
Containerized Environment for Reproducibility and Traceability of Scientific Workflows
Student: Paula Olaya* Mentors: Jay Lofstead Michela Taufer
*University of Tennessee, Knoxville, +Sandia National Laboratory

Problem Overview
• Scientific domains use simulations to understand and predict natural phenomena

• Trusting the output of these simulations is vital for the scientists

• Trust requires reproducibility, replicability, transparency and traceability of the simulation process and its results

Hypothesis: Annotating the workflow execution at system-level provides a way to ensure reproducibility, replicability,
transparency and traceability of simulations

• When we annotate the execution at system-level, we are able to build the record trail of data moving across the
workflow

• This record trail of data includes every workflow component used to generate the new data (e.g., input datasets,
applications, and parameter values)

1 Our Solution: a Containerized Environment
Leverage cutting edge container technologies to address metadata from the OS level to build the record trail and ensure

the reproduction and traceability of scientific workflows

• Create an application-agnostic containerized environment

• Capture workflow record trails at runtime

Why container technolo
• Portability: Immutable applications m
• Isolation: namespaces
• Encapsulation: sif format
• Unique identification: UUID

Data Container:
Compressed data
added as a single and
independent partition

App Container:
System with specific
software stack built
from recipe and added
as a single and
independent partition

For more
information,
please visit the
following link:

gy
achine-agnostic

Data container

Data.

etadata

Dynamic

Static

IZero-copy data transfer:
It allows to bind mount
direct paths inside
containers a transfer data
avoiding the third party
transfer through the host

L

zero-
copy

1
1

Why Singularity?
• Reproducible software stacks
• Mobility of compute
• Compatibility with complex architectures

1 • Security model

App container

App

Metadata

Dynamic

Static

Singular Plugin
• 11

Singularity Plugin:
Package dynamically loaded
that interacts with all the
workflow components to
extract the metadata. It
builds and allocates the
record trail

zero-
copy

.

Data container

Data

Metadata
Dynamic

Static

Static Metadata Input

Static Metadata App

Static Metadata Output

Record trail

Record Trail:
Format: json
Info: file name, UUIDs,
creation + modification date

Supported Workflows

We implement our
prototype to support
four workflows with
two base applications:
• Visualization

applications
• ML applications

1

Supported workflow taxonomy

<data > ___. <data >0

<data >11

<data >
i2

<datai3> .

<data.>

6<data >ii

<datai2

11

<app>

.

-1 11

<app2>

UaPP1>

<app2>

NMI

MEM

<dataol

<data
02
>i'

<data >
03

<data >o

<data02>i

<clatao

<data.?

Tested workflow applications
<inputl.txt,

input2.txt,

input3.txt>

1 <inputl.txt>

<input2.txt>

<input3.txt>

<train.csv,

eval.csv>

—I-
<train.csv>

471plot1.png,
<gnuplot.sh> 44-1Im•- plot2.png,

plot3.png>

<gnuplot.sh>

<plotl.png>

<plot2.png>

<plot3.png>

<kknn.r> <kknn out.csv>

<rf.r>

<eval.csv>

<kknn.r>

<rf out.csv>

<kknn out.csv>

<rf out.csv>

.•

Costs: Tiri-11 and Memory
Execution Time: Measure average wall-clock
over 500 executions for workflow 4

With a more complex and larger application
like the RF model the wall-clock time is
tolerable (0.7% overhead)

Space Overhead: Size of the workflow
components (e.g., data and applications)

• Analyze overhead introduced by data and
application containers size

Data container includes:
o Data files (i.e., Inputs, outputrf.csv, and

outputkknn.csv)
o Workflow metadata (i.e. metadata.json)

3

Original Workflow

File

Inputs

outputkknn.csv

outputrf.csv

Containerized Workflow

Size [KB] File

12,072inputs.sif

2,264

Size [KB]

kknn_output.sif

2,264 rf_output.sif

14,368

4,132

4,132

V) 9

7

o

cv
5

4

Envlronment

Original

Containerized

kKNN Application RF

Application container includes:
o Application executable (i.e., gnuplotScript.sh)
o SW package includes system tools, system

libraries, and settings (i.e., Ubuntu, gnuplot)

1

Original Workflow Containerized Workflow

File Size [KB]

gnuplotScript.sh

gnuplot

Ubuntu 16.04

File

4

139

>40000

Size [KB]

gnuPlotScript.sh

app.sif gnuplot

Ubuntu 16.04

4

139

153,000

The space overhead for data containers is The app container space overhead is driven

mj 2 MB, caused by the filesystem used by the software stack and OS

Conclusions Future Work
Our containerized environment supports:

• No modification of the applications

• Zero-copy transfer of data between containers

• Leverage our containerized
environment for a broader range of
workflows

• Record trail of different scenarios for workflow metadata • Expand containers with automatic

• Metadata attached to dataflow

• Tolerable overhead as workflow complexity increases

set-up, retrieved, and enabled
reproducibility of the workflow

THE UNIVERSITY OF

TE-NNES SEE
KNOXVILLE

Acknowledgements

Thank you to my mentors Dr. Michela Taufer and Dr. Jay Lofstead.
Special regards to the Singularity team, specially to Cedric (@cclerget) and lan Kaneshiro.

In collaboration with Sandia National Laboratory and UTK.

Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary
of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear

Security Administration under contract DE-NA0003525.

Pt-

L AS

SAND2020-8443C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

