

Final Report on Lower and Upper Cretaceous Characterization

SECARB Phase III Work Product 1.4.c

Prepared for:

United States Department of Energy
National Energy Technology Laboratory

Performed by:

Advanced Resources International, Inc.
4501 Fairfax Drive, Suite 910
Arlington, VA 22203

11490 Westheimer Rd., Suite 520
Houston, TX 77077

603 Main Street, Suite 906
Knoxville, TN 37902

October 6, 2011

Disclaimers

U.S. Department of Energy

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Advanced Resources International, Inc.

The material in this Report is intended for general information only. Any use of this material in relation to any specific application should be based on independent examination and verification of its unrestricted applicability for such use and on a determination of suitability for the application by professionally qualified personnel. No license under any Advanced Resources International, Inc., patents or other proprietary interest is implied by the publication of this Report. Those making use of or relying upon the material assume all risks and liability arising from such use or reliance.

Executive Summary

The United States Department of Energy's (DOE's) National Energy Technological Laboratory (NETL) is engaged in a research and development Carbon Sequestration Program which focuses on carbon, capture and storage (CCS) technology. CCS has the potential to provide significant reduction of domestic greenhouse gas emissions. Geologic carbon sequestration separates and captures carbon dioxide (CO₂) at the point of emissions from a stationary source such as a coal-fired electric power plant followed by permanent storage in deep underground geologic formations. This report will assess potential geologic CO₂ storage capacity of Lower and Upper Cretaceous formations in the Southeast Regional Carbon Sequestration Partnership (SECARB) along the eastern Gulf Coast region.

This capacity assessment incorporates regional variation in average reservoir porosity, net formation (sandstone) thickness, and storage reservoir depth and pressure. The assessed area covers the onshore region where the Washita-Fredericksburg, Paluxy, and Eutaw Formations occur at depths from -3,000 to -14,000 feet (ft) below sea level and include southern Mississippi, southern Alabama, southern Georgia and the western panhandle of Florida. Note that the Lower Cretaceous is undifferentiated in portions of southeastern Alabama and southern Georgia and were assessed as a single unit in those areas. Cretaceous sandstones in offshore locations were not assessed. This report estimates total CO₂ storage capacity of 513 metric gigatons (Gt) to 1,661 Gt for all four units (**Table EX-1**).

Table EX1: Estimated CO₂ Total Storage Capacity of the Lower and Upper Cretaceous Reservoirs

Gulf Coast Reservoir	Total CO ₂ Storage Capacity			
	Trillion Standard Cubic Feet (Tscf)		Billion Metric Tons (Gt)	
	Low Estimate P(10)	High Estimate P(90)	Low Estimate P(10)	High Estimate P(90)
Eutaw	430	1,380	22	73
Washita-Fredericksburg	4,190	13,800	226	729
Paluxy	3,350	10,840	177	573
Lower Cretaceous Undiff.	1,660	5,400	88	286
Total	9,630	31,420	513	1,661

Table of Contents

Disclaimers	i
Executive Summary	ii
1.0 Introduction	1
1.1 CO ₂ Storage Capacity Methodology.....	1
2.0 The Lower and Upper Cretaceous CO₂ Storage Capacity Assessments	4
2.1 Lower and Upper Cretaceous Geology	4
2.2 Reservoir Properties and Capacity Estimates	7
2.3 The Lower and Upper Cretaceous CO ₂ Storage Capacity Assessed by Saline Reservoir.....	8
3.0 CO₂ Storage Capacity of the Lower and Upper Cretaceous Saline Reservoirs	10
3.1 Methodology	10
3.2 Lower and Upper Cretaceous Saline Reservoir – CO ₂ Storage Capacity.....	10
3.3 CO ₂ Storage Capacity Example Calculation	14
References.....	23

List of Figures

Figure 1. Major Geologic Features along the Gulf Coast.	15
Figure 2. Stratigraphic column of the Lower and Upper Cretaceous.....	16
Figure 3. Structure Map on Top of the Paluxy formation.	17
Figure 4. Isopach Map of the Paluxy formation.	17
Figure 5. Structure Map on Top of the Washita-Fredericksburg Group.	18
Figure 6. Isopach Map of the Washita-Fredericksburg Group.....	18
Figure 7. Structure Map on Top of the Eutaw Formation.....	19
Figure 8. Isopach Map of the Eutaw formation.	19
Figure 9. Stratigraphic (top) and structural (bottom) west-east schematic cross-sections L1-L1' showing the Paluxy Formation and the Washita-Fredericksburg Group, west Mississippi to western panhandle of Florida.	21
Figure 10. Stratigraphic (top) and structural (bottom) west-east schematic cross-sections U1-U1' showing the Eutaw Formation and the Selma Group, west Mississippi to southwest Georgia.	22

List of Tables

Table EX1: Estimated CO ₂ Total Storage Capacity of the Lower and Upper Cretaceous Reservoirs	iii
Table 1 Key Reservoir Parameters Used to Assess CO ₂ Storage Capacity	2
Table 4: CO ₂ Storage Assessment Input for the Paluxy Saline Reservoir.....	9
Table 5: CO ₂ Storage Assessment Input for the Washita-Fredericksburg Reservoir	9
Table 6: CO ₂ Storage Assessment Input for the Eutaw Reservoir	9
Table 7: CO ₂ Storage Assessment Input for the Lower Cretaceous undifferentiated Reservoir	9
Table 8: Estimated CO ₂ Storage Capacity of the Paluxy Saline Reservoir	12
Table 9: Estimated CO ₂ Storage Capacity of the Washita-Fredericksburg Saline Reservoir.....	12
Table 10: Estimated CO ₂ Storage Capacity of the Lower Cretaceous undifferentiated Saline Reservoir	13
Table 11: Estimated CO ₂ Storage Capacity of the Eutaw Saline Reservoir.....	13
Table 12: Estimated CO ₂ Total Storage Capacity of the Lower and Upper Cretaceous Reservoirs.....	14

1.0 Introduction

This report provides potential geologic carbon dioxide (CO₂) storage capacities of deep underground geologic formations for the purpose of carbon capture and storage (CCS) to reduce greenhouse gas emissions. Thick, porous sandstone formations of the Lower and Upper Cretaceous offering large CO₂ storage capacity are present along the eastern Gulf Coast region of the Southeast Regional Carbon Sequestration Partnership (SECARB) and are the subject of this assessment. This includes parts of Mississippi, Alabama, Florida, and Georgia. The reservoirs that will be assessed in this report include the Upper Cretaceous Eutaw Formation, the Lower Cretaceous Washita-Fredericksburg Group, including the Dantzler Formation, and the Lower Cretaceous Paluxy Formation. The Lower Cretaceous is undifferentiated in the eastern portion of the study area and is assessed as one unit.

Thick, impermeable shales in the Washita-Fredericksburg Group and the Middle Tuscaloosa Group (also called the 'Marine Tuscaloosa') offer regional seals overlying the Dantzler and Paluxy Formations, while low permeability carbonates from the thick Selma Group provide a regional seal for the Eutaw Formation. The Marine Tuscaloosa shale provides a regional seal for undifferentiated Lower Cretaceous sandstones in the eastern part of the study area. Note that the Lower Tuscaloosa Formation of the Upper Cretaceous is a significant saline reservoir that also occurs in the same region. The Lower Tuscaloosa CO₂ storage capacity was assessed in the DOE report titled *Geologic Storage Capacity for CO₂ of the Lower Tuscaloosa Group and Woodbine Formations* (Advanced Resources International, Inc., 2009).

