
Software@Sandia

:44:••• CCR
Center for Computing Research

•SAND2020-8327PE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

A Python implementation of Set Gate Tomography

Erik Nielsen

Online Tutorial Series August, 2020
- liffr NffSit

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology Ft Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

3 Motivation: Quantum computers don't "just work"
Quantum computers are complex, finely tuned devices that try to preserve the coherence of a quantum
state and control and measure that state. While they have great promise as a computing platform,

current quantum processors are small (5-50 qubits) and noisy (have high error rates).
https://www.econornist.com/science-and-technology/2012/02/25/an-uncertain-future 1

If today's quantum
processor were a car.

Rauel.Simmonds

To advance the field of quantum computing:

1. Running algorithms on existing systems can yield algorithmic insights. But this is confounded by
unexpected failures. An ability to accurately assess the capabilities of a quantum processor is
essential to employing it for useful research.

2. Larger systems with less noise must be built. The better noise is understood in current devices,
the better that noise can be combated in future versions.

•Benchmarking: Assess the overall performance of a quantum processor.

• Clifford (standard), direct, and mirror randomized benchmarking (RB)

• Volumetric benchmarking

• Parity benchmarking

•Model-based characterization: Create a detailed error model capable of predicting the

observed processor output. Insights into specific error mechanisms can ideally be gained by

looking at the model.

• Gate set tomography (the "GST" in pyGSTi)

• Reduced-model tomography

• Idle tomography

4 I What does pyGSTi do?

The pyGSTi software helps users quantify and understand what's not right with a quantum computer.

It interfaces with a quantum computer at a high "computer science" level by running circuits/programs on the
computer and analyzing the (classical) data that results. PyGSTi is essentially a diagnostic tool, and performs:

Automotive analog

Broadly referred to as "quantum characterization, validation, and verification" (QCVV).

5 I Benchmarking

Task: To provide a holistic summary of a quantum processor's overall performance

Solutions: Multiple protocols have been developed and implemented to address this task, but
all follow the same basic paradigm, which is to:

1. Execute a collection of random programs (circuits) on the quantum computer for which
you know the correct output. The circuits all come from a common "family" but have
various depths (program lengths).

2. The fraction of correct outcomes (ideally 100%) for each circuit, along with it's depth
information, are fit with a simple decay curve to arrive at an overall estimate of the error-
per-depth present in the processor (for the specific circuit family that was used).

The technically challenging pieces of benchmarking algorithms are:

•Choosing a circuit family (result should be meaningful; circuits must have known oucome)

• Sampling from a distribution (that may be difficult to sample from, e.g. 2-qubit Cliffords).

Fraction of correct

outcomes.

program length

(circuit depth)

6 Model-based characterization

Task: To provide a detailed model of a quantum processor's per-circuit performance

Solutions: Gate set tomography (GST) and variants thereof form the core protocols that
address this task. The basic GST algorithm is to:

1. Select a class of parameterized models that constitutes your "search space".

2. Execute a collection of highly structured programs (circuits) that are sensitive to all the
model parameters.

3. Optimize likelihood of the model given the data. This involves repeatedly simulating
the circuits using the model located a particular parameter-space point and updating that
point. The result is a best-fit model.

The technically challenging pieces of model-based characterization algorithms are:

•Choosing meaningful and efficient models (describe data but not too many parameters)

•Constructing structured circuits that are sensitive to model parameters.

• Simulating circuits (exponential in # of qubits)

• Optimization over model space (a non-convex, many-parameter optimization)

Likelihood L(Model(fi) l Data)

4-
Optimize parameters fi

4
Best-fit

Model

7 I Different ways of integrating pyGSTi into your workflow

1. As a standalone QCVV tool:

• pyGSTi acts as a separate application.

• Interaction with other software is minimal, often using
text files for I/O.

• Often used for heavyweight protocols (e.g. GST).

2. Within a Python analysis toolchain.

• pyGSTi functionality called as a subroutine

• Useful for lightweight protocols (e.g. Model testing, RPE)

1. Customized QCVV protocols.

• User-written code adds specific functionality to pyGSTi

• pyGSTi calls user code as a subroutine.

• Example: "Physical-model GST"

circuits

data

41(eel Results

9 PyGSTi's Protocol pattern:
All of the protocols (benchmarking and characterization) are run using the same pattern within pyGSTi:

1. Choose a protocol; create*
a Protocol object: Protocol

3. Execute the circuits in the experiment design

on your quantum computer. Save the results as a

data set, which gets packaged with the experiment
design into a ProtocolData object.

