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Machine learning (ML)-based interatomic potentials are currently garnering a lot of atten-

tion as they strive to achieve the accuracy of electronic structure methods at the computa-

tional cost of empirical potentials. Given their generic functional forms, the transferability

of these potentials is highly dependent on the quality of the training set, the generation

of which can be highly labor-intensive. Good training sets should at once contain a very

diverse set of configurations while avoiding redundancies that incur cost without providing

benefits. We formalize these requirements in a local entropy maximization framework and

propose an automated sampling scheme to sample from this objective function. We show

that this approach generates much more diverse training sets than unbiased sampling and

is competitive with hand-crafted training sets.

a)danny_perez@lanl.gov

1

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
13

05
9



I. INTRODUCTION

The practical usefulness of atomistic simulations ultimately relies on the availability of inter-

atomic potentials that are able to provide reliable energies and forces at a sufficiently affordable

computational cost. Since electronic structure calculations using techniques such as density func-

tional theory (DFT) are often prohibitively expensive, simplified empirical forms have been the

norm, especially for molecular dynamics (MD) applications where long simulation times and large

systems are often required. Early empirical potentials were traditionally highly computationally

efficient1 but often lacked in accuracy and transferability. Over the last few years, the need to

bridge the gap between empirical methods and direct electronic structure calculations has driven

the explosive development of machine learning (ML) based approaches that aim to combine the

accuracy of the electronic structure methods and the efficiency of the early simplified potentials2–6.

The two main components of ML-based potentials are the representation of atomic structures with

a set of generic descriptors that characterize local atomic environments and a general functional

form for the energy of the system as a functions of the descriptors, which can be trained to repro-

duce the result of large amounts of high-quality electronic structure calculations (energies, forces,

stresses, etc.).

While ML-based potentials have proved able to capture subtle features of the training data, their

ability to extrapolate to situations that markedly differ from those encountered during training

remains limited7. Therefore, the accuracy of ML-based potentials is highly dependent on the

choice of the training set, which should i) cover as much of the relevant configuration space as

possible, and ii) remain sufficiently compact so that the cost of computing the reference values

with quantum calculations and training the model remains affordable. Traditionally, training set

generation has been a highly labor-intensive activity that relies on physical intuition in order to

carefully select the configurations that should be included. The advent of highly-flexible functional

forms with many free parameters, which hence require a large amount of data to parameterize,

gradually makes such manual curation impractical.

Different approaches have been proposed to address the first objective using sampling strategies8–13,

including evolutionary structural searches14, normal mode sampling15, and exploration of the

potential energy surface using on-the-fly approximations of the target potential8. Training set

configurations are also selected from DFT-MD simulations16.

The second objective is often achieved by sub-sampling from larger data sets. Possible ap-
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proaches include random selection17, binning-based sub-sampling to achieve uniform repre-

sentation of relevant quantities like atomic forces18, clustering in descriptors space to identify

distinct groups18. Finally, a number of recent approaches incrementally include data to the

training set based on whether the prediction of the properties of new configurations require

extrapolation10,19–24. These approaches differ by the algorithm type and query strategy10,21.

These workflows are often driven by MD simulations that use preliminary versions of the poten-

tials, which are continuously refined as the learning proceeds.

It is important to note that both these aspects are critical in practice: sub-sampling approaches

can only result in a diverse training set if the larger candidate set it selects from is itself diverse. In

that respect, direct-MD-based simulations can be used to generate new configurations, but MD is a

notoriously inefficient sampler which can often have a very long correlation time. The hypothesis

behind the current work is that the situation can be improved through specially-designed samplers

whose objective function is a measure of diversity. We also note that online active-learning ap-

proaches (see e.g. Ref. 25 for an early incarnation), can be used to refine the potential only as

necessary along a given MD trajectory. These approaches can certainly be powerful, but can lead

to very high and unpredictable computational cost, and can result in community-wide inefficien-

cies when many independent groups carry out similar simulations. In the following, we focus

on conventional (i.e., offline) approaches where training and production simulations occur in dis-

tinct phases, but note that our approach could also be used to locally promote diversity in online

workflows.

In this manuscript, we unify the diversity and non-redundancy objectives in a simple local ap-

proach where the diversity of atomic environment within individual configurations (as measured

by an entropy metric) is maximized subject to the constraint that it does not contain unphysical

configurations (i.e., overlapping atoms). This objective is embodied in a generic effective potential

energy function whose low-lying local minima are good candidates for inclusion in a training set.

