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Machine learning (ML)-based interatomic potentials are currently garnering a lot of atten-
tion as they strive to achieve the accuracy of electronic structure methods at the computa-
tional cost of empirical potentials. Given their generic functional forms, the transferability
of these potentials is highly dependent on the quality of the training set, the generation
of which can be highly labor-intensive. Good training sets should at once contain a very
diverse set of configurations while avoiding redundancies that incur cost without providing
benefits. We formalize these requirements in a local entropy maximization framework and
propose an automated sampling scheme to sample from this objective function. We show
that this approach generates much more diverse training sets than unbiased sampling and

is competitive with hand-crafted training sets.
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I. INTRODUCTION

The practical usefulness of atomistic simulations ultimately relies on the availability of inter-
atomic potentials that are able to provide reliable energies and forces at a sufficiently affordable
computational cost. Since electronic structure calculations using techniques such as density func-
tional theory (DFT) are often prohibitively expensive, simplified empirical forms have been the
norm, especially for molecular dynamics (MD) applications where long simulation times and large
systems are often required. Early empirical potentials were traditionally highly computationally
efficient' but often lacked in accuracy and transferability. Over the last few years, the need to
bridge the gap between empirical methods and direct electronic structure calculations has driven
the explosive development of machine learning (ML) based approaches that aim to combine the
accuracy of the electronic structure methods and the efficiency of the early simplified potentials®~.
The two main components of ML-based potentials are the representation of atomic structures with
a set of generic descriptors that characterize local atomic environments and a general functional
form for the energy of the system as a functions of the descriptors, which can be trained to repro-
duce the result of large amounts of high-quality electronic structure calculations (energies, forces,

stresses, etc.).

While ML-based potentials have proved able to capture subtle features of the training data, their
ability to extrapolate to situations that markedly differ from those encountered during training
remains limited’. Therefore, the accuracy of ML-based potentials is highly dependent on the
choice of the training set, which should i) cover as much of the relevant configuration space as
possible, and ii) remain sufficiently compact so that the cost of computing the reference values
with quantum calculations and training the model remains affordable. Traditionally, training set
generation has been a highly labor-intensive activity that relies on physical intuition in order to
carefully select the configurations that should be included. The advent of highly-flexible functional
forms with many free parameters, which hence require a large amount of data to parameterize,
gradually makes such manual curation impractical.

Different approaches have been proposed to address the first objective using sampling strategies®~

including evolutionary structural searches'#, normal mode sampling', and exploration of the

potential energy surface using on-the-fly approximations of the target potential®. Training set

configurations are also selected from DFT-MD simulations'®.

The second objective is often achieved by sub-sampling from larger data sets. Possible ap-
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proaches include random selection!’, binning-based sub-sampling to achieve uniform repre-
sentation of relevant quantities like atomic forces!®, clustering in descriptors space to identify
distinct groups'®. Finally, a number of recent approaches incrementally include data to the

training set based on whether the prediction of the properties of new configurations require

10,19-24 10,21

extrapolation These approaches differ by the algorithm type and query strategy
These workflows are often driven by MD simulations that use preliminary versions of the poten-

tials, which are continuously refined as the learning proceeds.

It is important to note that both these aspects are critical in practice: sub-sampling approaches
can only result in a diverse training set if the larger candidate set it selects from is itself diverse. In
that respect, direct-MD-based simulations can be used to generate new configurations, but MD is a
notoriously inefficient sampler which can often have a very long correlation time. The hypothesis
behind the current work is that the situation can be improved through specially-designed samplers
whose objective function is a measure of diversity. We also note that online active-learning ap-
proaches (see e.g. Ref. 25 for an early incarnation), can be used to refine the potential only as
necessary along a given MD trajectory. These approaches can certainly be powerful, but can lead
to very high and unpredictable computational cost, and can result in community-wide inefficien-
cies when many independent groups carry out similar simulations. In the following, we focus
on conventional (i.e., offline) approaches where training and production simulations occur in dis-
tinct phases, but note that our approach could also be used to locally promote diversity in online

workflows.

