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Introduction and Background
Stochastic Media

= Spatially heterogenous mixing i
— BWR Coolant f

— Concrete

— Rayleigh-Taylor instabilities | » ‘4
— Pebble Bed Reactors (PBR) |

= Cheese
— Smoked Gouda (atomically mixed)
— Colby Jack (binary) —
— Pepper Jack (N-ary)
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Introduction and Background
Methods for One-Dimensional, Binary, Markovian-Mixed Media

= Benchmark (bench)
— (M. L. Adams, E. W. Larsen, and G. C. Pomraning, 1989)
—  Brute force method that performs transport on ensemble of realizations
—  Exact but slow to converge

= Atomic Mix (AM) approximation
— (M. L. Adams, E. W. Larsen, and G. C. Pomraning, 1989)
— Mixing at atomic level
— Exact in the limit of small mean chord lengths (autocorrelation = 0)

= Algorithm A — Chord Length Sampling (CLS)
— (G.B.Zimmerman and M. L. Adams, 1991)
— Monte Carlo equivalent of Levermore-Pomraning Closure
— Exact for purely absorbing media
— No memory of chord length after each particle segment

= Algorithm B — Local Realization Preserving (LRP)
— (G. B. Zimmerman and M. L. Adams, 1991) and (P. S. Brantley and G. B. Zimmerman, 2017)
— Remembers current chord length until particle leaves current material

= Algorithm C
— (G. B. Zimmerman and M. L. Adams, 1991)
— Remembers current chord length and chord lengths on each side

= Conditional Point Sampling
— (E.H.Vuand A.J. Olson, 2020)
— Two components: algorithm (errorless) and conditional probability function
— Uses Woodcock tracking to make discrete point-wise material designations in real-time
Lawrence Livermore National Laboratory N A‘%
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Introduction and Background
Extension to d-Dimensional, Binary, Markovian-Mixed Media

= Benchmark (bench)
= Atomic Mix (AM) approximation
= Algorithm A — Chord Length Sampling (CLS)

= Algorithm B — Local Realization Preserving (LRP)

= Conditional Point Sampling

= Poisson-Box Sampling (PBS)
— (C. Larmier, A. Zoia, F. Malvagi, E. Dumonteil, and A. Mazzolo., 2018)
— Defines “Cartesian boxes” using Poisson-distributed hyperplanes in Cartesian-coordinate directions
— Samples material type of Cartesian boxes on-the-fly
— Memory versions of PBS (PBS-1 and PBS-2) analogous to CLS and LRP

Lawrence Livermore National Laboratory N I% 5
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Introduction and Background
Extension to One-Dimensional, N-ary, Markovian-Mixed Media

= S. D. Pautz and B. C. Franke. “The Levermore-Pomraning and Atomic Mix closures for n-ary

stochastic materials.” M&C 2017, on USB (2017).

— Produced transport benchmark results
— Work based on theoretical work of:

* R.Sanchez. “Linear kinetic theory in stochastic media.” ) Math Phys, volume 30, pp. 2498-2511 (1989).

* 0. Zuchuat, R. Sanchez, |. Zmijarevic, and F. Malvagi. “Transport in renewal statistical media: Benchmarking and
comparison with models.” ) Quant Spectrosc and Rad Transfer, volume 51, pp. 689722 (1994).

= A.J. Olson, S. D. Pautz, D. S. Bolintineanu, and E. H. Vu. “N-ary stochastic mixing for Markov

structures generated using Poisson-distributed hyperplanes.” M&C 2021 (2021, submitted).

— Two N-ary models that follow a Markov-chain process
* Uniform Sampling Scheme
* Volume Fraction-Based Sampling Scheme

— Both models are self-consistent, and each sampling scheme preserves input problem parameters
(mean chord lengths and volume fractions) in sampled material realizations.
— Both models reduce to the established binary, Markovian-mixed model (Pomraning, 1991).

In this work, we investigate two material sampling schemes based on the models

in (Olson et al., 2021) using Monte Carlo algorithms CLS and LRP.
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Material-Mixing Models:

Stochastic Transport Equation for Planar Geometry

= Stochastic Transport Equation

Y (x, u, Zs(x,
u ¢(9;xu “) + 2 (x, )P (x, p, w) = (z ©)

1
j_ldu'w(x,u',w)

= Boundary Conditions
0<x<L;-1<pu<l1
Y(O,1) =2,u=0;9p(L,u) =0,u<0

= Nomenclature
— L — domain length
— X, U, w — spatial, angular, and stochastic dependence
— X,(x, w) — total cross section
— YP(x, u, w) — angular flux

Lawrence Livermore National Laboratory N A‘% 8
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Material-Mixing Models:

Binary Markovian-Mixed Media Mixing Statistics

= Chord Length Distribution

Ao = —Ng log($)
Ag = —Nglog($)
= Correlation Length
1 1 1
VR VR Wit
LYY
A=t Ag
= Material Volume Fraction
p, = e
“ Ay + A
Pg=1-P,
= Material Probability at Interface
n(a|f) =1
n(fla) =1
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Material-Mixing Models:
N-ary Markovian-Mixed Media Mixing Statistics — Uniform Sampling

