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Introduction and Background
Stochastic Media

Spatially heterogenous mixing

— BWR Coolant

— Concrete

— Rayleigh-Taylor instabilities

— Pebble Bed Reactors (PBR)

Cheese

— Smoked Gouda (atomically mixed)

— Colby Jack (binary)

— Pepper Jack (N-ary)

r
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Introduction and Background
Methods for One-Dimensional, Binary, Markovian-Mixed Media

• Benchmark (bench)
(M. L. Adams, E. W. Larsen, and G. C. Pomraning, 1989)

Brute force method that performs transport on ensemble of realizations

Exact but slow to converge

Atomic Mix (AM) approximation
(M. L. Adams, E. W. Larsen, and G. C. Pomraning, 1989)

Mixing at atomic level

Exact in the limit of small mean chord lengths (autocorrelation = 0)

Algorithm A — Chord Length Sampling (CLS)
(G. B. Zimmerman and M. L. Adams, 1991)

Monte Carlo equivalent of Levermore-Pomraning Closure

Exact for purely absorbing media

No memory of chord length after each particle segment

Algorithm B — Local Realization Preserving (LRP)
— (G. B. Zimmerman and M. L. Adams, 1991) and (P. S. Brantley and G. B. Zimmerman, 2017)

— Remembers current chord length until particle leaves current material

Algorithm C
— (G. B. Zimmerman and M. L. Adams, 1991)

— Remembers current chord length and chord lengths on each side

Conditional Point Sampling
— (E.H. Vu and A.J. Olson, 2020)

— Two components: algorithm (errorless) and conditional probability function

— Uses Woodcock tracking to make discrete point-wise material designations in real-time
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Introduction and Background
Extension to d-Dimensional, Binary, Markovian-Mixed Media

Benchmark (bench)

Atomic Mix (AM) approximation

Algorithm A — Chord Length Sampling (CLS)

• Algorithm B — Local Realization Preserving (LRP)

• Algorithm C

Conditional Point Sampling

Poisson-Box Sampling (PBS)
— (C. Larmier, A. Zoia, F. Malvagi, E. Dumonteil, and A. Mazzolo., 2018)

— Defines "Cartesian boxes" using Poisson-distributed hyperplanes in Cartesian-coordinate directions

— Samples material type of Cartesian boxes on-the-fly

— Memory versions of PBS (PBS-1 and PBS-2) analogous to CLS and LRP
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Introduction and Background
Extension to One-Dimensional, N-ary, Markovian-Mixed Media

• S. D. Pautz and B. C. Franke. "The Levermore-Pomraning and Atomic Mix closures for n-ary
stochastic materials." M&C 2017, on USB (2017).
— Produced transport benchmark results

— Work based on theoretical work of:

• R. Sanchez. "Linear kinetic theory in stochastic media!' J Math Phys, volume 30, pp. 2498-2511 (1989).

• O. Zuchuat, R. Sanchez, I. Zmijarevic, and F. Malvagi. "Transport in renewal statistical media: Benchmarking and

comparison with models!' J Quant Spectrosc and Rad Transfer, volume 51, pp. 689-722 (1994).

A. J. Olson, S. D. Pautz, D. S. Bolintineanu, and E. H. Vu. "N-ary stochastic mixing for Markov

structures generated using Poisson-distributed hyperplanes." M&C 2021 (2021, submitted).
Two N-ary models that follow a Markov-chain process
• Uniform Sampling Scheme

• Volume Fraction-Based Sampling Scheme

Both models are self-consistent, and each sampling scheme preserves input problem parameters

(mean chord lengths and volume fractions) in sampled material realizations.

Both models reduce to the established binary, Markovian-mixed model (Pomraning, 1991).

In this work, we investigate two material sampling schemes based on the models
in (Olson et al., 2021) using Monte Carlo algorithms CLS and LRP.
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Material-Mixing Models:
Stochastic Transport Equation for Planar Geometry

• Stochastic Transport Equation
p., co)
 + Zt0c, (0)0(x) p.) (D) = zs(x; (D) 1 difiKx) c())

• Boundary Conditions
o < x < L; —1 < < 1

p.) = 2,p. 0; p.) = 0, < 0

• Nomenclature
— L — domain length
— x, p., co — spatial, angular, and stochastic dependence

- Zt(x) c()) — total cross section
— p., co) — angular flux
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Material-Mixing Models:
Binary Markovian-Mixed Media Mixing Statistics

• Chord Length Distribution

• Correlation Length

• Material Volume Fraction

= —Aa log(0
/1,6 = —Afl logg)

1 1 1

Ac Aa + Afl
A a Afi,

A
c 
= 
Aa + Afl

Aa
Pa = Aa Afl

Pfl = 1 — Pa

• Material Probability at Interface
Th(a1/0 = 1
TE(fl I = 1
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Material-Mixing Models:
N-ary Markovian-Mixed Media Mixing Statistics— Uniform Sampling

Chord Length Distribution
Ai = —Ai logg)

Material Volume Fraction

P
Aj

A,

Material Probability at Interface
1

= 
N — 1
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Material-Mixing Models:
N-ary Markovian-Mixed Media Mixing Statistics — Volume Fraction-Based Sampling

Chord Length Distribution
Ai = —Ai logg)

Correlation Length

Material Volume Fraction

A,
N —1

Pi = 1—

Material Probability at Interface

A,

A,

P
I
.