In this manuscript, we unify the diversity and non-redundancy objectives in a simple local ap-
proach where the diversity of atomic environment within individual configurations (as measured
by an entropy metric) is maximized subject to the constraint that it does not contain unphysical
configurations (i.e., overlapping atoms). This objective is embodied in a generic effective potential
energy function whose low-lying local minima are good candidates for inclusion in a training set.
Such minima are sampled using a simple annealing scheme that can be easily automated. Impor-
tantly, this effective energy is not meant as an approximation to the energy of the target system;
instead it is an abstract construct that enables the creation of material-agnostic training sets. In this
sense, our approach aims at creating a "universal" set of configurations that captures a very wide
range of local environments and does not focus solely on low-lying energy structures. The large
volume of configuration space covered entails a trade-off between the size of the training set and

the target accuracy, but the high transferability it affords is important to capture high-energy, far
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from equilibrium effects that can occur in extreme conditions, such as under irradiation or under
shock conditions. A global approach where diversity maximization is carried out globally over the

whole training set is currently in development and will be reported in an upcoming manuscript.

We emphasize that the objective of the current manuscript is not to create a training set for a
specific material, nor to train an actual potential. Instead, our focus is on the development of a
method to generate diverse sets of configurations that could then be characterized for a specific
material with quantum methods such as DFT. While actual potentials are not trained, the perfor-
mance of the generated training set can be assessed on the basis of surrogate metrics that derive
from distances in descriptor space between training and testing configurations. As shown below,
the training sets generated by maximizing descriptor entropy are more diverse than those gener-
ated by conventional unbiased methods, and are even competitive with hand-crafted datasets used
in the recent literature. Training of actual potentials based on this method will be reported in an

upcoming publication.

II. METHODS
1. Entropy maximization approach

Implementing the entropy-maximization idea in practice requires first defining a set of atomic
descriptors {q} that characterize the local environment of each atom, and then defining a measure
of the diversity of the distribution of these descriptors within a configuration containing multiple
atoms. A wide array of atomic descriptors have been proposed in the literature?®, as these form the
inputs of many machine learning approaches that learn atomic energies. The method we propose
is agnostic to the specific choice of descriptors so as long as they are differentiable functions of
atomic positions. In the following, the set of m descriptors g; x of the local atomic environment of

atom i is arranged into a vector q; of length m.

As a measure of diversity, we use an approximation to the entropy of the m-dimensional distri-
bution of atomic descriptors S({q}) contained in a given configuration of atoms, which is a natural
choice in this case: it is maximized for a uniform distribution of descriptors and minimized for
configurations where all environments are identical, i.e., maximizing descriptor entropy promotes

diversity and penalizes redundancy. The effective energy we propose is therefore of the form:
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V= Erepulsive - KS({q}) (1)

where Eepulsive 18 a short range repulsive term that penalizes very short distances between atoms
(so as to enforce an excluded volume around each atom) and K is a so-called entropy scaling coef-
ficient that controls the relative importance of the entropy and of the repulsive contribution. Local
minima of this function can therefore be expected to contain a high diversity of different environ-
ments without any two atoms being unphysically close. We postulate that low-lying minima of
this effective potentials are therefore good targets for inclusion in a training set. We again stress
that this effective energy is not meant to approximate the actual energy of a given configuration of
atoms. It is simply a formal tool to promote descriptor diversity within atomic configurations.

A number of approaches have been proposed to numerically estimate the entropy of a distri-
bution of descriptors. In the following, we adopt a simple nonparametric form where the local
density is approximated using the first neighbor distance (in descriptor space)?’. In this case, the

estimator is of the form:

n

SH{q}) = —Z (nminAg; ) (2)

where Ag; ; is the cartesian distance between between the descriptors of atoms j and / (in descriptor
space) and n is the number of atoms in the cell. This specific choice of entropy approximation is
computationally convenient, but is not expected to be critical and other estimators could be used
instead.

We recommend rescaling the different descriptors to a common scale in order to avoid the
distance being dominated by only one or a few of them. In the following, typical values of de-
scriptors have here been estimated from a set of preliminary simulations; based on these results,

each descriptor has been renormalized to a value on the order of unity.

2. Computational details

The training set is incrementally constructed by adding independent local minima of the ef-
fective energy Eq. 1. As the effective potential (much like actual potentials) is rough, a simple

annealing procedure was introduced, as illustrated in Fig.1. Note that the aim is not to locate the
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FIG. 1: Schematic representation of the cyclic annealing procedure. The entropy term is initially
turned off (K is set to zero) and the temperature 7 is set to a very high values. This thoroughly
randomizes the configuration with respect to the previous one. Then, the temperature is linearly
decreased and the strength of the entropy term is concurrently increased, so as to converge to a

high-entropy configuration (and hence a low effective potential configuration), which is harvested

at the end of each cycle. The cycle then repeats to generate additional configurations. The

repulsive potential strength Ey remains fixed at all times.

