogate response models
for each physical feature F as a function of the calibration parameters θθθ. For each porosity
realization constructed using the methodology outlined in Sec.3.2.1, we fit 6 RBF surrogates
corresponding to the 6 features of interest F reported in Table 2-1. Generally, one could construct
one global surrogate per feature to cover the space of KLE coefficients used in modeling the
explicit porosity process as well as the unknown parameters, but we opted against that approach
due to the extremely high-dimensionality of the KLE coefficient space (see Sec.3.2.1 for details).
We start with a set of parameter points θθθi, i = 1, . . . ,n, and corresponding feature values,
fi = f (θθθi) for each feature f in F . The RBF approximation, f ≈ f̃ (θθθ), is a linear combination of
basis functions (kernels) that depend on the distances between the evaluation point, θθθ, and a set of
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kernel centers, θθθJ , J = 1, . . . ,M given by

f̃ (θθθ) =
M

∑
J=1

cJK (‖θθθ−θθθJ‖2) (119)

where ‖·‖ denotes the Euclidean norm, and coefficients cJ are to be determined. Widely-used

kernels include Gaussian, K (r) = e−(εr)2
, multiquadric, K (r) =

√
1+(εr)2, and cubic,

K (r) = r3, where ε is a tunable parameter. (See [78] for a more complete list of RBF kernels.)
After preliminary comparative investigations (results omitted for brevity), we chose to utilize
Gaussian kernels, since they lead to the least cross-validation errors in our context.

In many applications, the centers are chosen to be the data points {θθθJ}= {θθθi}, with M = n. The
constants, in that setting, may be determined by ensuring that the approximation will exactly
match the given data at the data points, leading to an interpolative approximation function. In this
realistic application, the features extracted from the simulations are corrupted by relatively small,
yet significant, noise relating to feature-extraction from stress-strain curves sampled at a finite set
of strain values. In other words, the true value fi, corresponding to parameter realization θθθi, is
known only up to a small amount of unknown noise. In that case, an interpolative RBF
approximation would be equivalent to fitting the unknown noise along with the underlying
feature. More generally, over-fitting leads to erroneous surrogates even in the noise-free case due
to parameter identifiability issues.

To alleviate the issue of over-fitting the noise in the extracted features, we will choose to have the
number of centers to be less than the number of available data points, i.e. M < n. An added
advantage of a smaller choice for the number of centers than available data points is the reduced
cost to evaluate the trained RBF surrogates. The number of centers M and their locations, being a
modeling choice, will be chosen using cross-validation. Both sets of data points and centers for
RBF surrogate construction will be obtained using latin hypercube sampling (LHS) [79], resulting
in a sample that is predominantly random, but is uniform in each separate dimension. Although
more optimal strategies exist for choosing the data points and centers adaptively (see [80] for
example), we chose this space-filling design that can be used for purposes beyond the RBF
surrogate construction.

For each porosity realization, we run n = 200 forward model simulations at a set of corresponding
LHS samples in parameter space with parameter ranges given in Table 3-1.

3.2.4. Bayesian calibration

In this section we develop a combined treatment of the aleatoric uncertainties related to the
explicit porosity configurations and epistemic uncertainties of the material parameters
uncertainties. The procedure involves an ensemble of mesh-based realizations of the observable
porosity ϕ = {ϕI} and marginalization over the resulting response surrogates. We separate the
parameters into three categories: (a) the high dimensional porosity as represented by the
realizations ϕ controlled by the KLE parameters ξξξ, (b) the physical parameters of interest
including the “embedded” error/beta distributions for a subset of the parameters θθθ, and (c) the
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hyper parameters for the additive uncorrelated measurement noise intensities γγγ. The
corresponding model of the experimental data D is

faI(θθθ,γγγ) = f̃a(θθθ;ϕI)+ηa(γγγa) (120)

where f̃a is the surrogate model for feature fa given porosity realization ϕI and ηa is the
corresponding independent additive noise with parameters γγγa. The data D is comprised of all the
feature F measurements across all the experimental tests of individual specimens.

Generally speaking, the statistical calibration of models using experimental data involves
inferring a set of unknown, or weakly known, parameters. Oftentimes, a subset of those
parameters may not be directly relevant for subsequent analysis (such as sensitivity analysis or
forward propagation of uncertainty). Such parameters, termed “nuisance” parameters, are still
important in the calibration process and are thus jointly inferred with the parameters of interest.
The parameters γγγ determining the measurement noise η are a common example of this kind of
parameter.

In this subsection, we describe how we deal with a different kind of nuisance parameter vector,
the observable porosity field ϕ(x), which is used to represent the high-dimensional random
process that acts as an uncontrollable source of uncertainty in the physical system, i.e. the
location and sizes of voids. In UQ terms, such source of uncertainty contributes to aleatory
uncertainty [81], arising from the inherent variability of a phenomenon (in this case the random
porosity distribution) and cannot be further reduced from the available data (i.e. when making
predictions we cannot rely on knowing the locations of voids). In contrast, the unknown
parameter vector θθθ of interest contributes to to epistemic uncertainty [81] arising from incomplete
knowledge of the phenomenon and can be reduced with the available data D. In this context, both
types of uncertainty have probabilistic characterization. However, modelers utilizing UQ
techniques make this distinction as the two types of uncertainties require separate treatment in a
Bayesian setting (see [82] for a philosophical discussion on the need to separate sources of
uncertainties in this fashion).