1.1 CO₂ Storage Capacity Methodology

Our approach to calculate the CO₂ storage capacity of the Lower and Upper Cretaceous saline reservoirs follows the capacity assessment methodology set forth by the DOE's Regional Carbon Sequestration Partnerships Capacity Estimation Subgroup (NETL 2010). The DOE methodology provides a volumetric estimate for useable CO₂ storage capacity based on geographical area (A_t), net formation thickness (h_g), effective

porosity (ϕ_{tot}) and CO₂ density (ρ). A storage coefficient (E) is used to represent the fraction of the total pore volume that would be filled by CO₂. The efficiency factor (E) incorporates a series of variables that limit the ability of injected CO₂ to occupy 100% of the pore space in a given formation, such as geologic heterogeneity, gravity or buoyancy effects, and limited sweep efficiency. The simplified DOE CO₂ storage capacity (G_{CO₂}) equation for calculating effective CO₂ storage within a particular saline formation is as follows:

$$G_{CO_2} = A_t * h_g * \phi_{tot} * \rho * E$$

The terms used in this equation are discussed in **Table 1** below:

Table 1: Key Reservoir Parameters Used to Assess CO₂ Storage Capacity

Parameters	Units	Description
G _{CO₂}	M	Usable CO ₂ storage capacity (M, is mass in metric tons).
A _t	L ²	Geographical area that defines the basin or region being assessed for CO ₂ storage (L is length).
h _g	L	Gross thickness of saline formation for which CO ₂ storage is assessed within the basin or region defined by A _t .
ϕ_{tot}	fraction	Average porosity of entire saline formation over thickness h _g .
ρ	M/L ³	Density of CO ₂ at pressure and temperature representative of storage conditions.
E	fraction	CO ₂ storage efficiency factor that reflects the fraction of the total pore volume that is filled by CO ₂ .

The composite storage coefficient E accounts for inefficiencies in displacement, including volumetric displacement (E_v) and microscopic displacement (E_d) as discussed in **Table 2** below.

Table 2: Displacement Components of Site Specific CO₂ Storage Efficiency Coefficient

Term	Symbol	P10/P90 Values by Lithology for Clastics	Description
Volumetric Displacement	E _v	0.16/0.39	Combined fraction of immediate volume surrounding an injection well that can be contacted by CO ₂ and fraction of net thickness that is contacted by CO ₂ as a consequence of the density difference between CO ₂ and in situ water.
Microscopic Displacement	E _d	0.35/0.76	Fraction of pore space unavailable due to immobile in situ fluids.

When applied at a regional or basin level, the CO₂ storage efficiency coefficient (E_{saline}) also incorporates the following three limitations on accessibility related to geologic heterogeneity, as presented in **Table 3**. However, enough reservoir data were available for this assessment so the application of these limiting components was not necessary. As such, only the displacement components of the CO₂ storage efficiency coefficient (**Table 2**) were applied.

Table 3: Geologic Components of Regional CO₂ Storage Efficiency Coefficient

Term	Symbol	P10/P90 Values by Lithology for Clastics	Description
Net to Total Area	E _{An/At}	0.2/0.8	Fraction of total basin or region area that has a suitable formation present.
Net to Gross Thickness	E _{hn/hg}	0.21/0.76	Fraction of total geologic unit that meets minimum porosity and permeability requirements for injection.
Ratio of Effective to Total Porosity	φE _ε φ/φ _{tot}	0.64/0.77	Fraction of total porosity that is effective, i.e., interconnected.

For this assessment, data availability allowed for the areas of interest to be defined and the areas where the reservoirs were either too shallow or thin were excluded from any calculations. Regional log data was used to correlate Cretaceous units and structure and isopach maps were generated from these correlations. Log

data was also used to approximately determine net sand thickness for each target reservoir. The sandstone porosity for the Cretaceous reservoirs was also determined from regional log and core data. Therefore, net sandstone values were used in all calculations instead of the more generalized total interval porosity. From these data the net-to-total area $E_{An/At}$, net-to-gross thickness E_{hhg} , and net-to-total porosity $E_{\phi_e/\phi_{tot}}$ are assumed to be known and the storage limitations shown in Table 3 were not applied. As such, efficiency factors range from 7.4 – 26 percent (Table 4). These values are equivalent to values provided by NETL (2010) in Table 8 of Appendix B (Summary of the Methodology for Development of Geologic Storage Estimates for Carbon Dioxide).

Table 4: Saline Formation Efficiency Factors for Displacement Terms Only

Lithology	P₁₀	P₅₀	P₉₀
Clastics	7.4%	14%	24%

2.0 The Lower and Upper Cretaceous CO₂ Storage Capacity Assessments

2.1 Lower and Upper Cretaceous Geology

Major geologic features in the Gulf Coast region include a number of alternating relict basement highs and lows, peripheral fault systems, subsurface salt flow influenced structures, and extensive salt basins. Within this study area the Cretaceous units extend from the Monroe Uplift-Sharkey Platform in the west, the Upper Cretaceous Paleogeographic Outcrop limit to the north, the central Georgia arch in the east and the Gulf of Mexico to the south (**Figure 1**). Regionally significant geologic features located in the study area are the Mississippi Interior Salt Basin, the Wiggins Arch, the Citronelle and Jackson Domes, and the Mobile Graben (**Figure 1**). Geologic characterization of the Gulf Coast basin is described in detail in the companion report titled *Geologic Storage Capacity for CO₂ of the Lower Tuscaloosa Group and Woodbine Formations* (Advanced Resources International, Inc., 2009). Refer to this report for further geologic review.

Figure 2 shows a generalized Cretaceous stratigraphic column for the study area and indicates potential CO₂ storage reservoirs and confining units. The Lower Cretaceous in the northern Gulf of Mexico consists of the Hosston Formation, the Sligo Formation, the Pine Island Shale, the James Limestone, the Rodessa Formation, the Ferry Lake Anhydrite, the Mooringsport Formation, the Paluxy Formation and the Washita-Fredericksburg Group (ascending from oldest to youngest). However, this assessment covers only saline reservoirs which lie above the Ferry Lake Anhydrite and Mooringsport Formation starting with the Paluxy Formation.

The Paluxy sandstones (Albian age) were deposited in a complex association of continental, coastal and deltaic environments. The Paluxy contains pink and white fine- to coarse-grained sandstone bodies interbedded with dark red and gray shale (Devery, 1982). Above the Paluxy Formation lies the Washita-Fredericksburg Group (early Cenomanian age) deposited during a period of marine transgression that includes a sequence of shale, limestone and sandstone. The Washita-Fredericksburg deposition was followed by regional uplift and erosion which produced a regional unconformity over areas in the Gulf Coast and marked the end of the Lower Cretaceous.

Washita-Fredericksburg Group potentially serves as both a saline reservoir, and a confining unit as several shales within the unit may also serve as confining zones for either the Paluxy or sandstones within the Washita-Fredericksburg Group. For example, the basal shale of the Washita-Fredericksburg Group is regionally widespread, extending from Mississippi to Georgia, and could serve as a confining unit in some areas. However, thickness varies greatly across the region ranging from 30 ft to greater than 400 ft.

The Lower Cretaceous consists of undifferentiated porous sandstones and low permeability shales underlying portions of southeastern Alabama and southern Georgia. The undifferentiated sandstones and shales are age equivalent to the Washita-Fredericksburg Group and Paluxy Formation in areas of southwestern Alabama and the western portion of the panhandle of Florida.

The Upper Cretaceous in the northern Gulf of Mexico consists of the Tuscaloosa Group, the Eutaw Formation and the Selma Group (ascending from oldest to youngest). The Tuscaloosa Group of Cenomanian age lies above the Washita-Fredericksburg

Group. The Tuscaloosa in southeast Mississippi and southwest Alabama represents a complex association of deltaic, marginal marine and shallow marine deposits. The Tuscaloosa Group is divided into three informal divisions: the Lower Tuscaloosa, the Middle Tuscaloosa (Marine) and the Upper Tuscaloosa. The Lower Tuscaloosa sandstones represent a regionally-extensive, large-capacity CO₂ storage reservoir (Advanced Resources International, Inc., 2009). The Marine Tuscaloosa Formation was deposited during a period of marine transgression composed of red, gray and black shales. The Upper Tuscaloosa Formation represents a fluvial-deltaic and marginal marine environment that consists of medium- to coarse-grained sandstones, gray siltstones, shales, and mudstones and may serve as a minor CO₂ storage reservoir (unassessed). The Lower Tuscaloosa Marine Shale is a seal for Tuscaloosa oil accumulations throughout the eastern Gulf Coast and could serve as a potential confining unit for the Washita-Fredericksburg Group and the Paluxy Formation.