Th-U10 = 
1— Pi
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Monte Carlo Algorithms:
Chord Length Sampling (CLS)

dc
 ► di

• 
  di ► dc

•
dl

 01 

c

1) Sample distance to material interface, di, with the material type sampled in proportion to
volume fraction.

1) If using uniform sampling scheme, compute volume fractions using P, = 
Ai 

2) If using volume fraction-based sampling scheme, compute volume fractions using Pi = 1 —

2) Compute distance to boundary, db, and sample distance to collision, dc.

3) Determine particle event by computing the minimum of di, dc, and db and stream particle.
1) If boundary is crossed, terminate particle.

2) If minimum distance is to collision event, sample collision type. Terminate particle if absorbed. Return to step 2.

3) If material interface is crossed, sample a new di. Return to step 2.

1) If using uniform sampling scheme, compute volume fractions using it-WO = ItA

2) If using volume fraction-based sampling scheme, compute volume fractions using it-WO =
1-Pi
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Monte Carlo Algorithms:
Local Realization Preserving (LRP)

dF = 0  P:/iF

dF 4   iF

di7 = 0  

► dc

 • 
► dc

1) Sample distance to material interface in the forward and backward direction, diF and di
respectively, with the material type sampled in proportion to volume fraction.
1) If using uniform sampling scheme, compute volume fractions using P, = 

ni

2) If using volume fraction-based sampling scheme, compute volume fractions using Pi = 1 —

2) Compute distance to boundary, db, and sample distance to collision, dc.

3) Determine particle event by computing the minimum of di, dc, and db and stream particle.
1) If boundary is crossed, terminate particle.

2) If minimum distance is to collision event, sample collision type. Terminate particle if absorbed. Otherwise, adjust
cq and di . In case of backscatter, switch cq and c/F. Return to step 2.

3) If material interface is crossed, sample new cq and set c/F to zero. Return to step 2.

1) If using uniform sampling scheme, compute material type using 71.010 = N-1
2) If using volume fraction-based sampling scheme, compute material type using 7r(jli) =

1-Pi

Iv Lawrence Livermore National Laboratory
I NI -PRFS,nexxxv

Nffss, 14



Outline

Introduction and Background

N-ary Material-Mixing Models

Monte Carlo Algorithms

Problem Description and Results and Analysis

Conclusions and Future Work

Iv Lawrence Uvermore National Laboratory
I I NI -PRFS-ryvvyy



Problem Description:
Benchmark Suite Problem Parameters

• Benchmark Set Cross Section Parameters

Case Number Et,o Et,i Et,2 Et,3 Case Letter co c1 c2 c3

1 10/99 100/11 10/99 100/11 a 1.0 0.0 1.0 0.0
2 2/101 200/10 2/101 200/101 1) 0.0 1.0 0.0 1.0
3 10/99 100/11 2/101 200/101 c 0.9 0.9 0.9 0.9

d 0.() 0.0 0.0 0.0

• Benchmark Set Parameters for Uniform or Volume Fraction Based Sampling

Case Number Po P1 P2 P3 A0 A1 A2 A3 Ac

1 9/110 1/110 9/11 1/11 99/100 11/100 99/10 11/10 1.0
2 1/4 1/4 1/4 1/4 101/20 101/20 101/20 101/20 3.7875
3 99/1120 11/1120 101/224 101/224 99/100 11/100 101/20 101/20 1.5

Results
— Benchmark results produced using PlaybookMC

— CLS and LRP results produced using Mercury

— Results produced using 1E6 particles
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Results and Analysis:
Computed Error Metrics

- Relative Error

ER
X Xapprox

X

Root Mean Squared Relative Error

RMS ER E2Ri

Mean Absolute Relative Error
1 vl

Mean IERI = IERi l

Maximum Absolute Relative Error

McocIER I = max lERi l
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Results and Analysis:
Generated Mean Leakage Benchmarks - Uniform Sampling Results

Sampling Scheme Case Bench
Reflection
CLS LRP

Transmission
Bench CLS LRP

la 0.2943(5) 0.2318(4) 0.2751(4) 0.2234(4) 0.2067(4) 0.2211(4)
lb 0.2231(4) 0.1748(4) 0.1923(4) 0.1083(3) 0.1336(4) 0.1243(3)
lc 0.4259(5) 0.3024(5) 0.3623(4) 0.2152(4) 0.2189(4) 0.2296(4)
1 d 0.0000(0) 0.0000(0) 0.0000(0) 0.0891(3) 0.0890(3) 0.0891(3)