In such setting, one performs joint inference of the uncertain parameters and nuisance parameters.
The joint posterior PDF of the uncertain parameter vector θθθ and nuisance parameter vector ϕ is
first decomposed using the probabilistic chain rule:

p(θθθ,ϕ |D) = p(θθθ |D,ϕ) p(ϕ |D) . (121)

The second term on the right hand side of Eq. (121) is the marginal PDF of ϕ conditional on the
data vector D. We will assume that ϕ is independent of the available data D which describes
features of the stress-strain response of individual test specimens. In other words, the available
stress-strain data does not inform the porosity distribution and hence ϕ is classified as a source of
aleatory uncertainty. With this assumption, we replace p(ϕ |D) with a pre-specified PDF π(φ)
which leads to:

p(θθθ,ϕ |D) = p(θθθ |D,ϕ)π(ϕ) . (122)

In our context π(φ) is determined by the KLE described in Sec.3.2.1 tuned to the experimental
average porosity and spatial correlation.
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We are interested in the posterior PDF for the parameter vector of interest, namely θθθ. We can
obtain this PDF by marginalizing the joint PDF in Eq. (122) over ϕ

p(θθθ |D) =
∫

p(θθθ,ϕ |D) dϕ (123)

=
∫

p(θθθ |D,ϕ)π(ϕ) dϕ

In general, the marginalized posterior PDF in Eq. (123) does not have an analytical solution and
one must resort to deterministic or stochastic schemes of numerical integration in practice. One
conceptually simple approach utilizes Monte Carlo (stochastic) integration method to arrive at the
following approximation for the marginalized posterior p̂(θθθ |D):

p(θθθ |D)≈ p̂(θθθ |D) =

NMC

∑
I=1

p(θθθ |D,ϕI) (124)

with ϕI denoting independent samples of ϕ drawn from π(ϕ). Bayes’ law can be applied to
Eq. (123), resulting in:

p̂(θθθ |D) ∝
1

NMC

NMC

∑
I=1

p(D |θθθ,ϕI) p(θθθ |ϕI) . (125)

The first and second terms inside the summation in Eq. (125) correspond to the likelihood and
prior of the parameter vector θθθ, respectively, both conditional on the specific realization of
nuisance parameter vector ϕI . Without loss of generality, we make the assumption that the
parameters of interest are independent of the nuisance parameters, prior to the assimilation of
data. That is, the prior PDF of the θθθ does not depend on ϕ. Eq. (125) can then be rewritten as:

p̂(θθθ |D) ∝
1

NMC

NMC

∑
I=1

p(D |θθθ,ϕI) p(θθθ) (126)

=

[
1

NMC

NMC

∑
I=1

p(D |θθθ,ϕI)

]
p(θθθ) .

Eq. (126) provides a Monte Carlo approximation to the marginalized posterior of the parameter
vector θθθ which, in turn, relies on a Monte Carlo approximation to the marginalized likelihood of θθθ

(given in square brackets). Such likelihood can be thought as an average likelihood for the
parameter vector θθθ over all possible realizations of ϕ. Since the ϕ parameter space is
high-dimensional in our context (on the order of 10,000 parameters, refer to Sec.3.2.1), the Monte
Carlo approximation is the only feasible one available. To further expedite the process, we will fix
sample ϕ once to obtain a fixed ensemble of realizations ϕI , I = 1, . . . ,NMC . This allows us to
construct NMC PC-based surrogates for the observable quantities in terms of the unknown
parameters θθθ, one for each realization of the porosity ϕ. Such surrogates would expedite the
marginalized likelihood evaluation in Eq. (126), which is subsequently sampled using MCMC
sampling procedure.
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4. MACHINE LEARNING MODELS OF
MICROSTRUCTURAL RESPONSE

In this section we describe means of constructing neural network models via classical
representation theory and that incorporate the details of initial microstructure in order to predict
specific response.

4.1. Representations the mean response

Here, we provide a concise overview of representation theory and how we apply it in the context
of constitutive modeling by (artificial) neural networks (NNs). Specifically, we employ a
generalization of the Tensor Basis Neural Network (TBNN) [83] concept based on an
understanding of classical representation theory. With it we construct models that represent the
selected output as a function of inputs with complete generality and compact simplicity. This
construction is distinct from the predominance of component-based NN constructions, for
example those mentioned in the Introduction, in that basic symmetries, such as frame invariance
are built in to the representation and do not need to be learned.

4.1.1. Representation theory

Representation theorems for functions of tensors have a foundation in group theory
[84, 85, 86, 87] with the connection being that symmetry is described as functional invariance
under group action. In mechanics, the relevant invariance under group action are rotations (and
translations) of the coordinate system, which is known as material frame indifference, invariance
under super-posed rigid body motions or simply objectivity. This is a fundamental and exact
symmetry. Practical applications of representation theory to mechanics are given in Truesdell and
Noll’s monograph [88, Sec. 7-13] and Gurtin’s text [89, Sec. 37] and address complete,
irreducible representations of general functions of physical vector and tensor arguments. For
example, the scalar function f (A) of a (second order) tensor A is invariant if

f (A) = f (GAGT ) , (127)

and a (second order) tensor-valued function M(A) is objective if

GM(A)GT = M(GAGT ) , (128)

for every member G of the orthogonal group.

Underpinning the representations of f and M are a number of theorems. The spectral theorem
states that any symmetric second order tensor A has spectral representation :

A =
3

∑
i=1

λiai⊗ai , (129)
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composed of its eigen-values {λi} and eigen-vectors {ai} where i = 1,3. The spectral
representation of A makes powers of A take a simple form: An = ∑i λn

i ai⊗ai (and in particular
A0 ≡ I). The equally important Cayley-Hamilton theorem states that the tensor A satisfies its
characteristic equation :

A3− (λ1 +λ2 +λ3)︸ ︷︷ ︸
J1=trA

A2 +(λ1λ2 +λ2λ3 +λ3λ1)︸ ︷︷ ︸
J2=

1
2(tr2 A−trA2)

A− (λ1λ2λ3)︸ ︷︷ ︸
J3=detA

I = 0 , (130)

where {Ji} are the principal (scalar) invariants of A. The (generalized) Rivlin’s identities
[90, 91] provide similar relations for multiple tensors and their joint invariants.

Scalars that respect Eq. (127), such as {Ji}, are called scalar invariants and are formed from
(polynomials or, more generally, functions of) the eigenvalues of A. Hence, f (A) reduces to

f (A) = f (I ) (131)

where I is a set of scalar invariants of A, and hence f is also an invariant. A set of invariants I is
considered irreducible if each of its elements cannot be represented in terms of others and
conveys a sense of completeness and simplicity. Since the eigenvalues {λi} are costly to compute,
typically traces such as {trA, trA2, trA3}= {∑i λi,∑i λ2

i ,∑i λ3
i } are employed as scalar invariants.