Above the Upper Tuscaloosa lies the Eutaw Formation of Turonian to Santonian age. From Mississippi to western Georgia, the Eutaw represents a shallow marine and shoreline environment including beach-barrier systems; whereas, in central Georgia, the Eutaw shows evidence of fluvial systems (Pashin, 2008; Furcron, 1952). Overlying the Eutaw Formation is the Selma Group of early Santonian to Maastrichtian age. From Mississippi to western Alabama, the Selma represents a broad, muddy carbonate shelf and was deposited during a time of unusually high sea level (Pashin, 2008).

The thick, low permeability chalk, marl and limestone of the Selma Group could provide containment for Eutaw CO₂ storage reservoirs. In Alabama, the Selma is the primary seal for oil accumulations in the underlying Eutaw Formation (Pashin et al., 2008). In Mississippi and western Alabama, the Selma is predominately bioturbated and fossiliferous chalk with significant amounts of marl and grain-supported limestone (Pashin et al, 2008).

Figures 3 through **10** show structure and isopach maps for the saline reservoirs assessed in this study. **Figure 11** shows east-west regional structural and stratigraphic cross sections of the Lower Cretaceous reservoirs assessed in this report (the Paluxy and Washita-Fredericksburg Formations). **Figure 12** shows east-west regional

structural and stratigraphic cross sections of the Upper Cretaceous reservoir assessed in this report (the Eutaw Formation) as well as the Selma Group confining unit.

2.2 Reservoir Properties and 100% Capacity Estimates

Estimating potential CO₂ storage capacity for the Lower and Upper Cretaceous saline reservoirs first requires estimating the reservoir pore volume using a standard volumetric approach, then calculating the theoretical volume of CO₂ that can be stored in 100 percent of the available pore space, and finally, using CO₂ storage efficiency factors (E) to generate low- and high-confidence storage capacity estimates. The following approach was used to estimate the CO₂ storage capacity for the Upper Cretaceous Eutaw Formation and the Lower Cretaceous Washita-Fredericksburg Group and Paluxy Formation.

$$\text{Total Pore Volume} = A_t * h_g * \phi_{tot}$$

Where:

A is the reservoir area

h_g is the net reservoir thickness

ϕ_{tot} is the total porosity of the gross interval (including shales)

To calculate the area and thickness for each saline reservoir, structure and isopach maps were created in the *Petra* geologic mapping and analysis software (IHS Inc). Depth limits were confined to -3,000 ft to -14,000 ft (elevation, subsea) and structure and thickness maps were developed using “formation tops” data provided in the IHS Energy database of U.S. oil and gas wells. Each reservoir map was quality checked using more than 200 raster logs from across the study region. To find the total area for each reservoir, polygons were drawn on the structure maps, which included areas between the -3000 ft contour and the -14,000 ft contour within each state. The net reservoir thickness was derived, first, from the gross formation thickness and then applying a net to gross ratio. Gross thickness for each saline reservoir was calculated by subtracting the top depth of the unit located immediately below the assessed formation from the top of the assessed formation. For example, gross thickness of the

Eutaw Formation was calculated by subtracting the top of the Upper Tuscaloosa from the top of the Eutaw Formation (see **Figure 8**). Then the gross thickness from wells within each state was averaged to give the average gross thickness for the assessed reservoir by state. Net reservoir thickness was then derived using net sand to gross interval ratios obtained from regional log data.

Sandstone (effective) porosity data was obtained from geologic literature (Pashin et al., 2008; Devery, 1982) and/or calculated from selected porosity log data.

Theoretical Maximum (100%) CO₂ Storage Capacity

The theoretical maximum CO₂ storage volume assumes that 100% of the reservoir pore volume is occupied by CO₂. Theoretical maximum storage is calculated by applying an appropriate CO₂ formation volume factor based on the reservoir's estimated average native pressure and temperature condition. The CO₂ formation volume factor (CO₂Bg) was calculated assuming normal temperature and pressure gradients, a condition expected for the assessed reservoirs at depths of less than 15,000 ft. The temperature gradient used in this study is 1.85 °F per 100 feet plus 70 °F (ambient surface temperature) and the pressure gradient is 0.43 pounds per square inch (psi) per foot.

2.3 The Lower and Upper Cretaceous CO₂ Storage Capacity Assessed by Saline Reservoir

Each reservoir capacity assessment incorporates regional variation in average reservoir effective (sandstone) porosity, net formation thickness, depth and pressure. The assessed area covers the onshore region where the Washita-Fredericksburg, the Paluxy, the Eutaw Formations and the Lower Cretaceous undifferentiated sandstones occur at elevations from -3,000 to -14,000 feet (ft, subsea) and include southern Mississippi, southern Alabama, southern Georgia and the western panhandle of Florida. Cretaceous sandstones in offshore locations were not assessed.

Tables 5 through **8** show the average values used to calculate the theoretical maximum storage capacity by state.

Table 5: CO₂ Storage Assessment Input for the Paluxy Saline Reservoir

STATES	Total Area (Mi ²)	Avg Depth (ft)	Avg Net Thickness (ft)	Avg Porosity	Pore Volume (tcf)	B _g CO ₂ (res cf/scf)*	CO ₂ Capacity (Tscf) (E=100%)
Alabama	15,240	-8,470	470	23%	47	0.0030	15,470
Florida	8,620	-6,630	480	23%	27	0.0031	8,680
Mississippi	23,050	-9,450	650	15%	63	0.0030	21,040

* reservoir cubic feet per standard cubic feet (res cf/scf)

Table 6: CO₂ Storage Assessment Input for the Washita-Fredericksburg Reservoir

STATES	Total Area (Mi ²)	Avg Depth (ft)	Avg Gross Thickness (ft)	Avg Total Porosity	Pore Volume (tcf)	B _g CO ₂ (res cf/scf)	CO ₂ Capacity (Tscf) (E=100%)
Alabama	12,810	-6,720	870	25%	76	0.0030	25,530
Florida	9,710	-5,460	680	25%	45	0.0031	14,440
Mississippi	22,430	-8,270	480	18%	52	0.0030	17,510

Table 7: CO₂ Storage Assessment Input for the Eutaw Reservoir

STATES	Total Area (Mi ²)	Avg Depth (ft)	Avg Gross Thickness (ft)	Avg Total Porosity	Pore Volume (tcf)	B _g CO ₂ (res cf/scf)	CO ₂ Capacity (Tscf) (E=100%)
Alabama	8,830	-5,120	50	25%	3	0.0037	890
Florida	11,920	-4,430	40	24%	3	0.0042	740
Mississippi	27,330	-6,060	70	25%	14	0.0034	4,090
Georgia	860	-3,100	50	20%	0.3	0.0061	40

Table 8: CO₂ Storage Assessment Input for the Lower Cretaceous Undifferentiated Reservoir

STATES	Total Area (Mi ²)	Avg Depth (ft)	Avg Gross Thickness (ft)	Avg Total Porosity	Pore Volume (tcf)	B _g CO ₂ (res cf/scf)	CO ₂ Capacity (Tscf) (E=100%)
Alabama	3,490	-3,720	820	23%	18	0.0028	6,640
Florida	3,150	-3,940	680	20%	12	0.0029	4,070
Georgia	16,180	-3,570	520	20%	47	0.0040	11,780

3.0 CO₂ Storage Capacity of the Lower and Upper Cretaceous Saline Reservoirs

3.1 Methodology

CO₂ storage capacity estimates for the Eutaw Formation, the Washita-Fredericksburg Group, the Paluxy Formation and the Lower Cretaceous undifferentiated were computed using the methodology set forth in the NETL (2010). The storage efficiency values recommended in the Carbon Sequestration Atlas assessment methodology for clastic reservoirs were used to estimate potential CO₂ storage capacity from calculated total pore volume (P₁₀=7.4% and P₉₀=24%).