FIG. 2: Radial distribution function for an annealed configuration obtained with K =0 eV

(purple), K = 1000 eV (green), K = 2000 eV (blue), and K = 3000 eV (yellow).

global minimum of the effective energy (which would beat the purpose as repeating this proce-
dure would not generate a diverse set) but simply to avoid trapping in low entropy configurations.
The annealing procedure proceeds through a simultaneous ramping down of the temperature and
ramping up of K. The goal is to initially favor a thorough shuffling of the atomic positions and
avoid correlations between successive configurations by using a high temperature (10,000K) and
no entropy bias. Entropy maximization is then gradually favored by linearly decreasing the tem-
perature down to 0 and ramping up K to 1000 eV. The resulting configuration is then harvested
and added to the training set. The cycle then simply repeats as many times as needed.

The maximal value of entropy scaling factor K was empirically tuned so as not to overwhelm
Erepuisive While still providing a strong driving force for the maximization of the entropy. As
shown in Fig. 2, increasing K too much yields configurations where some pairs of atoms become
separated by very short distances. Large values of K also yield stiff effective potentials that are
prone to instabilities during annealing. We therefore settled on a maximal value of K = 1000 eV.
Note that the specific choice of K and Ey depends on the number of atoms in the simulation cell, as
the entropy so-defined is intensive, but the repulsive contribution is extensive. Their value should
therefore be readjusted as needed.

The spatial scale of the problem was chosen to be representative of tungsten atoms, but
the training set is fully generic, and can therefore be rescaled as needed to describe other ele-
ments. In the following, we used a fully-periodic cell containing n = 39 atoms with a volume of

9.54x9.54x14.31 A. This corresponds to a density of 0.03 atoms/A3, as compared to a bulk BCC
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density of 0.062 atoms/A3 for tungsten. The number of atoms was chosen so that cubic-scaling
DFT calculations would be affordable whereas the volume was chosen so that both high and low
density regions could coexist within the same simulation cell, thereby creating configurations that
contain to bulk, surfaces, and voids. While even larger volumes allowed for higher descriptor
entropy because of additional opportunities to create complex atomic arrangements, local minima
of the effective energy at low density tend to contain high proportion of 1D filament-like struc-
tures and of gas-like configurations. If such configurations are deemed relevant, a training set
can constructed by combining a range of different cell sizes. This possibility will be explored a
future study. The simulation cell was chosen to be elongated in one direction, so as to facilitate
the formation of free surfaces within the cell (which typically, but not always, form parallel to
the long axis). The specific of the cell size, shape, and number of atoms is not critical. The were
loosely set in order to discourage the formation of very ordered configurations, which could be
promoted e.g., if the cell size was a multiple of the hard core radius, or if the density was so high
that only closed-packed configurations could form.

In the following, atomic environments were described in terms of the so-called bispectrum
components originally developed in the context of the Gaussian Approximation Potentials (GAP)
potentials®®, and then adopted by the SNAP approach??. These descriptors are invariants of an
expansion of the the density of neighboring atoms around a central atom in terms of hyperspher-
ical harmonics. They are attractive because they are rotationally and permutationally invariant,
which facilitates the development of energy expressions that inherit from these same properties.
Progressively higher-order components then capture increasingly fine details of the distributions
of neighboring atoms. Details of the computation of the bispectrum components can be found in
the original publications®3. The results presented below used the first 6 bispectrum components to
characterize each atomic environment.

In the following, Eyepuisive follows the form proposed by Clarke and Smith3°:

E Z Z EO rg " rg " ( 3)
ive = m|—| —n|—
repulsive - n—m rij rij
with Eg =1eV,n=28, rg =2.7 10%, and m = 4. The potential was truncated at r = 2.71A, and
shifted to zero at the cutoff so as to capture only the repulsive part of the potential. The results are
not expected to be sensitive to the specific form of the repulsive potential, as its only purpose is to

enforce excluded volumes around each atom.
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FIG. 3: Examplar configurations generated with the entropy maximization approach. Most

configurations appear thoroughly random with no clear order.