Joint invariants of a functional basis for multiple arguments are formed with the help of Pascal’s
triangle.

For tensor-valued functions such as M(A) in Eq. (128), a power series representation

M(A) =
∞

∑
i=0

ci(I )Ai (132)

is a good starting point. The coefficient functions ci are represented in terms of scalar invariants
as in Eq. (131). This power series representation can be reduced by application of the
Cayley-Hamilton theorem (130), in the recursive form A j+3 = J1A j+2− J2A j+1 + J3A j. The
transfer theorem (as referred to by Gurtin [89, Sec. 37]) states that isotropic functions such as
M(A) inherit the eigenvalues of their arguments and implies the fact that these functions are
co-linear with their arguments. Also Wang’s lemma (I,A,A2 span the space of all tensors
co-linear with A) is a consequence of Eq. (129) and Eq. (130), and gives a sense of completeness
of the representation:

M(A) = c0(I )I+ c1(I )A+ c2(I )A2 . (133)

Eq. (133) evokes the general representation for a symmetric tensor function of an arbitrary
number of arguments in terms of a sum of scalar coefficient functions multiplying the
corresponding elements of the tensor basis. The general methodology for constructing the
functional basis to represent scalar functions is given in Rivlin and Ericksen [92], and the
corresponding methodology to construct tensor bases is developed in Wang [93, 94].

Representation theory, like machine learning, does not determine the appropriate
arguments/inputs and output for the constitutive functions. In mechanics, there is a certain amount
of fungibility to both. For instance, the (spatial) Cauchy stress can easily be transformed into the
(referential) first Piola-Kirchhoff stress, and left and right Cauchy-Green stretch have same
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eigenvalues but different eigen-bases. Also, any of the Seth-Hill/Doyle-Ericksen strain family
[95, 96, 97] provide equivalent information on deformation, and any of the objective rates formed
from Lie derivatives [98, 99, 100, 101] provide equivalent measures of rate of deformation;
however, some choices of arguments and output lead to greater simplicity than others.

Lastly, it is important to note that isotropic functions are not restricted to isotropic responses. The
addition of a structure tensor characterizing the material symmetry to the arguments allows
isotropic function theory to be applied so that the joint invariants encode anisotropies
[102, 103, 104, 105, 106, 107].

4.1.2. Plasticity

Briefly, plasticity is an inelastic, history-dependent process due to dislocation motion or other
dissipative phenomena. We assume the usual multiplicative decomposition [108, 109] of the total
deformation gradient F into elastic (reversible) Fe and plastic (irreversible) Fp components

F = FeFp . (134)

As a consequence, the velocity gradient in the current configuration, l≡ ḞF−1, can be additively
decomposed into elastic and plastic components :

l = ḞeF−1
e +Fe ḞpF−1

p︸ ︷︷ ︸
Lp

F−1
e , (135)

refer to [110, Sec. 8.2]. The assumption that Fp is pure stretch (no rotation) reduces Lp to
Dp = symLp. The elastic deformation determines the stress, for instance the Cauchy stress T:

T = T̂(Fe) = T(ee) , (136)

and the evolution of the plastic state is determined by a flow rule, e.g. :

Ḟp = DpFp where Dp = D̂p(Fp,T) = Dp(bp,σσσ) , (137)

where Fp quantifies the plastic state and T the driving stress. Invariance allows the reduction of
the argument of T to, for example, the objective, elastic Almansi strain ee =

1
2

(
I−b−1

e
)

based on
the left Cauchy-Green/Finger stretch tensor be = FeFT

e . Similarly, the state variable in the flow
rule can be reduced by applying invariance, for example, bp = FpFT

p . The driving stress can be
attributed to the deviatoric part of the pull-back of the Cauchy stress T: σσσ = dev

[
F−1

e TF−T
e
]

which is also invariant and also coexists in the intermediate configuration with Dp. Furthermore, a
deviatoric tensor basis element, such at σσσ, generates an isochoric flow which respects plastic
incompressibility detFp ≡ 1. Other choices of the inputs and outputs of the stress and flow
functions are discussed in Results section. Typically both the stress and flow are derived
potentials to ensure elastic energy conservation for the stress and associative flow for the flow
rule; however, in this work we to allow for a more general flow and non-differentiable NN model.
(Experiments typically cannot measure potentials directly).
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A few basic properties are built into traditional empirical models that need to be learned in typical
NN models. First, zero strain, ee = 0, implies zero stress :

T(0) = 0 , (138)

and, likewise, zero driving stress should result in zero plastic flow :

Dp(Fp,0) = 0 . (139)

Also there is a dissipation requirement for the plastic flow. Generally speaking, the Coleman-Noll
[111] argument, together with the first and second law of thermodynamics, applied to a free
energy in terms of the elastic deformation and a plastic history variable results in: (a) the stress
being conjugate to the elastic strain rate, and (b) the internal, plastic state variable, when it
evolves, reduces the free energy via M ·Lp ≥ 0 where M is the Mandel stress

M = det(F)
[
FT

e Fe
][

F−1TF−T ] (140)

This reduces to
T ·dp ≥ 0 , (141)

refer to Ref. [110, Sec. 8.2]. Also, given the physics of dislocation motion, it is commonly
assumed that the plastic deformation is incompressible, detFp = 1, which implies the flow is
deviatoric

trDp = 0 (142)

For more details see the texts Refs. [110, 112, 113].