3.2 CO₂ Storage Capacity Example Calculation

The storage efficiency values recommended for saline reservoirs in the atlas (NETL, 2010) assessment methodology were used to estimate achievable CO₂ storage capacity from calculated total pore volume. A brief summary of the capacity methodology follows:

1. The basic approach for all capacity estimations begins with quantifying the magnitude of the storage resource (pore volume) for each saline reservoir.
2. The theoretical volume of CO₂ that can be stored in 100 percent of the available pore space is calculated by applying an appropriate CO₂ formation volume factor for the reservoir's estimated average native pressure and temperature conditions.
3. The CO₂ storage efficiencies (E) suggested for clastic saline reservoirs in the atlas (NETL, 2010) are applied to generate low- and high-confidence storage capacity estimates, resulting in a range of estimated CO₂ storage capacity for each reservoir partition. The capacity estimates are then rolled-up to state values.

Following is an example calculation of practical CO₂ storage volume for the Eutaw Formation in Alabama. Using structure and isopach maps it was determined that the Eutaw Formation in Alabama covers an area of 8,830 square miles and has an average net thickness of 54 ft (Pratt Turner Land Company #B-31-5) (Pashin et al., 2008). A porosity value of 25 percent was calculated using data taken from a study of various saline reservoirs in southwest Alabama (Pashin et al., 2008). A formation volume factor of 3.67×10^{-3} reservoir cubic feet per standard cubic feet (res cf/scf) was estimated using regional temperature and pressure gradients.

1) *Theoretical Storage Volume in Standard Cubic Ft for the Eutaw Formation in Alabama:*

$$A * h * \Phi / Bg_{CO_2} = (8,830 \text{ mi}^2 * 2.79 \times 10^7 \text{ ft}^2 * 54 \text{ ft} * 0.248) / (0.00367 \text{ res cf/scf})$$

$$= 892 \times 10^{12} \text{ Tscf CO}_2 = 892 \text{ Tscf}$$

2) *Storage Efficiency and Practical CO₂ Storage Volume:*

The overall efficiency for saline formations ranges from 7.4 to 24 percent for the Eutaw lithology (clastic) over the 10 and 90 percent probability range, respectively (NETL, 2010).

$$\text{Low Case: } P(10\%) = 892 \text{ Tscf} * 7.4\% = 66 \text{ Tscf}$$

$$\text{High Case: } P(90\%) = 892 \text{ Tscf} * 24\% = 214 \text{ Tscf}$$

3) *Volume of Stored CO₂ Converted from Tscf to Gigatonnes:*

$$\text{Low Case: } P(10\%) = 66 \text{ Tscf} / 18.9 \text{ Mscf per metric ton} = 3.5 \text{ Gt}$$

$$\text{High Case: } P(90\%) = 214 \text{ Tscf} / 18.9 \text{ Mscf per metric ton} = 11.3 \text{ Gt}$$

3.3 Lower and Upper Cretaceous Saline Reservoir – CO₂ Storage Capacity

Tables 9 through **12** summarize estimated CO₂ storage capacity for the Lower and Upper Cretaceous saline reservoirs by state. Total CO₂ storage capacity for the combined reservoirs is estimated to range from 513 Gt and 1,661 Gt is shown in **Table 13**.

Table 9: Estimated CO₂ Storage Capacity of the Paluxy Saline Reservoir

Gulf Coast State	CO ₂ Storage Capacity			
	Trillion Standard Cubic Feet (Tscf)		Billion Metric Tons (Gt)	
	Low Estimate P(10)	High Estimate P(90)	Low Estimate P(10)	High Estimate P(90)
Alabama	1,150	3,710	61	196
Florida	640	2,080	34	110
Mississippi	1,560	5,050	82	267
Total	3,350	10,840	177	573

Table 10: Estimated CO₂ Storage Capacity of the Washita-Fredericksburg Saline Reservoir

Gulf Coast State	CO ₂ Storage Capacity			
	Trillion Standard Cubic Feet (Tscf)		Billion Metric Tons (Gt)	
	Low Estimate P(10)	High Estimate P(90)	Low Estimate P(10)	High Estimate P(90)
Alabama	1,890	6,130	100	324
Florida	1,070	3,470	57	183
Mississippi	1,230	4,200	69	222
Total	4,190	13,800	226	729

Table 11: Estimated CO₂ Storage Capacity of the Lower Cretaceous Undifferentiated Saline Reservoir