III. RESULTS

1. Characterization of the descriptor diversity

10,000 configurations of n = 39 atoms were generated using the procedure described above.
A few representative configurations are shown in Fig. 3. The ensemble of these configurations is
referred to as the "biased" dataset. As a point of comparison, we compare the results with a so-
called "unbiased" reference dataset, where configurations were sampled from an MD simulation
at a temperature of 7 = 10,000K with K = 0, i.e., without attempting to maximize the entropy
but while enforcing excluded volume constraints. This would intuitively roughly correspond to
sampling from a high-temperature soft-sphere gas. As expected, the average descriptor entropy of
configurations in the biased set (S ~ 4.4) is larger than that of the unbiased set (S ~ 3.2), which

reflects the explicit promotion of diversity enforced by the entropic term.

The consequences of this increase in entropy can be appreciated by contrasting the distribution
of individual descriptors over the biased and unbiased sets, as shown in Fig. 4 for the first bis-
pectrum component, which is a measure of the local density around each atom. The distribution
over the biased set is clearly much broader than its unbiased counterpart, which was the intended
behavior. This also shows the importance of using cells with an overall low density, which allows
for the formation of both high and low density regions within the same cell. This shows that, even
if the entropy maximization was applied locally to each configuration, the procedure yields broad
distributions over the whole training set. Perhaps surprisingly, computing high (> 6th) order de-
scriptors shows that their distribution is also broadened in the biased set. A multiple correlation
analysis indicates that this results from linear dependence between descriptors; on average, we ob-
serve a correlation coefficient of about 0.7 for high-order descriptors against the first 6. Therefore,
in this specific case, the entropy-generated training set exhibits broader descriptor distributions,
even for descriptors that were not explicitly biased, which limits the need to extend the dimension

of the biased space.
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FIG. 4: Distribution of the first descriptor. Left: biased dataset; Right: unbiased dataset. The

biased dataset shows a much broader distribution of values, indicative of higher diversity.

FIG. 5: Distribution of the eight descriptor. Left: biased dataset; Right: unbiased dataset. The

biased dataset shows a much broader distribution of values, indicative of higher diversity.

2. Error estimations on trained potentials: biased vs unbiased datasets

The purpose of this work is not to train an actual potential for W, but to demonstrate that high-
diversity training sets can be generated. We therefore did not generate quantum reference data for
our training set. The potential impact of the increased diversity on accuracy and transferability
can nonetheless be estimated in an ML scenario where energies and forces are computed through
a gaussian process regression (GPR) constructed using the training set>'> as was done in the
GAP approach’33. For the purpose of this simplified analysis, we consider the GPR to act as an
interpolator that exactly reproduces reference data at training points and use the distance to the
nearest training point (in descriptor space) as a surrogate for the error in predictions at arbitrary
test points. In reality, the rate of variation of the energy with respect to position in descriptor
space would add an additional contribution to the prediction error of the GPR, as would forms of
regularization. The shift and scale transformation that renders the distribution of each descriptors
in the unbiased dataset mean free and unit variance was applied to both training and testing sets in
order to uniformize the scales of each descriptors. In the following, the training sets contains 6000
randomly selected atomic environments, and testing sets 3000. Results were averaged over 1000
random decompositions between testing and training sets. The unit-less distances were measured

in the 6-dimensional space spanned by the renormalized descriptors.

This nearest-neighbor distance in descriptor space is used to first compare the quality of the
unbiased and biased datasets. Table I shows the mean nearest-neighbor descriptor distances ob-
tained using different combinations of training and testing sets. The absolute value of the reported
errors, as it measures a distance in descriptor space does not have a simple physical interpretation,
beyond the expectation that they are proportional to the error in a trained ML potential. However,
the values can be directly compared between the different choices of training and testing sets.