Such minima are sampled using a simple annealing scheme that can be easily automated. Impor-

tantly, this effective energy is not meant as an approximation to the energy of the target system;

instead it is an abstract construct that enables the creation of material-agnostic training sets. In this

sense, our approach aims at creating a "universal" set of configurations that captures a very wide

range of local environments and does not focus solely on low-lying energy structures. The large

volume of configuration space covered entails a trade-off between the size of the training set and

the target accuracy, but the high transferability it affords is important to capture high-energy, far
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from equilibrium effects that can occur in extreme conditions, such as under irradiation or under

shock conditions. A global approach where diversity maximization is carried out globally over the

whole training set is currently in development and will be reported in an upcoming manuscript.

We emphasize that the objective of the current manuscript is not to create a training set for a

specific material, nor to train an actual potential. Instead, our focus is on the development of a

method to generate diverse sets of configurations that could then be characterized for a specific

material with quantum methods such as DFT. While actual potentials are not trained, the perfor-

mance of the generated training set can be assessed on the basis of surrogate metrics that derive

from distances in descriptor space between training and testing configurations. As shown below,

the training sets generated by maximizing descriptor entropy are more diverse than those gener-

ated by conventional unbiased methods, and are even competitive with hand-crafted datasets used

in the recent literature. Training of actual potentials based on this method will be reported in an

upcoming publication.

II. METHODS

1. Entropy maximization approach

Implementing the entropy-maximization idea in practice requires first defining a set of atomic

descriptors {q} that characterize the local environment of each atom, and then defining a measure

of the diversity of the distribution of these descriptors within a configuration containing multiple

atoms. A wide array of atomic descriptors have been proposed in the literature26, as these form the

inputs of many machine learning approaches that learn atomic energies. The method we propose

is agnostic to the specific choice of descriptors so as long as they are differentiable functions of

atomic positions. In the following, the set of m descriptors qi,k of the local atomic environment of

atom i is arranged into a vector qi of length m.

As a measure of diversity, we use an approximation to the entropy of the m-dimensional distri-

bution of atomic descriptors S({q}) contained in a given configuration of atoms, which is a natural

choice in this case: it is maximized for a uniform distribution of descriptors and minimized for

configurations where all environments are identical, i.e., maximizing descriptor entropy promotes

diversity and penalizes redundancy. The effective energy we propose is therefore of the form:
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V = Erepulsive −KS({q}) (1)

where Erepulsive is a short range repulsive term that penalizes very short distances between atoms

(so as to enforce an excluded volume around each atom) and K is a so-called entropy scaling coef-

ficient that controls the relative importance of the entropy and of the repulsive contribution. Local

minima of this function can therefore be expected to contain a high diversity of different environ-

ments without any two atoms being unphysically close. We postulate that low-lying minima of

this effective potentials are therefore good targets for inclusion in a training set. We again stress

that this effective energy is not meant to approximate the actual energy of a given configuration of

atoms. It is simply a formal tool to promote descriptor diversity within atomic configurations.

A number of approaches have been proposed to numerically estimate the entropy of a distri-

bution of descriptors. In the following, we adopt a simple nonparametric form where the local

density is approximated using the first neighbor distance (in descriptor space)27. In this case, the

estimator is of the form:

S({q}) =
1
n

n

∑
j=1

ln(nmin
l

∆qj,l) (2)

where ∆qj,l is the cartesian distance between between the descriptors of atoms j and l (in descriptor

space) and n is the number of atoms in the cell. This specific choice of entropy approximation is

computationally convenient, but is not expected to be critical and other estimators could be used

instead.

We recommend rescaling the different descriptors to a common scale in order to avoid the

distance being dominated by only one or a few of them. In the following, typical values of de-

scriptors have here been estimated from a set of preliminary simulations; based on these results,

each descriptor has been renormalized to a value on the order of unity.