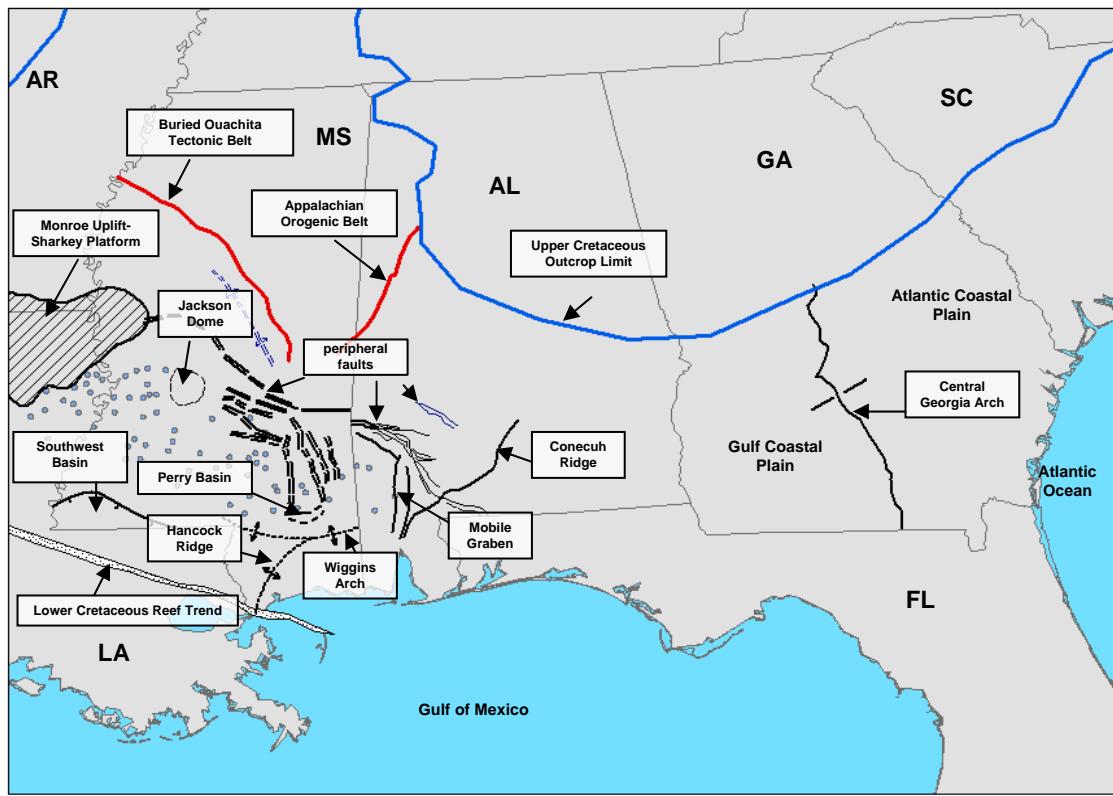
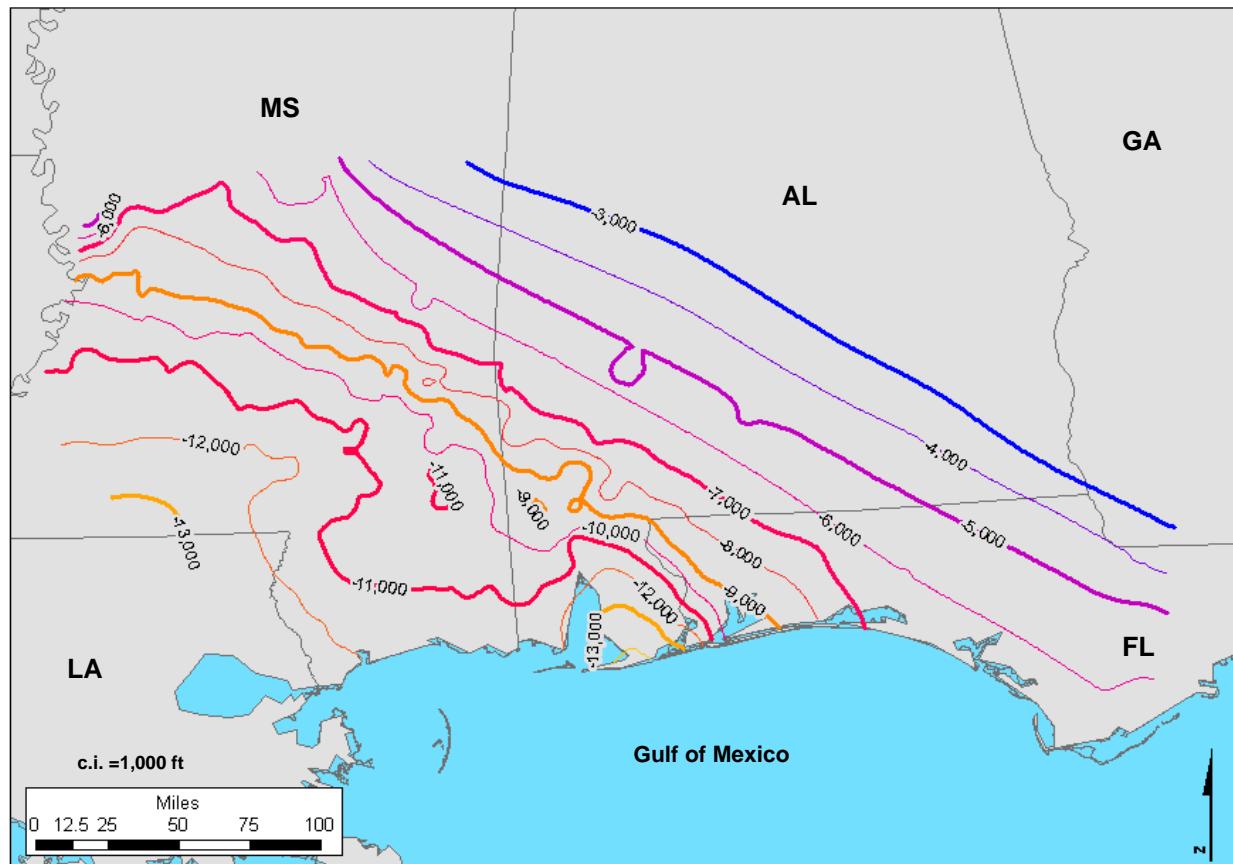
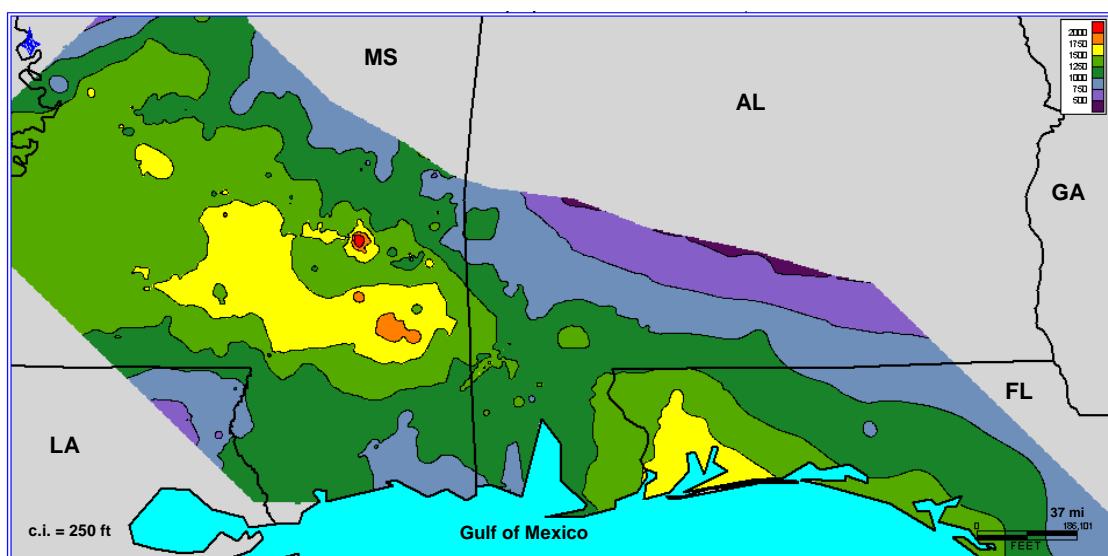

Gulf Coast State	CO ₂ Storage Capacity			
	Trillion Standard Cubic Feet (Tscf)		Billion Metric Tons (Gt)	
	Low Estimate P(10)	High Estimate P(90)	Low Estimate P(10)	High Estimate P(90)
Alabama	490	1,590	26	84
Florida	300	980	16	52
Georgia	870	2,830	46	150
Total	1,660	5,400	88	286

Table 12: Estimated CO₂ Storage Capacity of the Eutaw Saline Reservoir

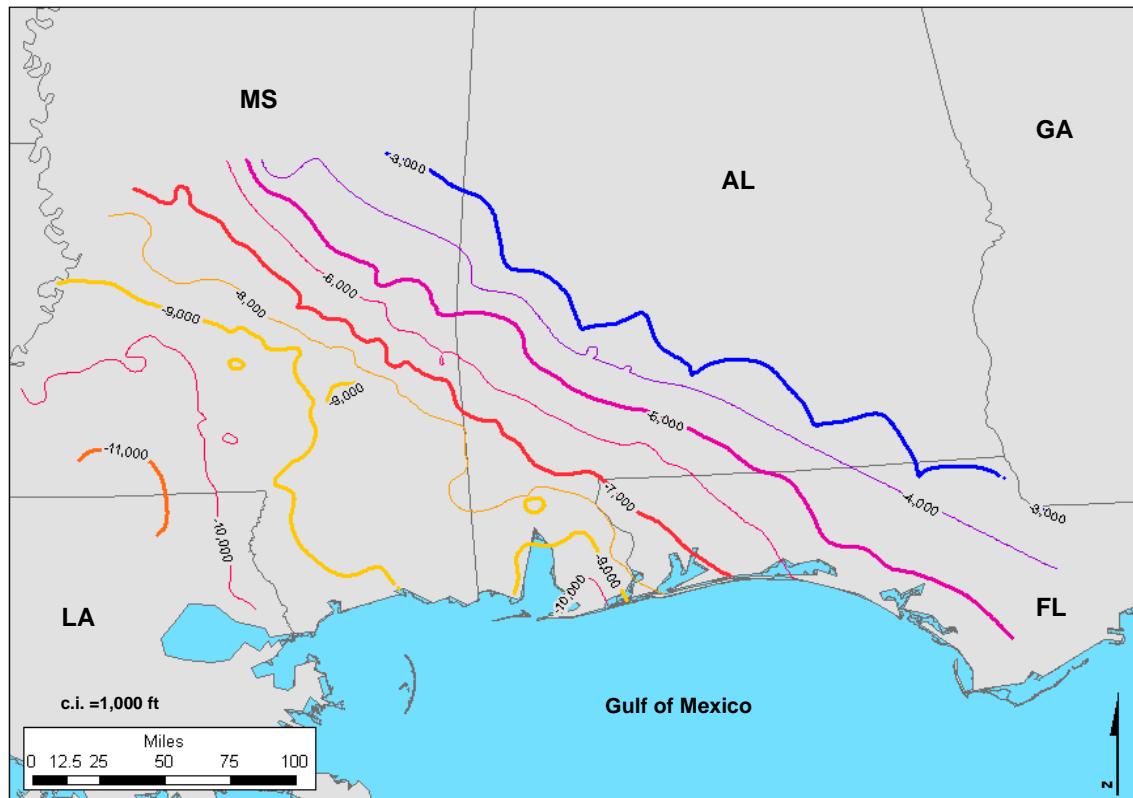
Gulf Coast State	CO ₂ Storage Capacity			
	Trillion Standard Cubic Feet (Tscf)		Billion Metric Tons (Gt)	
	Low Estimate P(10)	High Estimate P(90)	Low Estimate P(10)	High Estimate P(90)
Alabama	70	210	3	11
Florida	60	180	3	9
Georgia	3	10	0.2	0.5
Mississippi	300	980	16	52
Total	430	1,380	22	73