4. Run the protocol on the data:

Protocol

*can actually be deferred to step 4

. run (

2. Generate a collection of circuits

compatible with that protocol — an

experiment design.

ProtocolData

.1

ProtocolData

5. Look at the results!

rotocolResults

Protocol

DataSet

10 I Example: Randomized Benchmarking

Using pyGSTi to perform direct randomized benchmarking on 4 qubits:

protocol = pygsti.protocols.RB() #Step 1

design pygsti.protocols.DirectRBDesign(pspec,

depths=[0, 1, 2, 4, 8, 16, 32, 64, 128, 256],

circuits per depth=10,

qubit labels=['0 1 ,'Q1','Q2', 'Q3']) #Step 2

pygsti.io.write empty protocol data(design, 'example rb', clobber ok=True)

--- Step3: TAKE DATA HERE (fill in dataset.txt) ---

data = pygsti.io.load_data_from_dir('examplerb')

results = protocol.run(data) #Step 4

ws = pygsti.report.Workspace()

ws.init notebook mode(autodisplay=True)

ws.RandomizedBenchmarkingPlot(results) #Step 5 4

S
u
c
c
e
s
s
 p
ro
ba
bi
li
ty

• Average success probabilities
1 Fit, r = 0.0036 +/- 9e-05

0.8

0.6
•

0.4

0 50 100 150 200 250

RB sequence length (m)

11 Example: Gate Set Tomography

Using pyGSTi to perform gate set tomography on 1 qubit:
protocol = pygsti.protocols.StandardGST('TP,CPTP,Target') #Step 1

design pygsti.protocols.StandardGSTDesign(smq1Q_XYI.target_model(),

smq1Q_XYI.prep fiducials(), smq1Q_XYI.meas_fiducials(),

smq1Q XYI.germs(), max lengths=[1,2,4,8,16,32]) #Step 2

pygsti.io.write empty protocol data(design, 'example gst', clobber ok=True)_ _ _ _
--- Step3: TAKE DATA HERE (fill in dataset.txt) ---

data = pygsti.io.load_data_from_dir('examplegst')

results = protocol.run(data) #Step 4

report = pygsti.report.construct_standard_report(

results, title="GST Tutorial Example Report", verbosity=2) #Step 5

report.write_html("GSTExampleReport.html", single file=True, verbosity=2)

Summary

Model Violation

Overview

Per-sequence detail

Gauge Invariant Error Metrics

GST Tutorial Example Report
generated by pyGSTi on August 03, 2020

Summary
Welcome to a pyGSTi analysis report! This report is organized into "tabs", each of which is
accessible from the sidebar on the left. This Summary tab summarizes the most popular analyses

, • • •1 1 1

12 Open Research Problems

•Scaling model-based methods to larger number of qubits:
• Circuit simulation cost is bottleneck

•ylodel-based methods on larger-than-gate-level components of a processor.
• E.g., our recently developed "parity benchmarkine performs benchmarking on a parity-check circuit.

•Development of random or structured circuits to benchmark large (10-100 qubit) quantum processors.
• Circuits must have known expected outcomes and also probe the processor well.

•Real-time methods for tune-up and/or characterization:
• Almost all QCVV methods execute many circuits and then analyze the resulting data in bulk. Protocols that build
and retain knowledge of the characterized state of a processor are interesting.

13 I Technical information about pyGSTi

*Written in Python.
• Now requires Python 3.5+

• Around 150K lines of code (medium size?)

• Contains optional compiled C extensions (can function as a pure Python package)

• GitHub wwwpygsti.info

• Software dependencies:
• numpy, scipy, plotly

• Continuous integration tests
• Linting
• Unit tests

• System tests

View on GitHub

pyGSTi
A python implementation of Gate Set Tomography

• Documentation
• Tutorials

• Online documentation at pygsti.readthedocs.io

• Contributions & feedback:
• We welcome feedback and input from outside users.

• Non-Sandia-employees must sign a contributor license agreement (CLA) in order for to make
contributions.

•License: Apache 2.0

14 I Publications

Publications primarily about pyGSTi:

• Erik Nielsen et al, 'Probing quantum processor performance with pyGSTi" 2020 Quantum Sci. Technol. 5 044002

Publications using pyGSTi to perform experimental research:
• R. Blume-Kohout, J. K. Gamble, E. Nielsen, K. Rudinger, J. Mizrahi, K. Fortier, and P. Maunz, Nat. Commun. 8, 14485 (2017).