2a 0.0447(2) 0.0315(2) 0.0391(2) 0.1316(3) 0.1300(3) 0.1311(3)
Uniform 2b 0.6520(5) 0.5754(5) 0.6047(5) 0.2022(4) 0.2738(5) 0.2465(5)

2c 0.4229(5) 0.3141(5) 0.3635(5) 0.1564(4) 0.1688(4) 0.1734(4)
2d 0.0000(0) 0.0000(0) 0.0000(0) 0.1100(3) 0.1098(3) 0.1100(3)

3a 0.0546(2) 0.0355(2) 0.0449(2) 0.1029(3) 0.1014(3) 0.1027(3)
3b 0.6192(5) 0.5441(6) 0.5665(5) 0.1668(4) 0.2220(4) 0.2059(4)
3c 0.4350(5) 0.3241(5) 0.3645(5) 0.1320(3) 0.1466(4) 0.1520(3)
3d 0.0000(0) 0.0000(0) 0.0000(0) 0.0832(3) 0.0833(3) 0.0839(3)

• CLS and LRP produce statistically errorless results for purely

absorbing problems ("d" cases).
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Results and Analysis:
Generated Mean Leakage Benchmarks - Volume Fraction-Based Sampling Results

Sampling Scheme Case Bench
Reflection

CLS LRP
Transmission

Bench CLS LRP

la 0.2884(5) 0.2188(4) 0.2480(4) 0.1975(4) 0.1809(4) 0.1898(4)
lb 0.2362(4) 0.1800(4) 0.2199(4) 0.0987(3) 0.1286(3) 0.1076(3)
lc 0.4327(5) 0.2892(4) 0.3785(4) 0.1878(4) 0.1958(4) 0.2052(4)
ld 0.0000(0) 0.0000(0) 0.0000(0) 0.0780(3) 0.0782(3) 0.0789(3)

2a 0.0447(2) 0.0315(2) 0.0391(2) 0.1315(3) 0.1300(3) 0.1311(3)
Volume Fraction 2b 0.6516(5) 0.5754(5) 0.6047(5) 0.2021(4) 0.2738(5) 0.2465(5)

2c 0.4221(5) 0.3141(5) 0.3635(5) 0.1557(4) 0.1688(4) 0.1734(4)
2d 0.0000(0) 0.0000(0) 0.0000(0) 0.1103(3) 0.1098(3) 0.1100(3)

3a 0.0442(2) 0.0287(2) 0.0366(2) 0.0344(2) 0.0339(2) 0.0342(2)
3b 0.6748(5) 0.5915(5) 0.6286(5) 0.1139(3) 0.1796(4) 0.1496(4)
3c 0.4642(5) 0.3425(5) 0.4014(5) 0.0631(2) 0.0786(3) 0.0768(3)
3d 0.0000(0) 0.0000(0) 0.0000(0) 0.0270(2) 0.0270(2) 0.0269(2)

• CLS and LRP produce statistically errorless results for purely

absorbing problems ("d" cases).
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Results and Analysis:
Mean Leakage Accuracy Comparison — Computed Error Metrics

Sampling Scheme Error Metric
Reflection
CLS LRP

Transmission
CLS LRP

RMS ER 0.246 0.130 0.187 0.135
Uniform MearilER I 0.235 0.12.4 0.136 0.105

Max1ER I 0.350 0.178 0.354 0.234

RMS ER 0.258 0.121 0.264 0.158
Volume Fraction MeanlER 1 0.246 0.116 0.191 0.122

Max1ER I 0.351 0.172 0.577 0.313

• The relative error of purely absorbing leakage results ("d" cases)
were not included in computation.

• LRP is more accurate than CLS for this set of benchmark problems.
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Results and Analysis:
Scalar Flux Distributions: Case 2c — Uniform Sampling

Uniform Sampling - Case 2c - Material O.

3.0

2.5

2.0

E 1.5
-g

1.0

0.5

0.0

Uniform Sampling - Case 2c - Material 2

Uniform Sampling - Case 2c - Material 1

Uniform Sampling - Case 2c - Material 3
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Results and Analysis:
Scalar Flux Distributions: Case 3d — Volume-Fraction-Based Sampling
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Conclusions and Future Work

Conclusions
— Demonstrated Chord Length Sampling (CLS) and Local Realization

Preserving (LRP) to extend to N-ary stochastic medium for one-
dimensional planar geometry

— Assessed accuracy of CLS and LRP algorithms by comparing mean leakage

results and material scalar flux distributions to benchmark results
— Uniform and volume fraction-based sampling schemes are self-consistent

for each set of problem parameters
— CLS and LRP produce exact results for purely absorbing problems
— LRP is generally more accurate than CLS for the problems examined

Future Work
— Extend N-ary CLS and LRP to multi-dimensional problems
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