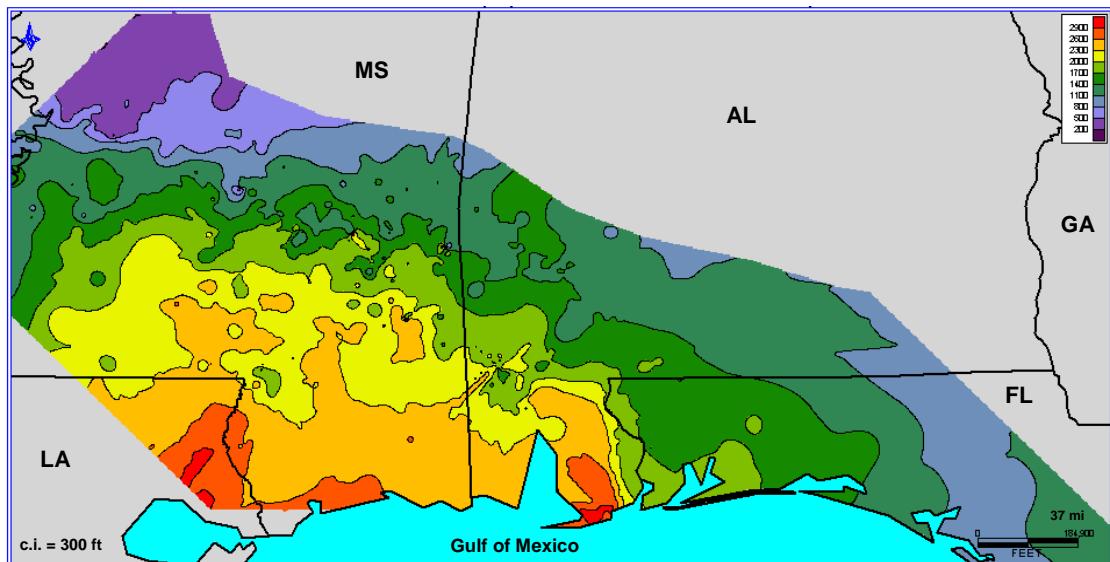
Table 13: Estimated CO₂ Total Storage Capacity of the Lower and Upper Cretaceous Reservoirs

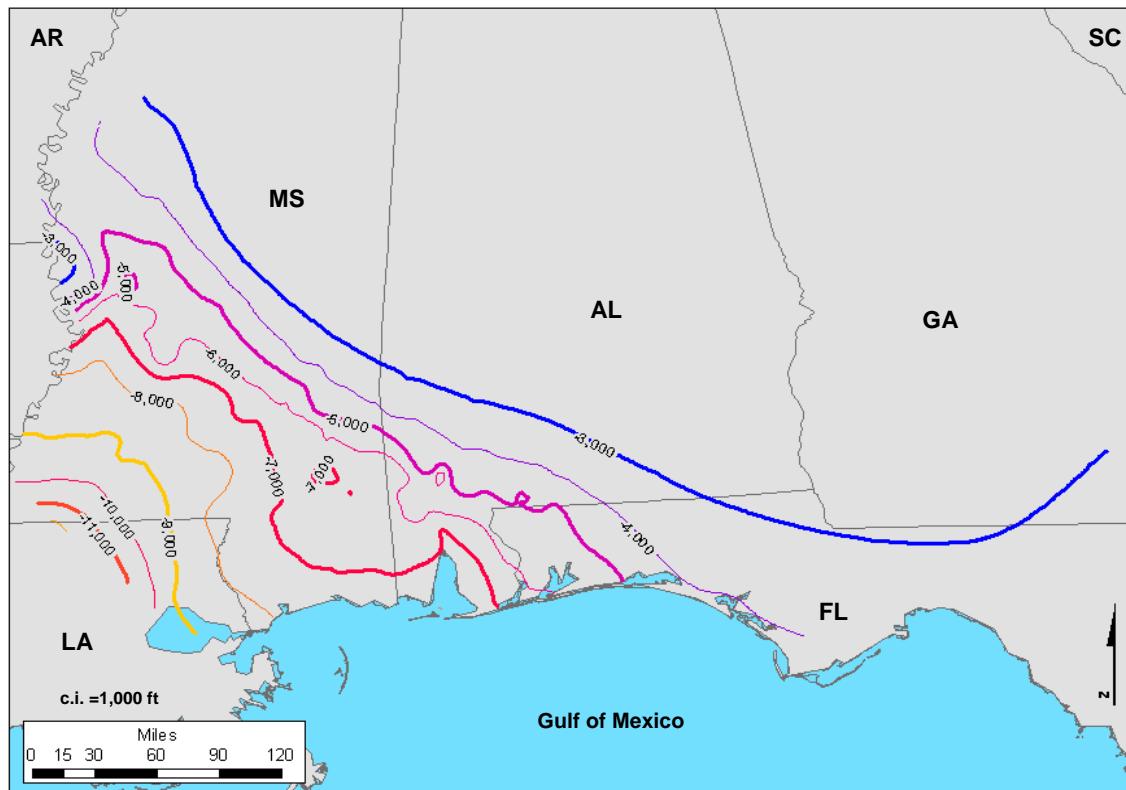

Gulf Coast Reservoir	CO ₂ Storage Capacity			
	Trillion Standard Cubic Feet (Tscf)		Billion Metric Tons (Gt)	
	Low Estimate P(10)	High Estimate P(90)	Low Estimate P(10)	High Estimate P(90)
Eutaw	430	1,380	22	73
Washita-Fredericksburg	4,190	13,800	226	729
Paluxy	3,350	10,840	177	573
Lower Cretaceous undifferentiated	1,660	5,400	88	286
Total	9,630	31,420	513	1,661

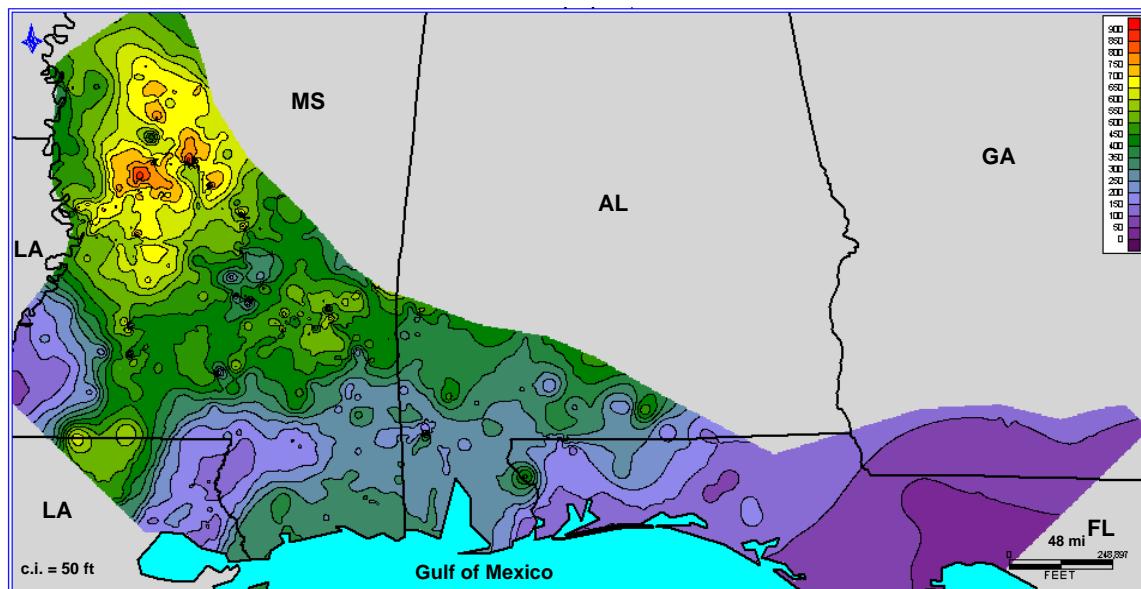

Figure 1. Major Geologic Features along the Gulf Coast.