• J. P. Dehollain, J. T. Muhonen, R. Blume-Kohout, K. M. Rudinger, J. K. Gamble, E. Nielsen, A. Laucht, S. Sim- mons, R. Kalra, A. S. Dzurak, et al., New J. Phys. 18, 103018 (2016).

• T. J. Proctor, A. Carignan-Dugas, K. Rudinger, E. Nielsen, R. Blume-Kohout, and K. Young, Phys. Rev. Lett. 123, 030503 (2019).

• D. Kim, D. Ward, C. Simmons, J. K. Gamble, R. Blume- Kohout, E. Nielsen, D. Savage, M. Lagally, M. Friesen, S. Coppersmith, et al., Nat. Nanotechnol. 10, 243 (2015).

• K. Rudinger, S. Kimmel, D. Lobser, and P. Maunz, Phys. Rev. Lett. 118, 190502 (2017).

• M. Rol, C. Bultink, T. O'Brien, S. de Jong, L. Theis,

• X. Fu, F. Luthi, R. Vermeulen, J. de Sterke, A. Bruno, et al., Phys. Rev. Appl. 7, 041001 (2017)

• K. Rudinger, T. Proctor, D. Langharst, M. Sarovar, K. Young, and R. Blume-Kohout, Phys. Rev. X 9, 021045 (2019).

• S. Mavadia, C. L. Edmunds, C. Hempel, H. Ball, F. Roy, T. M. Stace, and M. J. Biercuk, npj Quantum Informa- tion 4, 7 (2018).

• M. Ware, G. Ribeill, D. Riste, C. A. Ryan, B. John- son, and M. P. da Silva, arXiv preprint arXiv:1803.01818 (2018).

• T. Proctor, M. Revelle, E. Nielsen, K. Rudinger, D. Lob- ser, P. Maunz, R. Blume-Kohout, and K. Young, arXiv preprint arXiv:1907.13608 (2019).

• G. A. L. White, C. D. Hill, and L. C. L. Hollenberg, "Performance optimisation for drift-robust fidelity im- provement of two-qubit gates," (2019), arXiv:1911.12096 [quant-ph].

• Y. Chen, M. Farahzad, S. Yoo, and T.-C. Wei, Phys. Rev. A 100, 052315 (2019).

• M. Sarovar, T. Proctor, K. Rudinger, K. Young, E. Nielsen, and R. Blume-Kohout, "Detecting crosstalk errors in quantum information processors," (2019), arXiv:1908.09855 [quant-ph].

• T. L. Scholten, Y.-K. Liu, K. Young, and R. Blume- Kohout, "Classifying single-qubit noise using machine learning," (2019), arXiv:1908.11762 [quant-ph].

• L. C. G. Govia, G. J. Ribeill, D. Risf e, M. Ware, and H. Krovi, "Bootstrapping quantum process tomography via a perturbative ansatz," (2019), arXiv:1902.10821 [quant-ph].

• S. S. Hong, A. T. Papageorge, P. Sivarajah, G. Crossman, N. Didier, A. M. Polloreno, E. A. Sete, S. W. Turkowski, M. P. da Silva, and B. R. Johnson, Phys. Rev. A 101, 012302 (2020).

• M. R. Geller, "Rigorous measurement error correction," (2020), arXiv:2002.01471 [quant-ph].

• M. K. Joshi, A. Elben, B. Vermersch, T. Brydges, C. Maier, P. Zoller, R. Blatt, and C. F. Roos, "Quan- tum information scrambling in a trapped-ion quantum simulator with tunable range interactions," (2020),

arXiv:2001.02176 [quant-ph].

1 5 I The future of pyGSTi

•PyGSTi continues to be under active development, funded under multiple projects at Sandia National Labs.

•While PyGSTi continues to implement new protocols and features, specifically focusing on characterization
of larger systems, there is also effort to mature the codebase. In particular, reaching version 1.0, marked by
more stringent testing and a more stable API, are near-term goals.

•There is a desire to integrate more with other existing tools (particularly in the area of circuit simulation).

