pap esc ribes obJective echnical esul sand anaJy i bjective vievvs or opinionsthat might be expr &ssed
0 not necessarily represent t e United States Governmen

SAND2020- 8443C

Containerized Environment for Reprodumblllty and Traceability of Scientific Workflows

Student: Paula Olaya®™ Mentors: Jay Lofstead *, Michela Taufer *
*University of Tennessee, Knoxville, “'Sandia National Laboratory

Problem Overview

e Scientific domains use simulations to understand and predict natural phenomena

e Trusting the output of these simulations is vital for the scientists
e Trust requires reproducibility, replicability, transparency and traceability of the simulation process and its results

Hypothesis: Annotating the workflow execution at system-level provides a way to ensure reproducibility, replicability,
transparency and traceability of simulations

e \When we annotate the execution at system-level, we are able to build the record trail of data moving across the
workflow

e This record trail of data includes every workflow component used to generate the new data (e.g., input datasets,
applications, and parameter values)

Our Solution: a Containerized Environment

Leverage cutting edge container technologies to address metadata from the OS level to build the record trail and ensure
the reproduction and traceability of scientific workflows

e Create an application-agnostic containerized environment

e Capture workflow record trails at runtime

Why container technology? Why Singularity?
e Portability: Immutable applications machine-agnostic ® Reproducible software stacks
® |solation: namespaces e Mobility of compute
® Encapsulation: sif format e Compatibility with complex architectures
e Unique identification: UUID ® Security model
AR S RTL o Twe Data container App container Data container
Compressed data Zero- Zero-

added as a single and copy

independent partition Datai — App ﬁ» Datao

App Container: Metadata Metadata

Metadata

System with specific b Dynamic g; Dynamic

software stack built g Dynamic b Static - g Static

from recipe and added b Static | T —

3S 3 Single and . ~ ' tatic Metadata nput

independent partition B _static Wetecate APP
Zero-copy data transfer: Singularity Plugin: Static Metadata Output
It allows to bind mount Package dynamically loaded Record trail

Cor more dlrect.paths inside that interacts with all the Record Trail:

information, containers a transfer data workflow components to

please visit the Format: json

following link:

extract the metadata. It
builds and allocates the
record trail

avoiding the third party

Info: file name, UUIDs,
transfer through the host

creation + modification date

We implement our
prototype to support
four workflows with

two base applications:

e Visualization
applications
e ML applications

Execution Time: Measure average wall-clock
over 500 executions for workflow 4

Supported workflow taxonomy

1 <datai> L&l

<datai1> -

2 <datai2>]

<data >
i3

<app> _, <data>

- <dataol>

<app> -, <data02>

" <datao3>

<app,> —, <data >
3 <datai> _|:

<app,> —» <data_>

a4

<datai1> > <app> —» <data01>

<datai2> 1, <app> —» <data02>

Supported Workflows

Tested workflow applications

<inputl.txt,
input2.txt,
input3.txt>

<inputl.txt>
<input2.txt>

<input3.txt>

<train.csv,
eval.csv>

<train.csv>

<eval.csv>

<plotl.png,
— <gnuplot.sh> —» plot2.png,

plot3.png>

» <plotl.png>

—»- <gnuplot.sh> —p <plot2.png>

— <kknn.r>

e

Costs: Time and Memory

With a more complex and larger application
like the RF model the wall-clock time is
tolerable (0.7% overhead)

Space Overhead: Size of the workflow
components (e.g., data and applications)

e Analyze overhead introduced by data and
application containers size

Data container includes:

o Data files (i.e., Inputs, outputrf.csv, and
outputkknn.csv)

o Workflow metadata (i.e. metadata.json)

10 7 o Original

O

Co

(o)

Wall-clock Time [s]

Environment

| Containerized

kKKNN

» <plot3.png>

<kknn.r> —» <kknn_out.csv>
{ <rfr> _out.

:

:

<rf out.csv>

<kknn_out.csv>

<rf.r> —» <rf_out.csv>

Application RF

Application container includes:
o Application executable (i.e., gnuplotScript.sh)
o SW package includes system tools, system

libraries, and settings (i.e., Ubuntu, gnuplot)

Original Workflow

Containerized Workflow

Original Workflow

Containerized Workflow

File Size [KB] [File Size [KB] File Size [KB] [File Size [KB]
- Inputs 12,072 |inputs.sif 14,368 s gnuplotScript.sh i} gnuPlotScript.sh i}
outputkknn.csv 2,264 kknn_output.sif 4,132 gnuplot 139 app.sifignuplot 139
outputrf.csv 2,264 rf _output.sif 4,132 Ubuntu 16.04 >40000 Ubuntu 16.04 153,000

The space overhead for data containers is
~2 MB, caused by the filesystem used

Conclusions

Our containerized environment supports:

e No modification of the applications

® /ero-copy transfer of data

vetween containers

The app container space overhead is driven
by the software stack and OS

Future Work

® Leverage our containerized
environment for a broader range of

workflows

Record trail of different scenarios for workflow metadata® Expand containers with automatic

@
® Metadata attached to dataflow
@

Tolerable overhead as workflow complexity increases

set-up, retrieved, and enabled
reproducibility of the workflow