2. Computational details

The training set is incrementally constructed by adding independent local minima of the ef-

fective energy Eq. 1. As the effective potential (much like actual potentials) is rough, a simple

annealing procedure was introduced, as illustrated in Fig.1. Note that the aim is not to locate the
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FIG. 1: Schematic representation of the cyclic annealing procedure. The entropy term is initially

turned off (K is set to zero) and the temperature T is set to a very high values. This thoroughly

randomizes the configuration with respect to the previous one. Then, the temperature is linearly

decreased and the strength of the entropy term is concurrently increased, so as to converge to a

high-entropy configuration (and hence a low effective potential configuration), which is harvested

at the end of each cycle. The cycle then repeats to generate additional configurations. The

repulsive potential strength E0 remains fixed at all times.

FIG. 2: Radial distribution function for an annealed configuration obtained with K = 0 eV

(purple), K = 1000 eV (green), K = 2000 eV (blue), and K = 3000 eV (yellow).

global minimum of the effective energy (which would beat the purpose as repeating this proce-

dure would not generate a diverse set) but simply to avoid trapping in low entropy configurations.

The annealing procedure proceeds through a simultaneous ramping down of the temperature and

ramping up of K. The goal is to initially favor a thorough shuffling of the atomic positions and

avoid correlations between successive configurations by using a high temperature (10,000K) and

no entropy bias. Entropy maximization is then gradually favored by linearly decreasing the tem-

perature down to 0 and ramping up K to 1000 eV. The resulting configuration is then harvested

and added to the training set. The cycle then simply repeats as many times as needed.

The maximal value of entropy scaling factor K was empirically tuned so as not to overwhelm

Erepulsive while still providing a strong driving force for the maximization of the entropy. As

shown in Fig. 2, increasing K too much yields configurations where some pairs of atoms become

separated by very short distances. Large values of K also yield stiff effective potentials that are

prone to instabilities during annealing. We therefore settled on a maximal value of K = 1000 eV.

Note that the specific choice of K and E0 depends on the number of atoms in the simulation cell, as

the entropy so-defined is intensive, but the repulsive contribution is extensive. Their value should

therefore be readjusted as needed.

The spatial scale of the problem was chosen to be representative of tungsten atoms, but

the training set is fully generic, and can therefore be rescaled as needed to describe other ele-

ments. In the following, we used a fully-periodic cell containing n = 39 atoms with a volume of

9.54x9.54x14.31 Å. This corresponds to a density of 0.03 atoms/Å3, as compared to a bulk BCC
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density of 0.062 atoms/Å3 for tungsten. The number of atoms was chosen so that cubic-scaling

DFT calculations would be affordable whereas the volume was chosen so that both high and low

density regions could coexist within the same simulation cell, thereby creating configurations that

contain to bulk, surfaces, and voids. While even larger volumes allowed for higher descriptor

entropy because of additional opportunities to create complex atomic arrangements, local minima

of the effective energy at low density tend to contain high proportion of 1D filament-like struc-

tures and of gas-like configurations. If such configurations are deemed relevant, a training set

can constructed by combining a range of different cell sizes. This possibility will be explored a

future study. The simulation cell was chosen to be elongated in one direction, so as to facilitate

the formation of free surfaces within the cell (which typically, but not always, form parallel to

the long axis). The specific of the cell size, shape, and number of atoms is not critical. The were

loosely set in order to discourage the formation of very ordered configurations, which could be

promoted e.g., if the cell size was a multiple of the hard core radius, or if the density was so high

that only closed-packed configurations could form.

In the following, atomic environments were described in terms of the so-called bispectrum

components originally developed in the context of the Gaussian Approximation Potentials (GAP)

potentials28, and then adopted by the SNAP approach29. These descriptors are invariants of an

expansion of the the density of neighboring atoms around a central atom in terms of hyperspher-

ical harmonics. They are attractive because they are rotationally and permutationally invariant,

which facilitates the development of energy expressions that inherit from these same properties.

Progressively higher-order components then capture increasingly fine details of the distributions

of neighboring atoms. Details of the computation of the bispectrum components can be found in

the original publications28. The results presented below used the first 6 bispectrum components to

characterize each atomic environment.

In the following, Erepulsive follows the form proposed by Clarke and Smith30:

Erepulsive = ∑
i

∑
j

E0

n−m

[

m

(

r0

ri j

)n

−n

(

r0

ri j

)m]

(3)

with E0 = 1 eV, n = 8, r0 = 2.7 Å, and m = 4. The potential was truncated at r = 2.71Å, and

shifted to zero at the cutoff so as to capture only the repulsive part of the potential. The results are

not expected to be sensitive to the specific form of the repulsive potential, as its only purpose is to

enforce excluded volumes around each atom.
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FIG. 3: Examplar configurations generated with the entropy maximization approach. Most

configurations appear thoroughly random with no clear order.