4.2. Application to neural network constitutive modeling

We generalize the Tensor Basis Neural Network (TBNN) formulation [83] to build NN
representations for the stress relation, Eq. (136), and the plastic flow rule, Eq. (137), that embed a
number of symmetries and constraints. Both T and Dp are required to be isotropic functions of
their arguments by invariance. As discussed, classical representation theorems give the general
form

f(A) = ∑
i

fi(I )Bi , (143)

where A ≡ {A1,A2, . . .} are the pre-supposed dependencies/arguments of function f, I ≡ {I j} is
an (irreducible) set of scalar invariants of A , and B = {B j} is the corresponding tensor basis. In
Eq. (143), only the scalar coefficient functions are { fi} are unknown once the inputs have been
selected and hence they are represented with a dense NN using the selected scalar invariants I as
inputs embedded in the overall TBNN structure. In the TBNN framework, the sum the NN
functions { fi(I )} and the corresponding tensor basis elements {Bi} in Eq. (143) is accomplished
by a so-called merge layer, and the functions { fi} are trained simultaneously (refer to Fig. 4-1 and
more details will be given in Sec.4.2.1). This formulation is in contrast to the standard,
component-wise NN formulation:

f(A) = ∑
i, j

fi j([A1]i j , [A2]i j , . . .)ei⊗ e j , (144)
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which is based on components of both the inputs {A1,A2, . . .} and the output f.

For the stress, we assume a single symmetric tensor input selected from the
Seth-Hill/Doyle-Ericksen elastic strain family, in particular ee, is sufficient, so that representation
Eq. (133):

T = σ0(I )I+σ1(I )ee +σ2(I )e2
e , (145)

is appropriate. Despite this formulation being based on strain, versus stretch, it does not embed
the zero stress property, Eq. (138), and, hence, σ0(I ) will need to learn that zero strain implies
zero stress. Since we prefer to impose, rather than learn, physical constraints such as Eq. (138)
since this reduces the necessary training data [83] and the exact satisfaction leads to conservation
and other properties necessary for stability, etc. Exact satisfaction of Eq. (138) can accomplished a
few different ways: (a) shifting the basis with the Cayley-Hamilton theorem (130)

T = σ1ee +σ2e2
e +σ3e3

e , (146)

refactoring (b) some T =
(
I2σ′0

)
I+σ′1ee +σ′2e2

e , or (c) all T = I2
(
σ′′0I+σ′′1ee +σ′′2e2

e
)

of the
coefficient functions {σi} with I2 = tre2

e . In general, any of these representations can be
expressed on the spectral basis

T = ∑
i

3

∑
j=1

σiλ
i
ja j⊗a j =

3

∑
j=1

(
∑

i
σiλ

i
j

)
a j⊗a j (147)

so there is a (weak) equivalence between coefficient functions of the various representations.
Here, ee = ∑i λiai⊗ai.

As mentioned, we assume that the inputs to the flow rule are (a) a history variable bp, and (b)
driving stress σσσ. A general function representation from classical theory for an isotropic function
of two (symmetric) tensor arguments requires ten invariants [90] (see also [114, Ch.3, Eq. 9 and
11]):

I ≡ {Ii}= {trbp, trb2
p, trb3

p, trσσσ, trσσσ
2, trσσσ

3, trbpσσσ, trb2
pσσσ, trbpσσσ

2, trb2
pσσσ

2} (148)

and eight tensor generators/basis elements

B ≡ {Bi}= {I,bp,b2
p,σσσ,σσσ

2,symbpσσσ,symb2
pσσσ,symbpσσσ

2} , (149)

where symA≡ 1
2(A+AT ). To satisfy the zero flow condition, Eq. (139), we can shift basis for

the second, stress argument and eliminate all basis elements solely dependent on the first, plastic
state argument:

B = {σσσ,σσσ2,σσσ3,symbpσσσ,symb2
pσσσ,symbpσσσ

2} . (150)

Plastic incompressibility, in the form of deviatoric plastic flow, Eq. (142), can imposed by
applying the linear operator dev, devA = A− 1

3 tr(A)I,

Dp = f01 devσσσ+ f11 symdevbpσσσ+ f02 devσσσ
2

+ f21 devsymb2
pσσσ+ f12 devsymbpσσσ

2
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Dissipation of plastic flow can be strictly imposed by requiring that the flow be directly opposed
to the stress in Eq. (141) which implies:

Dp = f1 σσσ+ f3 σσσ
3 , (151)

and f1(I )> 0 and f3(I )> 0. In this study we will rely on the learning process to ensure the
positivity of the coefficient functions f1 and f3 but this could be accomplished exactly with the
Macauley bracket (ramp function) applied to f1 and f3, for example.

We train the NN models of plasticity with data from two traditional plasticity models. In this
section we give details of (a) the traditional models, (b) the training of the NNs, and (c) numerical
integration of the TBNN plasticity model.

In an exploration of the fundamental properties of NNs applied to plasticity, we seek to represent
responses of two models: (a) a poly-crystalline representative volume element (RVE) with
grain-wise crystal plasticity (CP) response (an unknown closed form model since the
poly-crystalline aspect of the CP model obscures its closed form), and (b) a simple
visco-plasticity (VP) material point (a known closed form model). Both are finite deformation
models so that invariance and finite rotation are important; and both are visco-plastic in the sense
of lacking a well-defined yield surface and strictly dissipative character.

Briefly, crystal plasticity (CP) is a well-known meso-scale model of single crystal deformation.
Here we use crystal plasticity to prescribe the response of individual crystals in a perfectly
bonded polycrystalline aggregate. The theoretical development of CP is described in
Refs. [115, 116, 117, 118, 119] and the computational aspects in reviews [120, 121].