= Chord Length Distribution
A = —A;log($)

= Material Volume Fraction
Pi =

= Material Probability at Interface

1

m(jli) =N_1

l Lawrence Livermore National Laboratory N I% 10
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Material-Mixing Models:

N-ary Markovian-Mixed Media Mixing Statistics — Volume Fraction-Based Sampling

= Chord Length Distribution
A = —A;log($)

= Correlation Length

A - N-—-1
c — ZNl
i A
= Material Volume Fraction
P=1 Ac
1~ Al

= Material Probability at Interface
by

n(jli) =
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Monte Carlo Algorithms:
Chord Length Sampling (CLS)

> d. g i
'
. I '
> d;
t > d,
|
! . I
— g
L Cc
l
! . I

1) Sample distance to material interface, d;, with the material type sampled in proportion to
volume fraction.
4i
Z}Vllj
Ac

2)  If using volume fraction-based sampling scheme, compute volume fractions using P; = 1 — -

2

1)  If using uniform sampling scheme, compute volume fractions using P; =

2) Compute distance to boundary, d;, and sample distance to collision, d..

3) Determine particle event by computing the minimum of d;, d., and d;, and stream particle.
1)  If boundary is crossed, terminate particle.
2)  If minimum distance is to collision event, sample collision type. Terminate particle if absorbed. Return to step 2.
3) If material interface is crossed, sample a new d;. Return to step 2.

1) If using uniform sampling scheme, compute volume fractions using 7(j|i) = ﬁ
P;
2) If using volume fraction-based sampling scheme, compute volume fractions using 7(j|i) = 1_’P_
Lawrence Livermore National Laboratory N I% 13
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Monte Carlo Algorithms:

Local Realization Preserving (LRP)

d7 =0 - >df
> d
d;® > df ‘
dr =0 >df > d,
l
| .___l

1) Sample distance to material interface in the forward and backward direction, d; and d;,
respectively, with the material type sampled in proportion to volume fraction.

. . . . . A;
1)  If using uniform sampling scheme, compute volume fractions using P; = ZNLA
i)
. . ) . . A
2)  If using volume fraction-based sampling scheme, compute volume fractions using P; = 1 — IC
L

2) Compute distance to boundary, d;, and sample distance to collision, d..

3) Determine particle event by computing the minimum of d;, d., and d;, and stream particle.
1)  If boundary is crossed, terminate particle.

2)  If minimum distance is to collision event, sample collision type. Terminate particle if absorbed. Otherwise, adjust
d;} and d. In case of backscatter, switch d;f and d; . Return to step 2.

3)  If material interface is crossed, sample new d; and set d; to zero. Return to step 2.

1) If using uniform sampling scheme, compute material type using 7(j|i) = ﬁ
P;
2) If using volume fraction-based sampling scheme, compute material type using 7(j|i) = 1_'P_
Lawrence Livermore National Laboratory N I% 14
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Problem Description:
Benchmark Suite Problem Parameters

= Benchmark Set Cross Section Parameters

Case Number | %, o 21 22 23 Caseletter | ¢¢ ¢ o c3
1 10/99 100/11 10/99 100/11 a 1.0 0.0 1.0 0.0

2 2/101 200/10 2/101 200/101 b 00 1.0 0.0 1.0

3 10/99 100/11 2/101 200/101 C 09 09 09 09

d 0.0 00 0.0 0.0

= Benchmark Set Parameters for Uniform or Volume Fraction Based Sampling

Case Number | P, 0 P, 1 P. D) P3 A() A1 A2 A3 Ac
1 9/110 1/110  9/11 1/11 99/100 11/100 99/10 11/10 | 1.0
2 1/4 1/4 1/4 1/4 101/20 101/20 101/20 101/20 | 3.7875
3 99/1120 11/1120 101/224 101/224 199/100 11/100 101/20 101/20| 1.5
= Results

— Benchmark results produced using PlaybookMC
— CLS and LRP results produced using Mercury
— Results produced using 1E6 particles

Lawrence Livermore National Laboratory N A‘% 16
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Results and Analysis:
Computed Error Metrics

Relative Error
X — Xapprox

E, =
R X

Root Mean Squared Relative Error

RMS E 12152
R~ | R;
A i

Mean Absolute Relative Error
Mean |Eg| = Z |ER,|

= Maximum Absolute Relative Error
Max|Eg| = max |Eg,|

l Lawrence Livermore National Laboratory NYSE
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Results and Analysis:
Generated Mean Leakage Benchmarks — Uniform Sampling Results

Sampling Scheme

Case

Bench

Reflection
CLS

LRP

Bench

Transmission

CLS LRP

Uniform

la
1b
Ic

1d

0.2943(5)
0.2231(4)
0.4259(5)
0.0000(0)

0.2318(4)
0.1748(4)
0.3024(5)
0.0000(0)