III. RESULTS

1. Characterization of the descriptor diversity

10,000 configurations of n = 39 atoms were generated using the procedure described above.

A few representative configurations are shown in Fig. 3. The ensemble of these configurations is

referred to as the "biased" dataset. As a point of comparison, we compare the results with a so-

called "unbiased" reference dataset, where configurations were sampled from an MD simulation

at a temperature of T = 10,000K with K = 0, i.e., without attempting to maximize the entropy

but while enforcing excluded volume constraints. This would intuitively roughly correspond to

sampling from a high-temperature soft-sphere gas. As expected, the average descriptor entropy of

configurations in the biased set (S ∼ 4.4) is larger than that of the unbiased set (S ∼ 3.2), which

reflects the explicit promotion of diversity enforced by the entropic term.

The consequences of this increase in entropy can be appreciated by contrasting the distribution

of individual descriptors over the biased and unbiased sets, as shown in Fig. 4 for the first bis-

pectrum component, which is a measure of the local density around each atom. The distribution

over the biased set is clearly much broader than its unbiased counterpart, which was the intended

behavior. This also shows the importance of using cells with an overall low density, which allows

for the formation of both high and low density regions within the same cell. This shows that, even

if the entropy maximization was applied locally to each configuration, the procedure yields broad

distributions over the whole training set. Perhaps surprisingly, computing high (> 6th) order de-

scriptors shows that their distribution is also broadened in the biased set. A multiple correlation

analysis indicates that this results from linear dependence between descriptors; on average, we ob-

serve a correlation coefficient of about 0.7 for high-order descriptors against the first 6. Therefore,

in this specific case, the entropy-generated training set exhibits broader descriptor distributions,

even for descriptors that were not explicitly biased, which limits the need to extend the dimension

of the biased space.
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FIG. 4: Distribution of the first descriptor. Left: biased dataset; Right: unbiased dataset. The

biased dataset shows a much broader distribution of values, indicative of higher diversity.

FIG. 5: Distribution of the eight descriptor. Left: biased dataset; Right: unbiased dataset. The

biased dataset shows a much broader distribution of values, indicative of higher diversity.

2. Error estimations on trained potentials: biased vs unbiased datasets

The purpose of this work is not to train an actual potential for W, but to demonstrate that high-

diversity training sets can be generated. We therefore did not generate quantum reference data for

our training set. The potential impact of the increased diversity on accuracy and transferability

can nonetheless be estimated in an ML scenario where energies and forces are computed through

a gaussian process regression (GPR) constructed using the training set31,32 as was done in the

GAP approach7,33. For the purpose of this simplified analysis, we consider the GPR to act as an

interpolator that exactly reproduces reference data at training points and use the distance to the

nearest training point (in descriptor space) as a surrogate for the error in predictions at arbitrary

test points. In reality, the rate of variation of the energy with respect to position in descriptor

space would add an additional contribution to the prediction error of the GPR, as would forms of

regularization. The shift and scale transformation that renders the distribution of each descriptors

in the unbiased dataset mean free and unit variance was applied to both training and testing sets in

order to uniformize the scales of each descriptors. In the following, the training sets contains 6000

randomly selected atomic environments, and testing sets 3000. Results were averaged over 1000

random decompositions between testing and training sets. The unit-less distances were measured

in the 6-dimensional space spanned by the renormalized descriptors.

This nearest-neighbor distance in descriptor space is used to first compare the quality of the

unbiased and biased datasets. Table I shows the mean nearest-neighbor descriptor distances ob-

tained using different combinations of training and testing sets. The absolute value of the reported

errors, as it measures a distance in descriptor space does not have a simple physical interpretation,

beyond the expectation that they are proportional to the error in a trained ML potential. However,

the values can be directly compared between the different choices of training and testing sets.