Specifically, for the crystal elasticity, we employ a St. Venant stress rule formulated with the
second Piola-Kirchhoff stress mapped to the current configuration

T =
1

detF
F(CEe)FT (152)

where the elastic modulus tensor C=C11J+C12(I−J)+C44(I⊗ I−J) has cubic crystal
symmetries with C11,C12,C44 = 204.6, 137.7, 126.2 GPa, and Ee =

1
2

(
FT

e Fe− I
)

is the elastic
Lagrange strain. Here [J]i jkl = δi jδklδikδ jl , [I]i jkl =

1
2

(
δikδ jl +δilδ jk

)
and δi j is the Kronecker

delta. Plastic flow can occur on any of 12 face-centered cubic (FCC) slip planes. Each
crystallographic slip system, indexed by α, is characterized by Schmid dyads Pα = sα⊗nα

composed of the allowed slip direction, sα, and the normal to the slip plane, nα. Given the set
{Pα}, the plastic velocity gradient is constructed via:

Lp = ∑
α

γ̇αPα , (153)

which is inherently volume preserving in the (incompatible) intermediate/lattice configuration.
Finally, the slip rate γ̇α is related to the applied stress through the resolved shear (Mandel) stress
τα = M ·Pα, for that slip system. We employ a common power-law form for the slip rate
relation

γ̇α = γ̇α0

∣∣∣∣τα

gα

∣∣∣∣1/m

τα , (154)
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where γ̇α0 = 122.0 (MPa-s)−1 is a reference strain rate, m = 20 is a rate sensitivity exponent, and
gα = 355.0 MPa is a hardness value. These parameters are representative of steel.

With this model in Albany [122], we simulate the polycrystalline response using a uniform mesh
20 × 20 × 20 with the texture assigned element-wise (via Dream3d [123]) and strict
compatibility enforced at the voxelated grain boundaries. Ten realizations with 15, 15, 17, 18, 18,
19, 19, 20, 20, 21, 22 grains were sampled from an average grain size ensemble and each grain
was assigned a random orientation. Minimal boundary conditions to apply the various loading
modes ( tension, shear, etc. ) were employed on the faces and edges of the cubical representative
volumes. Also, we limit samples to a single, constant strain rate 1.0 1/s.

The simple visco-plastic (VP) model consists of a St. Venant stress rule in the current
configuration with Almansi strain:

T = Cee , (155)

where C= λI⊗ I+2µI isotropic parameters λ = Eν

(1+ν)(1−2ν) and µ = E
2(1+ν) with Young’s

modulus E = 200 GPa and Poisson’s ratio ν = 0.3, together with a simple (associative) power law
for the flow rule:

Dp = c‖s‖ps , (156)

where c = 0.001 MPa−1−p-s−1 and p = 0.1 are material constants.

4.2.1. Neural network representation and machine learning algorithm

A typical NN, such as the representation of Eq. (144), is a two-dimensional feed-forward, directed
network consisting of an input layer, output layer and L intervening hidden layers where
neighboring layers are densely connected. Each layer `i consists of N nodes (i j). The vector of
outputs, yi, of the nodes (i j), j ∈ (1,N) of layer i is the weighted sum of the outputs of the
previous layer `i−1 offset by a threshold and passed through a ramp-like or step-like activation
function a(x):

xi = a(yi) with yi =Wixi−1 +bi , (157)

where Wi is the weight matrix for (hidden) layer `i of the state/output of nodes of the previous
layer xi−1 and bi is the corresponding threshold vector. In our application the input layer consists
of the NI invariants I and the NB elements of the tensor basis B . The elements of I form the
arguments of the coefficient functions, each having a L×N neural network representation, while
the elements of B pass through the overall network until they are combined with the coefficient
functions according to Eq. (143) to form the output via a merge layer that does the summation.
After exploring the C0 step- and ramp-like rectifying activation functions commonly used, we
employ the ramp-like (C1 continuous) Exponential Linear Unit (ELU) [124] activation
function:

a(x) =

{
exp(x)−1 if x < 0
x else

(158)

to promote smoothness of the response and limit the depth of the network necessary to represent
the response relative that necessary with saturating step-like functions.
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Training the network weights Wi and thresholds bi is accomplished via the standard
back-propagation of errors [125, 126] which, in turn, drives a (stochastic) gradient-based descent
(SGD) optimization scheme to minimize the so-called loss/error, E. We employ the usual root
mean square error (RMSE)

E =
1

2ND
∑

(xk,dk)∈D
‖y(xk)−dk‖2 , (159)

where D is the set of training data composed of inputs xk = {Ik,Bk} and corresponding output dk.
The gradient algorithm relies on: (a) the change in E with respect to each weight Wi

∂E
∂Wi

=
∂E
∂xi

∂xi

∂yi︸ ︷︷ ︸
∆i

∂yi

∂Wi
= xi−1⊗∆i (160)

and (b) each threshold bi
∂E
∂bi

=
∂E
∂xi

∂xi

∂yi︸ ︷︷ ︸
∆i

∂yi

∂bi
= ∆i , (161)

where

∆i =
(
WT

i+1∆i+1
)
�a′(yi) for i 6= L with ∆L = ∑

(xk,dk)∈D
(y(xk)−dk)�a′(yL) (162)

Here a′ is the derivative of weight function, [a⊗b]i j = aib j is the tensor product, and
[a�b]i = aibi element-wise Hadamard-Schur product. The recursion seen in Eq. (162) gives
back-propagation its name. The gradient defined by these expressions is evaluated with random
sampling of subset of training data D called minibatches. Also, search for a minimum along this
direction is governed by a step size called the learning rate in the ML community. These standard
constructions are trivially generalized to the TBNN structure since the inputs B are not directly
related to Wi nor bi, and are merely scaled by the coefficient functions to form the output y, refer
to Fig. 4-1. For more details of the SGD algorithm, see Ref. [127, Ch.2].

To begin the training, the unknown weights, {Wi}, and thresholds, {bi}, are initialized with
normally distributed random values to break the degeneracy of the network and enable local
optimization. Since multiple local minima for training are known to exist, choosing an ensemble
of initial weights which are then optimized improves the chances of finding a global minimum
and the distribution of the solutions indicates the robustness of the training. Also, the full set of
input data is divided into a training set D, used to generate the errors for the back-propagation
algorithm; a test set T , for assessing convergence of the descent algorithm; and a third set V for
cross-validation, to estimate the predictive capability of the trained network. Ensuring that the
errors based on T are comparable to those on V reduces the likelihood over-fitting data with a
larger than necessary NN. We chose to divide the available data in a T : D : V = 20:72:8 ratio. In
addition, we sample individual stress-strain curves produced by the CP and VP simulators so as to
maintain approximate uniform density of data based on curve arc-length (vs. based on strain) to
capture high-gradient (elastic) and transition (yield) regimes. Also, it should be noted that we
allow ourselves to train on inputs derived from the plastic deformation gradient, Fp, despite the
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Basis:

