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Problem Overview

e Scientific domains use simulations to understand and predict natural phenomena

e Trusting the output of these simulations is vital for the scientists
e Trust requires reproducibility, replicability, transparency and traceability of the simulation process and its results

Hypothesis: Annotating the workflow execution at system-level provides a way to ensure reproducibility, replicability,
transparency and traceability of simulations

e \When we annotate the execution at system-level, we are able to build the record trail of data moving across the
workflow

e This record trail of data includes every workflow component used to generate the new data (e.g., input datasets,
applications, and parameter values)

Our Solution: a Containerized Environment

Leverage cutting edge container technologies to address metadata from the OS level to build the record trail and ensure
the reproduction and traceability of scientific workflows

e Create an application-agnostic containerized environment

e Capture workflow record trails at runtime

Why container technology? Why Singularity?
e Portability: Immutable applications machine-agnostic ® Reproducible software stacks
® |solation: namespaces e Mobility of compute
® Encapsulation: sif format e Compatibility with complex architectures
e Unique identification: UUID ® Security model
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We implement our
prototype to support
four workflows with

two base applications:

e Visualization
applications
e ML applications

Execution Time: Measure average wall-clock
over 500 executions for workflow 4

Supported workflow taxonomy
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Supported Workflows

Tested workflow applications
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Costs: Time and Memory

With a more complex and larger application
like the RF model the wall-clock time is
tolerable (0.7% overhead)

Space Overhead: Size of the workflow
components (e.g., data and applications)

e Analyze overhead introduced by data and
application containers size

Data container includes:

o Data files (i.e., Inputs, outputrf.csv, and
outputkknn.csv)

o Workflow metadata (i.e. metadata.json)
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Application RF

Application container includes:
o Application executable (i.e., gnuplotScript.sh)
o SW package includes system tools, system

libraries, and settings (i.e., Ubuntu, gnuplot)

Original Workflow

Containerized Workflow

Original Workflow

Containerized Workflow

File Size [KB] [File Size [KB] File Size [KB] [File Size [KB]
- Inputs 12,072 |inputs.sif 14,368 s gnuplotScript.sh i} gnuPlotScript.sh i}
outputkknn.csv 2,264 kknn_output.sif 4,132 gnuplot 139 app.sifignuplot 139
outputrf.csv 2,264 rf _output.sif 4,132 Ubuntu 16.04 >40000 Ubuntu 16.04 153,000

The space overhead for data containers is
~2 MB, caused by the filesystem used

Conclusions

Our containerized environment supports:

e No modification of the applications

® /ero-copy transfer of data

vetween containers

The app container space overhead is driven
by the software stack and OS

Future Work

® Leverage our containerized
environment for a broader range of

workflows

Record trail of different scenarios for workflow metadata® Expand containers with automatic

@
® Metadata attached to dataflow
@

Tolerable overhead as workflow complexity increases

set-up, retrieved, and enabled
reproducibility of the workflow