Training on the unbiased set performs well (i.e., the mean error is low) when testing points are
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also sampled from the unbiased set. The distances however become very large when testing points

are sampled from the biased set. This is a reflection of the fact that the distribution of descriptors

in the unbiased set has a relatively narrow support: the training distribution is therefore dense over

the support, yielding small distances when the test points fall within the support, but potentially

very large distances when the test points fall outside of the support (e.g., when test points are sam-

pled from the biased distribution). In this latter case, the GPR is extrapolating, sometimes leading

to very large distances, as shown by the mean being significantly larger than the median distance,

and by the maximum distance being very large. This illustrates an important trade-off: a potential

trained on a narrow set of configurations can be expected to do well when used on configurations

close to this narrow set; it will however do poorly when departing from it. In contrast, the distances

obtained from training on the biased set show little dependence on the nature of the testing set, as

the GPR is not forced to extrapolate outside of the support of the training set. Another apparent

trade-off is that the mean distance when training on the biased set and testing on the unbiased set

is higher than that observed when training and testing on the unbiased set. This follows from the

inverse relationship between the size of the support and the density of points in descriptor space

when the number of training points if fixed. If one is aiming at a high-accuracy potential that is

only valid in a narrow region of descriptor space, lower errors can be achieved for a given amount

of training data. However, if one is instead aiming at transferability, the biased training set is

clearly superior to the unbiased one, as it limits opportunities for very large errors that can occur

when the ML method is forced to extrapolate.

3. Error estimations on trained potentials: biased vs hand-crafted datasets

A more stringent test of our approach is to compare the biased training set with a dataset that

was "hand-crafted" by domain experts. To this end, we select two training that were used in the

development of several recent potentials for tungsten. The first, hand-crafted #1,7,33 contains elas-

tically deformed crystalline configurations, configurations harvested from DFT-based MD at high

temperature, liquid configurations, various surfaces, and a range of defects (interstitials, dislo-

cations, vacancies, and stacking faults), for a total of about 300,000 local W environment. The

second training set (hand-crafted #2) was designed with a particular focus on radiation damage

and defects34. This second training set includes a subset of hand-crafted set #1, adding isolated

atoms and dimers, disordered surfaces, and configuration containing atoms approaching at short
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range (which is common in radiation damage applications), for a total of about 40,000 local W

environments.

Tables II and III reports the results of the distances to the nearest training point for training and

testing sets drawn from the hand-crafted sets #1, and #2, respectively, and the biased set. For the

purpose of that analysis, the training sets contain 2000 randomly selected atomic environments

and 1000 for the testing sets. Results were averaged over 1000 random decompositions between

testing and training sets. The results are largely similar to that observed when comparing to the

unbiased set. Training and testing from the hand-crafted set yields low errors as the support of both

training and testing distributions is very narrow (c.f. purple histogram in Fig. 8), but these increase

dramatically upon switching the test set to the unbiased set, again because extrapolation is then

required (c.f. the very long tail in the green distribution in Fig. 8). In contrast, training from the

biased set yields results that are similar for both testing sets (c.f. blue and red histograms in Fig.

8). These results suggest that the entropy-biased training set should be competitive with or even

superior to the hand-crafted set as it contains a more diverse distribution of atomic environments.

FIG. 6: Distribution of the first descriptor. Left: biased dataset; Right: hand-crafted #1 dataset.

FIG. 7: Distribution of the eight descriptor. Left: biased dataset; Right: hand-crafted #1 dataset.

Close analysis reveals that this characterization comes with caveats. Indeed, as shown in Fig.

6, the distribution of descriptors is in general significantly wider in the biased set than in the

hand-crafted set. However, the distribution of some descriptors in the hand-crafted set is strongly

peaked, as it contains a high proportion of crystalline local environments. In some cases, the peak

falls into a region where the density descriptors in the biased dataset is low, c.f. Fig. 7, which can

limit the accuracy of predictions carried out using the biased set alone for training. For example,

it can be seen in Tables II and III and errors are larger when testing from the hand-crafted sets and

training from the biased set than when testing and training on the biased set. This is an indication

that some regions that are well represented in the hand-crafted sets are relatively sparser in the

biased dataset. This effect becomes stronger when the space of descriptors in which the GPR

interpolation is carried out increases to tens or hundreds of dimensions. Note however that even

in this case, the errors remain below that of training with the hand-crafted set and testing with
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the biased set. This limitation could potentially be addressed by increasing the size of the biased

space or by also explicitly favoring high-symmetry local order, a strategy that we are currently

exploring.