Training on the unbiased set performs well (i.e., the mean error is low) when testing points are

9
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also sampled from the unbiased set. The distances however become very large when testing points
are sampled from the biased set. This is a reflection of the fact that the distribution of descriptors
in the unbiased set has a relatively narrow support: the training distribution is therefore dense over
the support, yielding small distances when the test points fall within the support, but potentially
very large distances when the test points fall outside of the support (e.g., when test points are sam-
pled from the biased distribution). In this latter case, the GPR is extrapolating, sometimes leading
to very large distances, as shown by the mean being significantly larger than the median distance,
and by the maximum distance being very large. This illustrates an important trade-off: a potential
trained on a narrow set of configurations can be expected to do well when used on configurations
close to this narrow set; it will however do poorly when departing from it. In contrast, the distances
obtained from training on the biased set show little dependence on the nature of the testing set, as
the GPR is not forced to extrapolate outside of the support of the training set. Another apparent
trade-off is that the mean distance when training on the biased set and testing on the unbiased set
is higher than that observed when training and testing on the unbiased set. This follows from the
inverse relationship between the size of the support and the density of points in descriptor space
when the number of training points if fixed. If one is aiming at a high-accuracy potential that is
only valid in a narrow region of descriptor space, lower errors can be achieved for a given amount
of training data. However, if one is instead aiming at transferability, the biased training set is
clearly superior to the unbiased one, as it limits opportunities for very large errors that can occur

when the ML method is forced to extrapolate.

3. Error estimations on trained potentials: biased vs hand-crafted datasets

A more stringent test of our approach is to compare the biased training set with a dataset that
was "hand-crafted" by domain experts. To this end, we select two training that were used in the

1,733 contains elas-

development of several recent potentials for tungsten. The first, hand-crafted #
tically deformed crystalline configurations, configurations harvested from DFT-based MD at high
temperature, liquid configurations, various surfaces, and a range of defects (interstitials, dislo-
cations, vacancies, and stacking faults), for a total of about 300,000 local W environment. The
second training set (hand-crafted #2) was designed with a particular focus on radiation damage

and defects>*. This second training set includes a subset of hand-crafted set #1, adding isolated

atoms and dimers, disordered surfaces, and configuration containing atoms approaching at short

10
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range (which is common in radiation damage applications), for a total of about 40,000 local W
environments.

Tables II and III reports the results of the distances to the nearest training point for training and
testing sets drawn from the hand-crafted sets #1, and #2, respectively, and the biased set. For the
purpose of that analysis, the training sets contain 2000 randomly selected atomic environments
and 1000 for the testing sets. Results were averaged over 1000 random decompositions between
testing and training sets. The results are largely similar to that observed when comparing to the
unbiased set. Training and testing from the hand-crafted set yields low errors as the support of both
training and testing distributions is very narrow (c.f. purple histogram in Fig. 8), but these increase
dramatically upon switching the test set to the unbiased set, again because extrapolation is then
required (c.f. the very long tail in the green distribution in Fig. 8). In contrast, training from the
biased set yields results that are similar for both testing sets (c.f. blue and red histograms in Fig.
8). These results suggest that the entropy-biased training set should be competitive with or even

superior to the hand-crafted set as it contains a more diverse distribution of atomic environments.

FIG. 6: Distribution of the first descriptor. Left: biased dataset; Right: hand-crafted #1 dataset.

FIG. 7: Distribution of the eight descriptor. Left: biased dataset; Right: hand-crafted #1 dataset.

Close analysis reveals that this characterization comes with caveats. Indeed, as shown in Fig.
6, the distribution of descriptors is in general significantly wider in the biased set than in the
hand-crafted set. However, the distribution of some descriptors in the hand-crafted set is strongly
peaked, as it contains a high proportion of crystalline local environments. In some cases, the peak
falls into a region where the density descriptors in the biased dataset is low, c.f. Fig. 7, which can
limit the accuracy of predictions carried out using the biased set alone for training. For example,
it can be seen in Tables II and III and errors are larger when testing from the hand-crafted sets and
training from the biased set than when testing and training on the biased set. This is an indication
that some regions that are well represented in the hand-crafted sets are relatively sparser in the
biased dataset. This effect becomes stronger when the space of descriptors in which the GPR
interpolation is carried out increases to tens or hundreds of dimensions. Note however that even

in this case, the errors remain below that of training with the hand-crafted set and testing with
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the biased set. This limitation could potentially be addressed by increasing the size of the biased
space or by also explicitly favoring high-symmetry local order, a strategy that we are currently
exploring.