0.2751(4)
0.1923(4)
0.3623(4)
0.0000(0)

0.2234(4)
0.1083(3)
0.2152(4)
0.0891(3)

0.2067(4)
0.1336(4)
0.2189(4)
0.0890(3)

0.2211(4)
0.1243(3)
0.2296(4)
0.0891(3)

2a
2b
2¢c
2d

0.0447(2)
0.6520(5)
0.4229(5)
0.0000(0)

0.0315(2)
0.5754(5)
0.3141(5)
0.0000(0)

0.0391(2)
0.6047(5)
0.3635(5)
0.0000(0)

0.1316(3)
0.2022(4)
0.1564(4)
0.1100(3)

0.1300(3)
0.2738(5)
0.1688(4)
0.1098(3)

0.1311(3)
0.2465(5)
0.1734(4)
0.1100(3)

3a
3b
3c
3d

0.0546(2)
0.6192(5)
0.4350(5)
0.0000(0)

0.0355(2)
0.5441(6)
0.3241(5)
0.0000(0)

0.0449(2)
0.5665(5)
0.3645(5)
0.0000(0)

0.1029(3)
0.1668(4)
0.1320(3)
0.0832(3)

0.1014(3)
0.2220(4)
0.1466(4)
0.0833(3)

0.1027(3)
0.2059(4)
0.1520(3)
0.0839(3)

e CLS and LRP produce statistically errorless results for purely
absorbing problems (“d” cases).
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Results and Analysis:

Generated Mean Leakage Benchmarks — Volume Fraction-Based Sampling Results

Reflection Transmission

Sampling Scheme

Bench

CLS

LRP

Bench

CLS

LRP

0.2884(5)
0.2362(4)
0.4327(5)
0.0000(0)

0.2188(4)
0.1800(4)
0.2892(4)
0.0000(0)

0.2480(4)
0.2199(4)
0.3785(4)
0.0000(0)

0.1975(4)
0.0987(3)
0.1878(4)
0.0780(3)

0.1809(4)
0.1286(3)
0.1958(4)
0.0782(3)

0.1898(4)
0.1076(3)
0.2052(4)
0.0789(3)

Volume Fraction

0.0447(2)
0.6516(5)
0.4221(5)
0.0000(0)

0.0315(2)
0.5754(5)
0.3141(5)
0.0000(0)

0.0391(2)
0.6047(5)
0.3635(5)
0.0000(0)

0.1315(3)
0.2021(4)
0.1557(4)
0.1103(3)

0.1300(3)
0.2738(5)
0.1688(4)
0.1098(3)

0.1311(3)
0.2465(5)
0.1734(4)
0.1100(3)

0.0442(2)
0.6748(5)
0.4642(5)
0.0000(0)

0.0287(2)
0.5915(5)
0.3425(5)
0.0000(0)

0.0366(2)
0.6286(5)
0.4014(5)
0.0000(0)

0.0344(2)
0.1139(3)
0.0631(2)
0.0270(2)

0.0339(2)
0.1796(4)
0.0786(3)
0.0270(2)

0.0342(2)
0.1496(4)
0.0768(3)
0.0269(2)

e CLS and LRP produce statistically errorless results for purely
absorbing problems (“d” cases).
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Results and Analysis:
Mean Leakage Accuracy Comparison — Computed Error Metrics

Reflection Transmission
Sampling Scheme | Error Metric | CLS LRP | CLS LRP

RMS Er | 0.246 0.130 | 0.187 0.135
Uniform Mean|Eg| | 0.235 0.124 | 0.136  0.105
Max|ER| | 0.350 0.178 | 0.354 0.234

RMS Er | 0.258 0.121 | 0.264 0.158
Volume Fraction Mean|Eg| | 0.246 0.116 | 0.191 0.122
Max|Eg| | 0351 0.172 | 0.577 0.313

* The relative error of purely absorbing leakage results (“d” cases)
were not included in computation.
* LRP is more accurate than CLS for this set of benchmark problems.

Lawrence Livermore National Laboratory N A‘% 20
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Results and Analysis:

Scalar Flux Distributions: Case 2c — Uniform Sampling

— —
- =
o a2
— —
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Uniform Sampling - Case 2c - Material 2
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Results and Analysis:
Scalar Flux Distributions: Case 3d — Volume-Fraction-Based Sampling
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Conclusions and Future Work

= Conclusions

— Demonstrated Chord Length Sampling (CLS) and Local Realization
Preserving (LRP) to extend to N-ary stochastic medium for one-
dimensional planar geometry

— Assessed accuracy of CLS and LRP algorithms by comparing mean leakage
results and material scalar flux distributions to benchmark results

— Uniform and volume fraction-based sampling schemes are self-consistent
for each set of problem parameters

— CLS and LRP produce exact results for purely absorbing problems

— LRP is generally more accurate than CLS for the problems examined

= Future Work
— Extend N-ary CLS and LRP to multi-dimensional problems

Lawrence Livermore National Laboratory N A‘% 24
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