This observation illustrates the tradeoffs discussed above: if one seeks an highly accurate po-

tentials that is valid in a small region of the possible configuration space of the problem (e.g.

in BCC crystalline configurations), a narrow but tailored training set, such as the hand-crafted

ones, is likely to perform better; on the other hand, if transferability is paramount, an automated

approach that explicitly favors diversity as the one proposed here is highly beneficial. Indeed,

generating a very large and diverse training set by by hand is extremely challenging, which is why

most training sets are restricted to crystalline phases, liquids, and simple defects. Only including

these cherry-picked configurations is however unlikely to cover the range of possible uses for in-

teratomic potentials, especially in extreme conditions of temperature, pressure, stress, irradiation,

etc, hence the importance of developing automated approaches such as the entropy-maximization

method proposed here.

While the ultimate goal is to completely automate the creation of training sets, these two ap-

proaches can be bridged to achieve both high accuracy in known low-energy states and transfer-

ability to higher-energy configurations. For example, if very high accuracy is paramount in the

BCC phase, e.g., for W, but high transferability is required elsewhere (e.g., to properly describe

disordered configurations that can be created following radiation damage events), an unbiased

dataset created by the entropy-maximization method can directly be combined with a hand-crafted

set when training a potential.

FIG. 8: Distribution of the distances to the closest training point for different combinations of

training and testing sets. Training from the biased set and testing from the hand-crafted #1 set

(red); training and testing from the biased sets (blue); training and testing from the hand-crafted

#1 set (purple); training from the hand-crafted #1 set and testing from the biased set (green).

IV. DISCUSSION

While the entropy-maximization method itself is very general, the importance of choosing an

appropriate descriptor space should be emphasized. Indeed, the method only generates diversity in
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TABLE I: Error estimations: biased vs unbiased datasets. The error metric correspond to

unit-less (e.g., renormalized) nearest-neighbor distance in descriptor space between points in the

testing set and training sets.

Training set Testing set Mean Median Max

Unbiased Unbiased 0.2294 0.1827 5.9339

Unbiased Biased 4.6949 3.5311 32.0983

Biased Unbiased 0.9053 0.9068 2.3402

Biased Biased 0.8541 0.7846 5.7246

TABLE II: Error estimations on trained potentials: biased vs hand-crafted #1 datasets. The error

metric correspond to unit-less (e.g., renormalized) nearest-neighbor distance in descriptor space

between points in the testing set and training sets.

Training set Testing set Mean Median Max

Hand-crafted Hand-crafted 0.2263 0.1562 7.6514

Hand-crafted Biased 3.6680 2.3153 36.4918

Biased Hand-crafted 0.9923 1.0014 7.9049

Biased Biased 0.8541 0.7846 5.7246

TABLE III: Error estimations on trained potentials: biased vs vs hand-crafted #2 datasets. The

error metric correspond to unit-less (e.g., renormalized) nearest-neighbor distance in descriptor

space between points in the testing set and training sets.

Training set Testing set Mean Median Max

Hand-crafted Hand-crafted 0.1220 0.0510 5.1667

Hand-crafted Biased 9.6168 8.2602 34.7536

Biased Hand-crafted 2.9559 2.5148 20.4147

Biased Biased 1.0927 1.0024 7.0593
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the space spanned by the descriptors. If these descriptors are insensitive to some important physi-

cal or chemical features, improvements in diversity could be limited along these dimensions. The

proposed implementation based on the bispectrum components can be expected to perform well

for monoatomic systems. Extensions to multi-component materials are in principle straightfor-

ward in conjunction with descriptors that are sensitive to local chemical order, such as the explicit

multi-element bispectrum components35. This generalization is currently underway. Further ex-

tension to molecular systems should also be possible in principle, but chemical constraints might

have to be introduced to limit sampling to the chemically relevant subspace, thereby avoiding the

allocation of resources to chemically inaccessible or irrelevant configurations.

V. CONCLUSIONS

We introduced a sampling-based approach for the automated training set generation of inter-

atomic potentials. Configurations are generated by sampling low-lying minima of an effective po-

tential energy function that explicitly favors the diversity of the local atomic environment through

an entropy maximization process. The generated training set is shown to be more diverse than

that generated by a random sampling procedure and even compared to hand-crafted sets used in

state-of-the-art machine-learned potentials, which promises improved transferability. Extensions

to global entropy-maximization over the whole training set (in contrast to the local configuration-

by-configuration optimization presented here) is in development and will be reported in an upcom-

ing publication.
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