Inputs:

Outputs:

Merge:

A

I B = {B0, B1}

I0 I1 I2

a(y00) a(y01) a(y02) a(y03)

a(y10) a(y11) a(y12) a(y13)

a(y20) a(y21) a(y22) a(y23)

c0 c1

M =
∑

i ciBi

Figure 4-1 TBNN structure for M(A) = ∑i ci(I )Bi with 3 invariants I =
{I0, I1, I2}, a 3× 4 NN, 2 coefficient functions {c0(I ),c1(I )}, and 2 ten-
sor basis elements B = {B0,B1}. The scaling operations described
in Sec. 4.2.1 are omitted for clarity. The linear transformation yi =
Wixi−1 + bi of the outputs xi−1 of layer i− 1 to the inputs yi of layer i
is denoted by the arrows connecting the nodes of layer i−1 to those of
layer i. The nonlinearity of the activation functions a(yi) is represented
by a(yi j) where yi j are the components of yi.
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fact that this quantity is difficult to observe directly in experiments. A critical part of the training
algorithm is normalizing the data so that the NN maps O(1) inputs to O(1) outputs since having
Wi,bi ∼ O(1) will achieve better SGD convergence. We also shift and scale the scalar invariants
I so that they have a mean zero, variance one distribution. We normalize the other set of inputs,
the tensor basis B , using the maximum Frobenius norm of the basis generators, e.g. bp and σσσ,
over the training set D. During training, the output tensors are normalized similarly based on their
maximum norms over D, so that

f = ∑
i

1
sf

f̄i(Ī )sBi︸ ︷︷ ︸
fi(I )

Bi , (163)

where sf is the scaling of output f; sBi is the scaling of basis element Bi based on the powers of
principal generator (e.g. if Bi = basb then sBi = sa

bsb
s where sb is the scaling of b); and Ī = sIiIi is

the set of scaled and shifted invariants. These scales have the added benefit of coarsely encoding
the range of training data so the extrapolation during prediction can be detected.

Convergence is assessed by averaging the error with respect to T over previous iterations of the
SDG (in this work we average over the last 4-10 iterations) and terminating when this average
converges, but not before performing a minimum number of iterations (1000 in this work). More
discussion of the training approach can be found in [83], although in that work the learning rate
was held fixed rather than decaying as the training proceeds, as in this study.

4.2.2. Integration algorithm

We need a time-integration scheme to solve the differential-algebraic system Eq. (136) and
Eq. (137). We assume it is deformation driven so that F = F(t) is data. To form a numerical
integrator, we rely on the well-known exponential map

Fn+α = exp
(
α∆t [Dp]n

)
Fn (164)

which is an explicit/approximate solution to Eq. (137). In Table 4-1 we outline an adaptive
scheme based on a midpoint rate at tn+α and interpolation of the deformation gradient:

logFn+α = logFn +α log∆F = (1−α) logFn+1 +α logFn (165)

with ∆F = Fn+1F−1
n so Fn+α = exp(α log∆F)Fn. Since we do not rely on the NN models of

stress Eq. (136) and flow (137) being directly differentiable,1 we use a simple relaxation scheme
to enforce consistency:

[Fp]n+1 = exp
(

∆t Dp

[FpFT
p
]

n ,devT
(

1
2

(
I−F−T [FT

p Fp
]−1

n F−1
))) [Fp]n (166)

for [Fp]n+1 given [Fp]n and F≡ Fn+1 = F(tn+1). Here we have simply substituted stress and flow
rules into Eq. (164) with the particular arguments T(ee) and Dp(bp,s). If any step has an increase
in error formed from the residual of Eq. (166) the step size is cut; and, conversely, when a
sub-step converges, the remainder of the interval is attempted.

1This relaxation could be improved by using the derivatives already computed by the backpropagation algorithm in
a Newton solver with a trust region based on the bounds of the training data.
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For step n+1

• Initialize F = Fn and ∆F = Fn+1F−1
n

• Sub-step: while α < 1

• Try α = 1, Fn+α = exp(α log(∆F)) Fn

– Relaxation: loop over k, initialize [Fp]
∗
k=0 = Fp:

1. b∗p =
[
FFT

]∗
k and b∗e = F

[(
FT

p Fp
)−1
]∗

k
FT

2. T∗ = T(b∗e) and s∗ = 1
detF devT∗

3. [Dp]
∗
k = f(b∗p,s∗)

4. [Fp]n+α
= exp

(
α∆t D∗p

)
[Fp]n

5. if
∥∥[Dp]

∗
k− [Dp]

∗
k−1

∥∥< ε
∥∥[Dp]k−1

∥∥ then exit, converged
else if

∥∥[Dp]
∗
k− [Dp]

∗
k−1

∥∥> ∥∥[Dp]
∗
k−1− [Dp]

∗
k−2

∥∥ then diverging, cut step α = 1/2α

else α += ∆α

– Update Tn+1 = T∗ and [Fp]n+1 = [Fp]
∗

Table 4-1 Time integration algorithm with adaptive time-stepping.

4.3. Representations of the response due to microstructure

For a (single) crystal, the elastic modulus tensor C is defined by

C= ∂∂∂εσ , (167)

where the stress σ and strain ε states are measured in the crystal frame with axes {Ei}. This
stiffness tensor may be rotated to the particular orientation of the crystal in the polycrystalline
aggregate {ei = REi} via

C̃= R�C= ∑
i, j,k,l

[C]i jkl REi⊗RE j⊗REk⊗REl , (168)

where � is the Kronecker product.