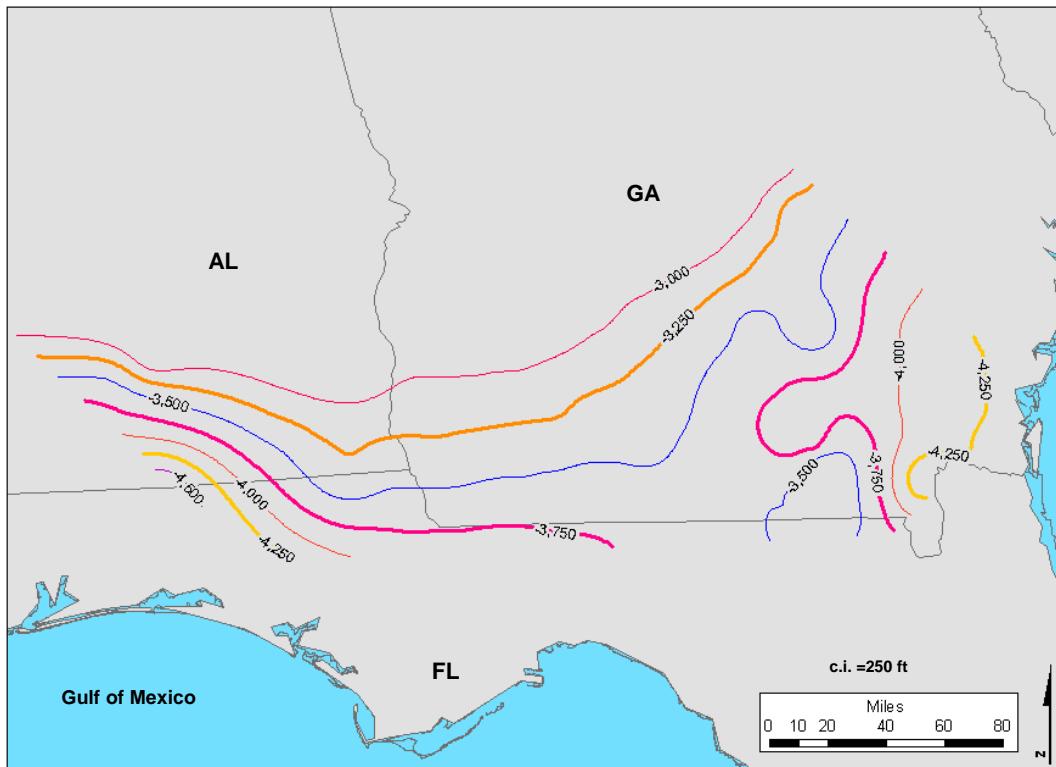
System	Series	Stratigraphic Unit	Major Sub Units			Potential Reservoirs and Confining Zones
		Selma Group				Confining Unit
		Eutaw Formation				Minor Saline Reservoir
Cretaceous	Upper	Tuscaloosa Group	Upper Tusc.	Mid. Tusc.	Marine Shale	Minor Saline Reservoir
					Pilot Ss	Confining Unit
					Massive Ss	Saline Reservoir
					Dantzler Ss	Saline Reservoir
Cretaceous	Lower	Washita-Fredericksburg Interval			Shale	Primary Confining Unit
		Paluxy Formation			'Upper'	Proposed Injection Zone
					'Middle'	
					'Lower'	
		Mooringsport Formation				Confining Unit
		Ferry Lake Anhydrite				Confining Unit

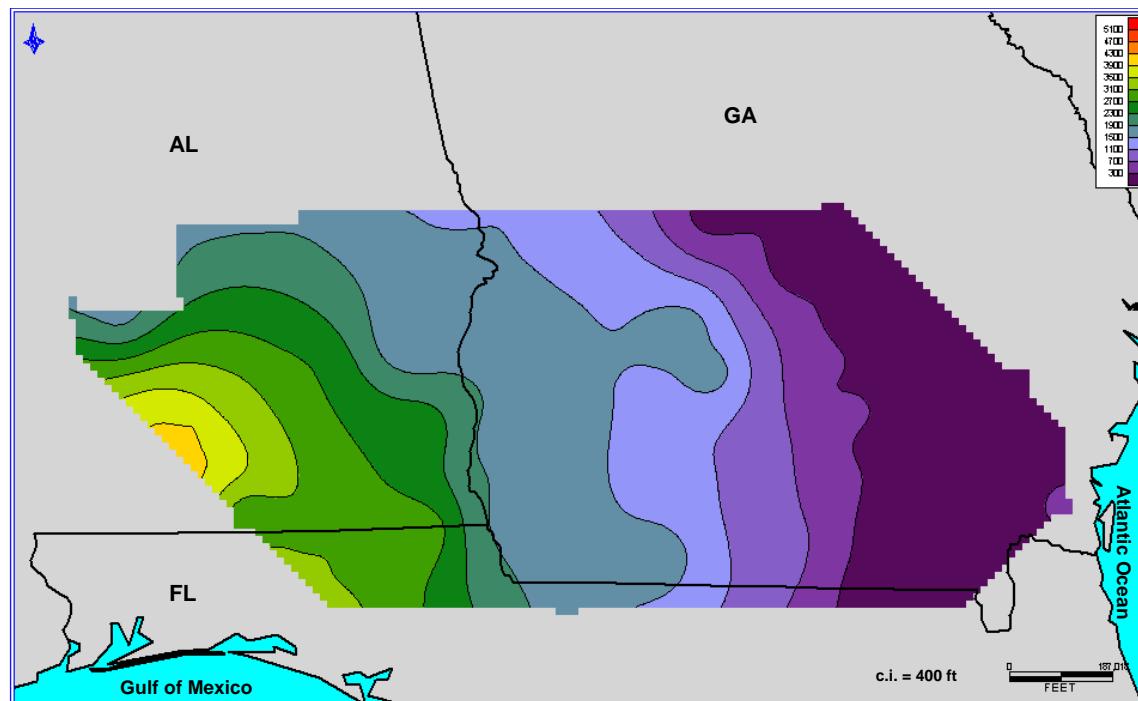

Figure 2. Stratigraphic Column of the Lower and Upper Cretaceous.

