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ENABLING THE FUTURE

• Printed Electronics and
Flexible Systems enable future
innovations and applications
• Low cost sensors in smart and
connected devices (Internet of
Things (loT))

• Smart-packaging, RFID tags
• Healthcare wearable devices
• Flexible displays
• Organic Photovoltaics
• $9.8 billion (2019)
$19.8 billion (2024)
(2019 Markets and Markets)
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PRINTABLE ELECTRONICS

FLEXIBLE SCREENS

Challenge lies in understanding
complex physical mechanisms
to generate smaller features

2020 AUGUST 4
GRAVURE PRINTING DEFECT PREDICTION VIA MACHINE LEARNING

ROBERT MALAKHOV THE UNIVERSITY OF NEW MEXICO

2



GRAVURE PRINTING PROCESS

BLANK
SUBSTRATE

COMPLIANT
BACKING

2. WIPING
BLADE REMOVES EXCESS WIPING

1 . FILLING
CELLS FILLED WITH INK
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Gravure printing is a complex
process with multiple steps and
physical mechanisms

3. TRANSFER
SUBSTRATE PRESSED
AND SEPARATED
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4. SOLIDIFICATION

ideal for PE: 
+ Over wide areas
+ High throughput
+ Durable
+ Wide solvent

compatibility
+ Combine with

other mechanisms
+ Pattern resolution
+ Print speed

Overlay and
registration is
challenging
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DEFECTS LEAD TO PERFORMANCE DISRUPTION
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What is the cause
of these defects?

STRIATIONS Loss OF CONDUCTIVITY
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PINHOLES: NOT ALL PINHOLES ARE THE SAME

• May be controlled for
• Template defects
• Ink impurities
• Missing particulate
• Irregular template contact
• Environmental contaminants

• Less understood
• Ink spreading / leveling
• Gravure cell gas trapping

What is the cause of these
process-based pinholes?

(d)

MISSING DOTS 2015 APILO ET AL.

GAS TRAPPING 1985 BERY ET AL.
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NOT ENOUGH INK SPREADING
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ENVIRONMENTAL CONTAMINANTS
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STRIATIONS: VISCOUS FINGERING VS RIBBING
What is the cause of these striations?

Viscous Fingering
• Brumm et al. speculated
due to viscous fingering

• Upstream transfer nip
instabilities generate air
fingers that index striations

• Can only occur in transfer
nip where gas can be entrained 2019 BRUMM ET AL.

120 on,

2014 LEVANCHE ET AL. 2019 BRUMM ET AL.

Ribbing
• May be due to instability
common in separating flows

• Ribbing instability leads to
peaks and troughs that
drive differential drying
and colloidal aggregation
that index striations 1988 SOULES ET AL. 2002 VARELA LOPEZ ET AL. 2007 FUJITA ET AL.
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INFORMATICS APPROACH & RESULTS COLLECTION

Gravure is a complex process so use
machine learning to see big picture!

7

EXTENSIVE
DATABASE
OF MANY
FEATURES

5. Input
Data

1. Print Sample
PREDICTIONS

VIA
ALGORITHMS

2. Clean Template

3. Dry with minimal
dust and handling

4. Characterize Prints
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CHARACTERIZATION VIA COMPUTER VISION
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3. CONTOURED BINARY

Wig

2. COLOR DETECTION

O
3. THRESHOLDING &

MORPHOLOGICAL
PROCESSING

2. NOISE & CONTRAST
ENHANCEMENT
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•

ML ALGORITHMS

Support Vector
Machine (SVM) 

Separates data into groups
(classifications) in n-
dimensional feature space

Uses the large margin
principle to find a hyperplane
with a large margin (left)
versus that of a small margin
(right) Optimal Hyperplane
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Feature 1 Feature 1

Learn which features are most sensitive and which set
of features is enough to accurately predict defects

Recursive Feature 
Elimination (RFE) 

imply a parameter sensitivity
analysis j
Tests removal of least
sensitive features to minimize
features necessary to
accurately predict the
classification

oc.

5 4

0 3

10 

OPTIMAL AMOUNT OF FEATURES

Number of Features Selected
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Stratified K Fold 
Cross-Validation 

Makes sure all the data is
used in training and testing

Semi-random partitioning of
data so that all data
(including each
classification) is used once in
the training and once in the
testing of the model

Training Data Test Data

Iterationk=1 ••00••0••0•0••00•000•00000•00•0)

Iterationk= 2 ••00••0••0•0••00•0(00•000,•00•0

Iterationk= 3 ••00••0••0•0@•00•0)00•00•••00•0

Iterationk=4 ••00•0(0••0•0)0•00•000•00•••00•0

------ - -- ,

Iterationk=5 (0•00••)0••0•0••00•000•00•••00•0

-----
-- - -

Full Data Set
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PREDICTIONS & CONFIDENCE
Pinholes
Classification 0.94±0.01

Optimal Features viscosity,
su bstrate

• Viscosity
• Higher viscosity resists complete filling of

gravure cells
• Multiple components including particle size,
shape, loading, temperature, etc.

• Substrate
• Poroity difference between paper and

plastic
• Surfcice energy vgriation causing incomplete

wetting or dewetting mechanics

Managing cell to substrate transfer vital

Striations
Classification 0.87±0.05

Optimal Features particle size,
cell depth,
print speed

• Particle Size
• Unexpected result from the ML
• Fewer large particles fit in a cell
• Reduced mobility affecting leveling when

drying

• Cell Depth
• Smaller cells deposit thinner films that dry

before particles can level

• Print Speed
• Main ribbing instability criterion

Ribbing consistent with critical features
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effects observed during printing
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HIGH SPEED VISUALIZATION OF TRANSFER

• Observe transfer process in situ

• Maintain view of transferred material

• Observe spreading

PRINTHEAD CARRIAGE ,

UNINTERRUPTED OBSERVATION

DO THE
STRIATIONS
INDEX TO
RIBBING?

OR IS IT
DUE TO
EFFECTS
AFTER THE
TRANSFER?
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Ribbing into striation visualization

Ribs in transfer nip
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Peaks and troughs on substrate
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Striations
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