16 I Software Points of Contact

•Relvant URLs:
• pyGSTi on GitHub: www.pygsti.info

• Documentation: pygsti.readthedocs.io

• Quantum Performance Lab: c_pl.sandia.gov

*Developers:
• Erik Nielsen

• Timothy Proctor

• Kenneth Rudinger

• Antonio Russo

• Kevin Young

• Robin Blume-Kohout

• Robert Kelly

group photo

•Direct questions and comments to: pygsti@sandia.gov

17 k Extra content: full scripts for running examples (including data generation)
RB Example

import pygsti

#Step 0: create a processor specificiation (defines your device)

n_qubits = 4

qubit_labels = rQ0','Q1','Q2','Q31

gate_names = rGxpi2', 'Gxmpi2', 'Gypi2', 'Gympi2', 'Gcphasel

availability = {'Gcphase':[(Q0',1Q1'), (Q3',W)I1

pspec = pygsti.obj.Processorspec(n_qubits, gate_names, availability=availability,
qubit_labels=qubit_labels, construct_models=(clifford,))

pickle.dump(pspec, open(MyProcessorSpec.pkr,'wb'))

import pickle

pspec = pickle.load(open(MgrocessorSpec.pkr,YU))

Step 1: choose a protocol

protocol = pygsti.protocols.RB()

#Step 2: Create an experiment design for doing Direct RB on our 4-qubit processor

design = pygsti.protocols.DirectRBDesign(pspec,

depths= [0, 1, 2, 4, 8, 16, 32, 64, 128, 256],

circuits_per_depth=10,

qubit_labels= rQ0','Q1','Q2', 'Q31,

sampler='edgegrab',

samplerargs= [0.5],

randomizeout=True,

citerations=20)

#Step 3: Take data

pygstilo.write_empty_protocol_data(design, 'example_rb', clobber_ok=True)

STOP - take data here by filling in the 'dataset.txf file produced in the last line.

data = pygsti.ioload_data_from_dir(example_r&)

#Step4: Run the protocol

results = protocol.run(data)

#Step5: Look at the results

ws = pygsti.report.Workspace()

ws.init_notebook_mode(autodisplay=True)

ws.RandomizedBenchmarkingPlot(results)

gate_error_rate = 0.001; n_qubits = 4

print("The error rate we approximately expect accord to Direct RB theory = ", 1 - (1 -
gate_error_rate)**n_qubits))

Construct an error model with 0.1% local depolarization on each qubit after each gate.

gate_error_rate = 0.001

data_template_filename = 'example_rb/data/datasertxt'

qubit_labels = rQ0','Q1','Q2','Q31

gate_names = rGxpi2', 'Gxmpi2', 'Gypi2', 'Gympi2', 'Gcphasel

availability = {'Gcphase':[(Q0',1Q1'), (Q11:Q2'), (Q3','QO')11

pspec = pygsti.obj.Processorspec(len(qubit_labels), gate_names,

qubit_labels=qubit_labels, construct_models=('W,))

noisemodel = pspec.modelsrTpi.copy()

for gate in noisemodel.operation_blksrgatesl.values():

if gate.dim == 16:

gate.depolarize(1 - pygsti.tools.rbtools.r_to_p(1 - (1-gate_error_rate)**2, 4))

if gate.dim == 4:

gate.depolarize(1 - pygsti.tools.rbtools.r_to_p(gate_error_rate, 2))

pygstilo.fill_in_empty_dataset_with_fake_data(noisemodel, data_template_filename,
num_samples=1000, seed=1234)

18 Extra content: full scripts for running examples (including data generation)
GST Example

import pygsti

#Step 0: import a standard "model-pack'', essentially a 1-qubit processor spec & more for our device

from pygsti.modelpacks import smq1Q_XYI

#Step 1: choose a protocol

protocol = pygsti.protocols.StandardGST(TP,C1 ,Target')

#Step 2: create an "experiment design" for doing GST on the std1Q_XYI gate set

design = pygsti.protocols.StandardGSTDesign(smq1Q_XYLtarget_model(), smq1Q_XYLprep_fiducialsO, smq1Q_XYLmeas_fiducials(),

smq1Q_XYLgerms (), max_lengths= [1,2,4,8,16,32])

#Step 3: Take data

pygsti.io.write_empty_protocol_data(design, 'example_gse, clobber_ok=True)

STOP - take data here by filling in the 'dataset.txt' file produced in the last line.

data = pygsti.io.load_data_from_dir('example_gst')

#Step 4: Run the protocol

results = protocol.run(data)

#Step 5: Look at the data (generate a HTML report)

report = pygsti.report.construct_standard_report(

results, title="GST Tutorial Example Report", verbosity=2)

report.write_htm1("GSTExampleReport.htmr, single_file=True, verbosity=2)

Look at the report [here](GSTExampleReport.html)

#Generate GST Data

import pygsti

from pygsti.modelpacks import smql Q_XYI

data_template_filename = 'example_gst/data/dataset.txt'

datagen_model = smq1Q_XYLtarget_model().depolarize(op_noise=0.01, spam_noise=0.001)

pygsti.io.fill_in_empty_dataset_with_fake_data(datagen_model, data_template_filename, num_samples=1000, seed=1234)

