

Transient Stability Analysis using Nonlinear Control Methods

PRESENTED BY

David Schoenwald
Sandia National Labs
Albuquerque, NM

Dan Trudnowski
Montana Tech University
Butte, MT

August 11, 2020

SAND2020-8351PE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
SAND2020-8XXPE

Goals of talk:

- Present an idea on transient stability control development that leverages nonlinear-based methods.
- Idea is separately being proposed to DOE-OE Advanced Grid Modeling (AGM) program, managed by Dr. Ali Ghassemian, and no decision on whether or not to fund this idea has been made at this time.
- If funded, the proposed idea has good potential for synergies with the interests and goals of TSAWG.
- We (SNL and MTU) do have a scope of work proposed, but there is flexibility in this to perform work that may help WECC/TSAWG in their mission.
- Therefore, feedback during and after the talk on work to consider is highly encouraged!

- Transient stability is highly correlated to the inertia connected to the synchronous grid.
- Nearly all modern control schemes for maintaining transient stability involve synchronous generator tripping schemes.
- As the penetration of inverter-based and distributed generation increases, tripping schemes will become more difficult to apply due to the wide distribution of the generation and the loss of system inertia.
- The potential for transient stability margins to worsen in the future grid is a primary motivation for the study of new, especially nonlinear, techniques.

Introduction

- Idea will investigate nonlinear control strategies for transient stability in wide-area power systems
- Nonlinear control methods have historically not been viewed as practical in large grids
- Recent advances in and proliferation of high-speed wide-area measurements → enables the use of previously unavailable signals for feedback control
- Rapid proliferation of inverter-based resources → enables implementation of distributed and decentralized control strategies
- Joint idea between Sandia and Montana Tech – teamed together on highly successful BPA damping control project

Problem Statement

- Definition of transient stability:

Ability of a power system to maintain synchronism when subjected to significant disturbances, e.g., major line trips, large gen trips, loss of large loads

- \rightarrow large excursions of rotor angles
- \rightarrow swing equation is nonlinear

- Currently, the most common approaches to analysis of transient stability:

- (1) analysis and design based on linearized model(s)
- (2) high fidelity simulation studies (e.g., WECC base cases in PSLF, PSSE, PowerWorld)
- (3) iteration between (1) and (2)

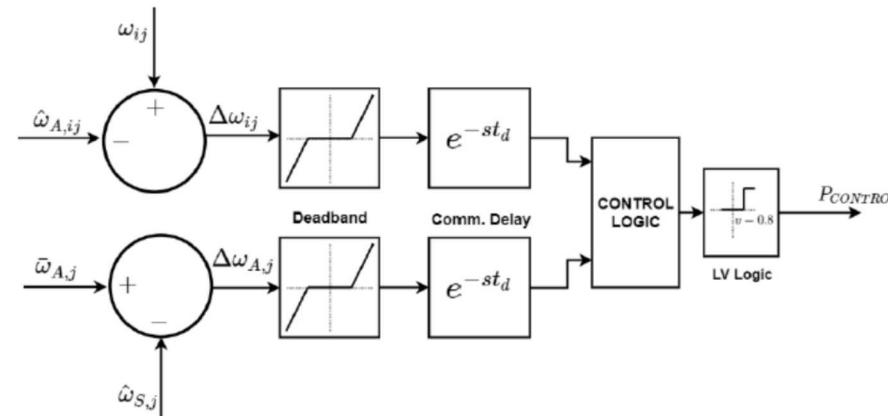
Proposed Work (subject to change)

Tasks proposed over two years, FY21 and FY22:

(not necessarily performed in the order listed here and some tasks will be concurrent with others)

- Thorough literature survey of transient stability concepts and control methods based on nonlinear dynamics theory
- Leveraging nonlinear methods, develop control strategies to improve wide-area transient stability
- Coordinate transient stability control strategies with small signal stability control (e.g., damping control)
- Incorporate wide-area measurements (if available) and leverage estimation techniques to obtain appropriate feedback signals
- Demonstrate performance of developed transient stability control methods on real-world grid models: MiniWECC, WECC base cases, etc.
- Investigate performance of developed methods for grids (e.g., WECC) with very high penetration of inverter-based generation

Background


Nonlinear control approaches studied in last 20-25 years:

- Equal area criterion
- Lyapunov-based stability analysis
- Partial energy functions
- Hamiltonian-based nonlinear power flow techniques
- Control design based on metrics of stability margins, e.g., generalized gain margin, gap metric
- More recently, machine learning is being leveraged to incorporate more complex component models

Recent Work

Prior recent work in this area conducted by MTU/SNL:

- Work based on equal area criterion and energy functions – Dr. Sam Ojetola (MTU Ph.D. graduate and very soon (Sept 2020) to start career at Sandia)
- Uses power modulation of energy storage devices for actuation (other sources of real power injection can also be leveraged, e.g., thyristor braking, HVDC)
- System is broken into areas based on groupings of generators
- Control strategy uses two parallel feedback loops
- First loop focuses on preserving synchronism of a given generator in its own area
- Second loop focuses on preserving synchronism of a given area with other areas
- Local frequency and center of inertia frequency measurements are used for feedback signals

Thank You!

Questions?

Contacts:

David Schoenwald
daschoe@sandia.gov

Dan Trudnowski
dtrudnowski@mtech.edu