This observation illustrates the tradeoffs discussed above: if one seeks an highly accurate po-
tentials that is valid in a small region of the possible configuration space of the problem (e.g.
in BCC crystalline configurations), a narrow but tailored training set, such as the hand-crafted
ones, is likely to perform better; on the other hand, if transferability is paramount, an automated
approach that explicitly favors diversity as the one proposed here is highly beneficial. Indeed,
generating a very large and diverse training set by by hand is extremely challenging, which is why
most training sets are restricted to crystalline phases, liquids, and simple defects. Only including
these cherry-picked configurations is however unlikely to cover the range of possible uses for in-
teratomic potentials, especially in extreme conditions of temperature, pressure, stress, irradiation,
etc, hence the importance of developing automated approaches such as the entropy-maximization
method proposed here.

While the ultimate goal is to completely automate the creation of training sets, these two ap-
proaches can be bridged to achieve both high accuracy in known low-energy states and transfer-
ability to higher-energy configurations. For example, if very high accuracy is paramount in the
BCC phase, e.g., for W, but high transferability is required elsewhere (e.g., to properly describe
disordered configurations that can be created following radiation damage events), an unbiased
dataset created by the entropy-maximization method can directly be combined with a hand-crafted

set when training a potential.

FIG. 8: Distribution of the distances to the closest training point for different combinations of
training and testing sets. Training from the biased set and testing from the hand-crafted #1 set
(red); training and testing from the biased sets (blue); training and testing from the hand-crafted

#1 set (purple); training from the hand-crafted #1 set and testing from the biased set (green).

IV. DISCUSSION

While the entropy-maximization method itself is very general, the importance of choosing an

appropriate descriptor space should be emphasized. Indeed, the method only generates diversity in

12



TABLE I: Error estimations: biased vs unbiased datasets. The error metric correspond to
unit-less (e.g., renormalized) nearest-neighbor distance in descriptor space between points in the

testing set and training sets.

Training set Testing set Mean Median Max
Unbiased Unbiased 0.2294 0.1827 5.9339
Unbiased Biased 4.6949 3.5311 32.0983

Biased Unbiased 0.9053 0.9068 2.3402
Biased Biased 0.8541 0.7846 5.7246

TABLE II: Error estimations on trained potentials: biased vs hand-crafted #1 datasets. The error
metric correspond to unit-less (e.g., renormalized) nearest-neighbor distance in descriptor space

between points in the testing set and training sets.

Training set Testing set Mean Median Max
Hand-crafted Hand-crafted 0.2263 0.1562 7.6514
Hand-crafted Biased 3.6680 2.3153 36.4918
Biased Hand-crafted 0.9923 1.0014 7.9049
Biased Biased 0.8541 0.7846 5.7246

TABLE III: Error estimations on trained potentials: biased vs vs hand-crafted #2 datasets. The
error metric correspond to unit-less (e.g., renormalized) nearest-neighbor distance in descriptor

space between points in the testing set and training sets.

Training set Testing set Mean Median Max

Hand-crafted Hand-crafted 0.1220 0.0510 5.1667

Hand-crafted Biased 9.6168 8.2602 34.7536

Biased Hand-crafted 2.9559 2.5148 20.4147

Biased Biased 1.0927 1.0024 7.0593
)
n:
=

q 2 13
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the space spanned by the descriptors. If these descriptors are insensitive to some important physi-
cal or chemical features, improvements in diversity could be limited along these dimensions. The
proposed implementation based on the bispectrum components can be expected to perform well
for monoatomic systems. Extensions to multi-component materials are in principle straightfor-
ward in conjunction with descriptors that are sensitive to local chemical order, such as the explicit
multi-element bispectrum components>>. This generalization is currently underway. Further ex-
tension to molecular systems should also be possible in principle, but chemical constraints might
have to be introduced to limit sampling to the chemically relevant subspace, thereby avoiding the

allocation of resources to chemically inaccessible or irrelevant configurations.

V.  CONCLUSIONS

We introduced a sampling-based approach for the automated training set generation of inter-
atomic potentials. Configurations are generated by sampling low-lying minima of an effective po-
tential energy function that explicitly favors the diversity of the local atomic environment through
an entropy maximization process. The generated training set is shown to be more diverse than
that generated by a random sampling procedure and even compared to hand-crafted sets used in
state-of-the-art machine-learned potentials, which promises improved transferability. Extensions
to global entropy-maximization over the whole training set (in contrast to the local configuration-
by-configuration optimization presented here) is in development and will be reported in an upcom-

ing publication.
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