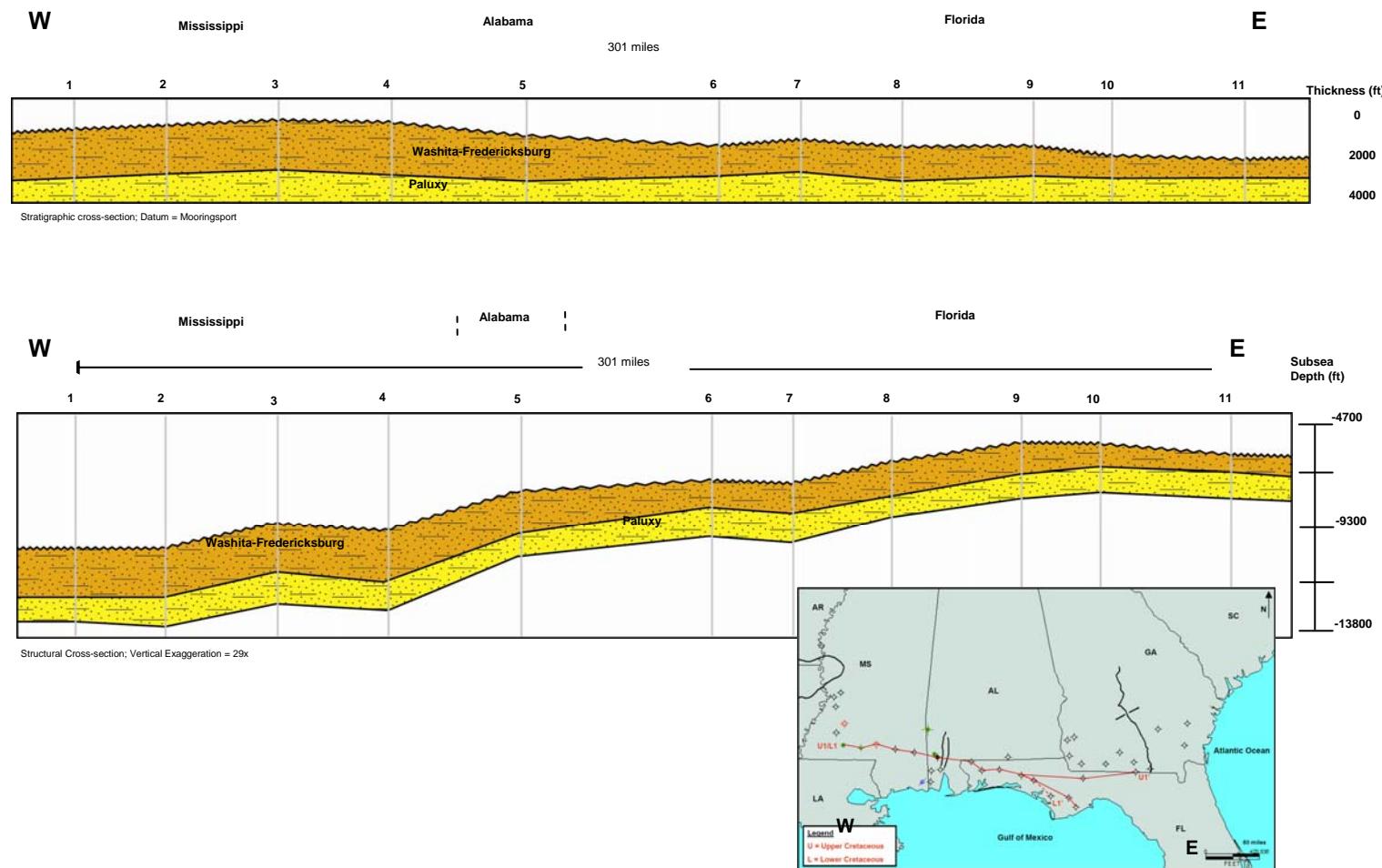

Figure 3. Structure Map on Top of the Paluxy Formation (elevation, subsea).


Figure 4. Isopach Map of the Paluxy Formation.


Figure 5. Structure Map on Top of the Washita-Fredericksburg Group (elevation, subsea).


Figure 6. Isopach Map of the Washita-Fredericksburg Group.


Figure 7. Structure Map on Top of the Eutaw Formation (elevation, subsea).


Figure 8. Isopach Map of the Eutaw formation.

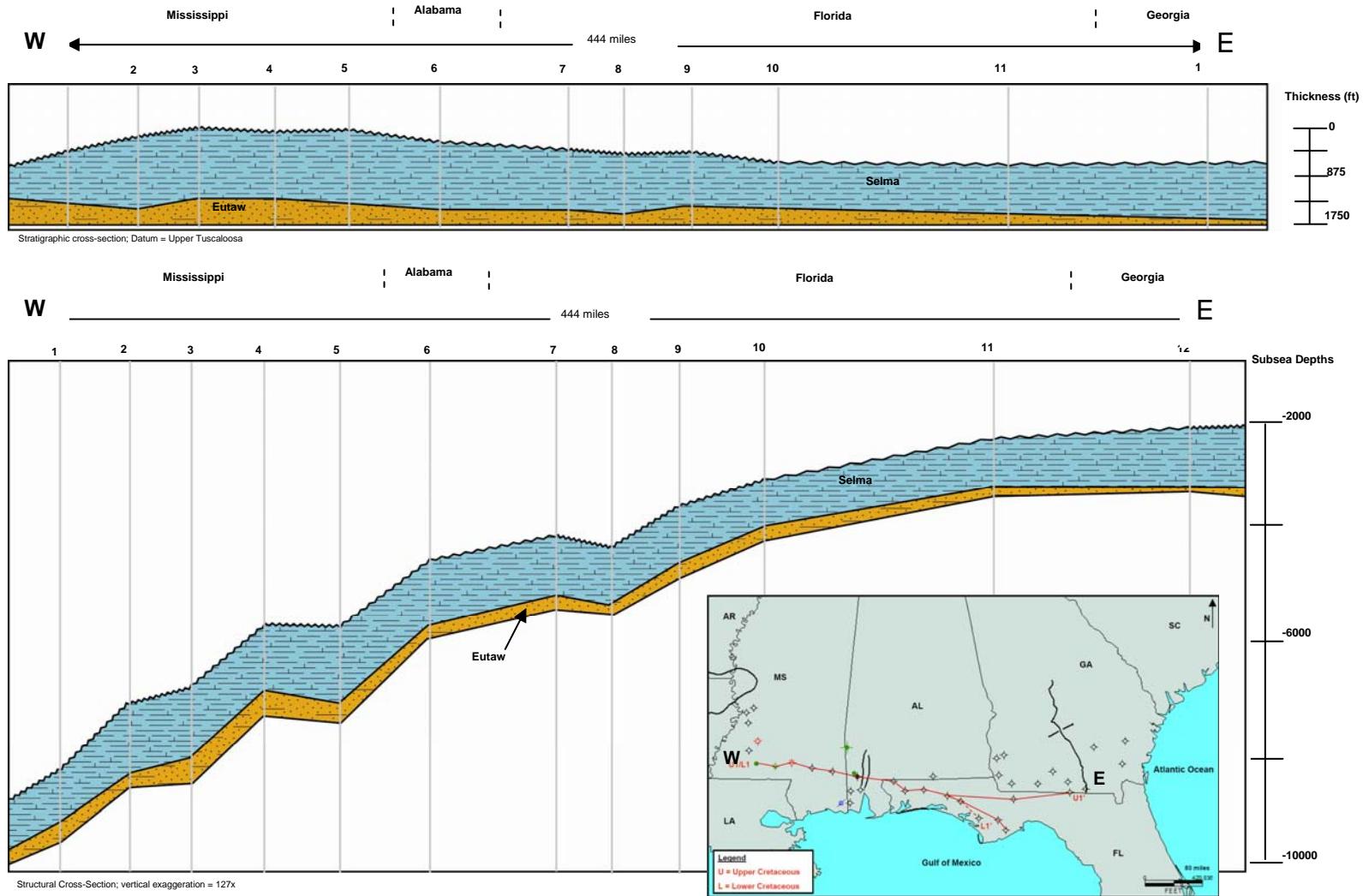

Figure 9. Structure Map on Top of the Lower Cretaceous Undifferentiated (elevation, subsea).

Figure 10. Isopach Map of the Lower Cretaceous Undifferentiated.

Figure 11. Stratigraphic (top) and Structural (bottom) West-East Schematic Cross-Sections Showing the Paluxy Formation and the Washita-Fredericksburg Group, West Mississippi to Western Panhandle of Florida.

Figure 12. Stratigraphic (top) and Structural (bottom) West-East Schematic Cross-Sections Showing the Eutaw Formation and the Selma Group, West Mississippi to Southwest Georgia.

References

1. Advanced Resources International, Inc., 2009, *Geologic Storage Capacity for CO₂ of the Lower Tuscaloosa Group and Woodbine Formations for the Phase III Work Product 1.1.c.*
2. Devery, D.M., 1982, *Subsurface Cretaceous Strata of Mississippi*, Mississippi Department of Natural Resources, Bureau of Geology and Energy Resources: Information Series, vol. 82-1, 24 pp.
3. Furcon, A.S., "The Georgia Story (The Geological History of Georgia)," *Georgia Mineral Newsletter* 1-5 (1948-1952).
4. National Energy Technology Laboratory (NETL), 2010, *2010 Carbon Sequestration Atlas of the United States and Canada*, United States Department of Energy.
5. Pashin, J. C, McIntyre, M. R., Grace, R. L. B., Hills, D. J., 2008, *Southeastern Regional Carbon Sequestration Partnership (SECARB) Phase III, Final Report*, Report to Advanced Resources International by Geological Survey of Alabama, Tuscaloosa.