To obtain the apparent modulus tensor C̄ of a polycrystal, it is not sufficient to simply
volume-average the anisotropic elastic moduli for each grain. The compatibility and equilibrium
conditions between neighboring grains create non-uniform strain and stress fields that cannot be
resolved analytically. Nevertheless, two simple bounding estimates may be derived for the
stiffness tensor. The Voigt average [128] for a polycrystal with grain volume fractions φg, where g
indexes grains, is

〈C〉= ∑
g

φgCg (169)

and the Reuss average [129] is given by

〈C〉=

(
∑
g

φgC−1
g

)−1

. (170)
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The Voigt average of the stiffnesses C gives an upper bound to C̄ and corresponds to the
assumption that the strain state is uniform throughout the polycrystal. The Reuss average of the
compliances C−1 gives a lower bound and corresponds to the assumption that the stress state is
uniform. Since the grain compatibility and boundary conditions limit the accuracy of either of
these assumptions, there may be a substantial discrepancy between these averages and the true
elastic moduli. As mentioned, the Voigt-Reuss-Hill approximation [130] is simply the mean of
the two bounds

〈C〉= 1
2 ∑

g
φgCg +

1
2

(
∑
g

φgC−1
g

)−1

(171)

This treatment typically lowers the bias relative to the two separate estimators but is equivocal to
the particular boundary conditions.

For plastic response, Taylor [131] and Sachs [132] developed the corresponding theories to Voigt
and Reuss. These models are generally not completely analytical and require significant
computation to approximate, for example, the common problem of evolving uniaxial states of
stress. Briefly, the isostrain approximation assumes the stress σg in each grain g is a function of a
uniform deformation gradient F, the elastic modulus tensor Cg, and the local material state Fe

g
(with F≡ Fe

gFp
g). For a uniaxial-stress deformation, the constitutive model is updated according

to a prescribed F, and a volume-averaged stress σ = ∑g φgσg which is computed. A nonlinear
solver must then be employed to iterate on the value of F until a uniaxial σ is obtained, subject to
a constraint on F from the displacement-control of the effective boundary condition. In the
isostress condition, a uniform stress σ is prescribed, and a volume-averaged displacement
gradient F = ∑g φgFg is computed from the constitutive update. The value of σ must then be
iterated until the constraint on F due to the effective boundary condition is satisfied. Either
strategy (isostrain or isostress) must be applied step-wise over a finite sequence of time-steps to
approximate the evolution of the material state for a given deformation history. The resulting
approximations are systematically biased, with the isostrain approximation of Taylor giving and
effective upper bound on the flow stress, and the isostress approximation of Sachs giving the
corresponding lower bound. As in the elastic case, an approximation can be constructed based on
averaging the two bounds, reducing the bias in an essentially empirical fashion.

In Ref. [3], the neural-network approach developed here is compared to these classical treatments,
with separate evaluations for the elastic and elasto-viscoplastic responses. Specifically, it is shown
that the neural-network approach naturally eliminates the biases exhibited by the other
homogenization techniques without the need for ad hoc averaging.

4.3.1. Neural Networks

The basic neural network is a two-dimensional feed-forward network, often called a multilayer
perceptron (MLP) [133]. It is a non-linear model that can scale to handle arbitrary complexity
rapidly and, hence, is one of the most commonly employed NN architectures. As with all NNs, it
has an input layer and an output layer, each with a node per scalar, and an arbitrary number of
intervening layers. Adjacent layers of nodes are fully/densely connected in the sense that the state
of the nodes of a layer is the vector xi of outputs from the previous layer multiplied by a weight
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matrix W, added to a threshold/bias vector bi (both defined per layer, here index by i), then
mapped through an activation function f (Wixi +bi) applied component-wise. In this work we
employed ramp-like activation function, the sharp C0 rectified linear unit (ReLU) [134] and the
C1 softplus [135] activation functions, with similar results. Adding layers between the input
features and the output targets, models of arbitrary complexity may be developed but at the cost
of requiring larger amounts of training/calibration data to determine the unknown weights Wi and
biases bi. Using now standard algorithms, such as the stochastic gradient descent algorithm [136],
the unknown parameters can be optimized to maximize the accuracy of the NN model on held-out
test data.

Although MLPs are quite effective in response prediction for a modest number of inputs, it is
usually impractical to train an MLP to perform regression or classification on image data, such as
a voxelated realization of a polycrystal in the application at hand. The number of parameters
required to feed each voxel into an MLP of sufficient complexity would currently require
prohibitively large amounts of data and computing power. Furthermore, many features of interest
in a given image have local, spatial correlations, and it typically effective to process subsets of
voxels simultaneously since distant regions of an image are usually uncorrelated with each
other.

In this section we briefly describe the proposed hybrid neural network, Fig. 4-2, and its
sub-networks and their constituent layers. The proposed network is composed of: (a) an image
processing component (a convolutional network, yellow and green)to assimilate the information
in the initial microstructure (“image” input, red) relevant to the stress response, and (b) a neural
network with feedback (a recurrent network, blue) to emulate the history dependence of the stress
(output, orange) on the strain (“history” input, red). In this section we give an overview of the
hybrid architecture in the context of the more traditional applications of its components. The
particular component parameters, such as specific kernel size and pooling type, will be given in
the Results section.

For a more detailed description of the various and now standard components of our NN refer to
the texts in Refs. [127, 137], reviews Refs. [138, 139], and the documentation for Keras and
Tensorflow libraries used in this work Refs. [140, 141]

4.3.2. Convolutional neural network

To resolve the issues that make application of MLPs to image data impractical, the convolutional
neural network (CNN) [142] architecture was developed. Convolutional neural networks are
typically used in handwriting translation, face recognition and other image processing tasks such
as reconstruction. A simplified schematic of a CNN is shown in Fig. 4-2 in yellow. The image
data can be represented as a matrix X of dimensions n+m, where n is the number of spatial
dimensions and m are the number of image components, which we take to be the components of
the crystallographic orientation vector p(xI) at each voxel I. As in standard image and signal
processing, a discrete convolutional kernel K is applied to the image, resulting in a new image
Y = K∗X where ∗ is the usual convolution operator. The kernel is compact in each spatial
dimension and acts on rectangular subsets of pixels, effectively eliciting local features of the
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image. Similar to an MLP, an activation function f is then applied to each pixel of the output
image to produce Z= f (Y). As in an MLP, multiple convolutional layers may be applied in
succession, but it is also often effective to introduce a pooling operation, in which the image is
reduced in size by taking a norm of neighboring sets of pixels and returning the filtered result into
a new image. For example, the max-pooling operation applied over a 2×2 window in a two
dimensional 10×10 image will find the highest value of the pixel in each disjoint 2×2 set and
return each maximum in a new 5×5 image. This operation forces the network to compress the
information in the image to a smaller set of features. The weight-sharing of the convolution
operations and the image reductions thus provide an efficient way of processing image data in a
neural network while requiring much smaller set of meta-parameters than a direct application of a
MLP. Multiple replica filters with independent kernel components can be applied to input image
to increase the richness of the derived features.

The output of the CNN, which is structured 3 dimensional image data in this case, may be
flattened to a vector to be compatible with the input of MLP which, in this design, is a encoder.
The encoder is a data compression unit usually part of a self-consistent autoencoder used to
generate artificial realizations similar to the training data. The encoder, colored green in Fig. 4-2,
is simply a MLP that decreases in width (number of nodes layer to layer) in order to compress the
information content of the data.

The output of the encoder of image data is then fed to a recurrent neural network (RNN) colored
blue in Fig. 4-2. The general class of RNNs are particularly suited to modeling history dependent
data since its feedback structure accounts for causality. While a CNN takes in an image of locally
structured data, a RNN takes in a sequence of data, in this case the time series of applied strains
εεεi, i = 1,n and resulting stress σσσi. An individual recurrent layer takes the state of the previous
time step yi and, along with a weighted version of the contemporary input εεεi, to predict the output
in the subsequent time step: yi+1 = f (yi +Wεi). Similar to how a CNN processes spatial data, the
same weights W and activation f are used with each time step, thus reducing the number of
parameters necessary to process the information in the series data. This design avoids the
high-dimensionality of attempting to predict the entire time series simultaneously by taking
advantage of the time correlation in the data. The weights W and state variables yi are trained by
comparing the prediction error ||σσσi− yi|| sequentially at each time step i and updating the
parameters to reduce the observed error. An RNN encodes time dependence through evolving
state variables yi and thus avoids the need for observing the full history at once to make
predictions. In this work we employ a more complex but widely adopted version of an RNN
composed of long short-term memory units (LSTM) [143]. The LSTM includes a set of
additional internal variables and weights that increase the influence of data from earlier in the
series on the current state of the network. Similar to the CNN architecture, the output from a
recurrent neural network (RNN) is fed into an (linear, mixing) MLP to increase the feature
richness before yielding the output.
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convolution

convolution

pooling

convolution

convolution

pooling

flatten

dense

dense

dense

recurrent

recurrent

...

recurrent

mixing

stress σ(ti)

Figure 4-2 Hybrid neural network architecture with convolutional neu-
ral network (CNN, yellow), encoder (decreasing width feed forward NN,
green), and recurrent neural network (RNN, blue, shown in an “un-
rolled” diagram) components. Note that independent CNNs are simul-
taneously applied to the image and their output is combined in the flat-
ten operation that takes the spatially correlated outputs and produces
a vector of this on-grid data. The inputs are the strain history εεεi = εεε(ti)
over a sequence of times ti, i = 0,n and initial microstructure pI = p(xI)
at the image voxels xI (red). The output is stress σσσi at corresponding
times (orange).
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Figure 5-1 Comparison of the tensor basis Gaussian process to a tra-
ditional Gaussian process of stress response. The tensor basis model
has superior accuracy and correlation with the data.

5. CONCLUSION

The project has been very productive as evidenced by the number of papers and presentations
enumerated in Sec.1. There are also a number of tantalizing and important developments that
have been produced as the project is coming to a close. These latest results will be the basis for
follow-on work.

5.1. A tensor basis Gaussian process model

We have developed neural network models of mechanical response that respect exact symmetries
and invariances (see Sec.4). Neural networks are effective when thousands of data points are
available. Not all applications can support this amount of training data, so we have also extended
the tensor basis formulation to Gaussian process modeling. Fig. 5-1 shows that the tensor basis
formulation is distinctly superior to traditional implementations of Gaussian process models of
stress-strain data. Alternatively we have consider multi-fidelity techniques that allow us to
augment expensive, accurate experimental data with less costly lower-scale simulation data.

5.2. Predicting full field crystal plasticity response with neural
networks

As an extension of the convolutional-recurrent neural network we developed to predict the
stress-strain response of a particular microstructure, we developed a similar network to predict the
full field evolving stress response. Fig. 5-2 shows the fidelity of the full stress field predictions
with the underlying model. For this dataset, correlation of > 95% was achieved across the
deformation process. These models can be used instead of the expensive crystal plasticity models
used to train them, in particular they can be used as accurate surrogate models in UQ studies.
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Input:	microstructure

Truth Prediction

time

Figure 5-2 Neural network predictions of the full field stress evolutions.
Top: the microstructure used for the predictions. Left: comparison
of the predictions of the evolution of the 11 stress field in response
to tension and the true fields given by the underlying model. Right:
comparison of the predictions of the evolution of stress differences
from step to step and the underlying model.
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Figure 5-3 Sensitivity of sparse linear model of the crystal plasticity
(CP) model used to create the data and sparse linear model of the neu-
ral network (NN) model trained on the data. A L1 penalty is used to
enforce sparsity and the sparse linear model is most useful where the
penalty is high but not so high as to affect accuracy. The NN clearly
represents the underlying model’s sensitivity to the first moment of the
grain size distribution and the insensitivity to the higher moments. The
error in the sparse linear model of the NN is lower since the NN repre-
sentation of the data is simpler.

5.3. Interpretability of image based neural network models

Since it is well-known that neural networks, and in particular image-based neural networks, can
make seemingly accurate predictions for the wrong reasons, we investigated the interpretability
and sensitivity of our models using a variety of techniques. Fig. 5-3 shows that that convolutional
neural network model trained on initial microstructures has the same global sensitivities as the
underlying model. Hence, we have some confidence that the predictions are based on physical
aspects of the training images.
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