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EXAMPLE: PIHYSICAL VAPOR DEPOSITION OF THIN FILMS
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Deposition

Transport

Sputtering

Target A

Heating, rotating stage
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Target B



MODELING PVD USING PHASE-FIELD
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Explicitly model vapor
transport

...so we can model multiple
PVD processes

No artificial deposition of
vapor

...so we can capture hillock
formation

Account for surface and
bulk diffusion into one
model

...so we can account for the
composition of surface vs. bulk
phenomena



MODELING PVD USING PHASE-FIELD
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Only considered within the solid thin film

Describes concentration Et elastic fields

Describes two-way coupling between
elastic and concentration fields (Vegard)
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TRANSPORT & EVOLUTION OF INCIDENTVAPOR 0 5,Zrones
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1 Local vapor pressure

2 Sputtering power (velocity)

3. Vapor density and velocity can be
adapted to simulated various PVD
processes

Random distribution of vapor phase
initially

Source term to allow for removal of
vapor that is being converted to solid
at thin-film interface

6. Inclusion of LB capability in the
future to include hydrodynamic
effects (ALD, CVD)



KINETICS OF THIN-FILM GROWTH
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Allows for arbitrary surface
morphology formation

Captures surface-diffusion effects

Coupling of thin-film evolution to
incident-vapor flux
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PHASE ORDERING IN THIN-FILM
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Bulk or surface mobilities are
selected through a (0-dependent
switching function

Ensure that surface mobility is
localized to vapor-solid interface

Explicitly capture both surface and
bulk diffusion



MODELING PVD USING PHASE-FIELD
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CURRENT EFFORTS Focus ON LEVERAGING
HIGH-PERFORMANCE COMPUTING ARCHITECTURES
AND ADVANCED NUMERICAL
SCHEMES

MACHINL
LEARNING
Aizt,PARIMM§

[Courtesy R. Wixom]



CURRENT EFFORTS Focus ON LEVERAGING
HIGH-PERFORMANCE COMPUTING ARCHITECTURES
AND ADVANCED NUMERICAL
SCHEMES
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ALGORITHMIC APPROACH

1. Data preparation 3. LSTM neural

• IN-A9.!,!`,,1..?,T,Rs
 EST.19.41  

5. Accelerated PF

2. Low-Dimensional representation 4. ML-trained surrogate



DIMENSIONALITY REDUCTION

1. Simulation by phase-field 2. Reduction of microstructural spacc

po n statistics

Principal Component Analysis
(PCA)

PC2
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MICROSTRUCTURE TRAJECTORY IN PC SPACE

0

Training Data and Testing Data
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• Spinodal Decomposition Example 1

x Spinodal Decomposition Example 2

• Spinodal Decomposition Example 3

A Timestep 10

40 60

Timestep
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MICROSTRUCTURE TRAJECTORY IN PC SPACE
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DIMENSIONALITY REDUCTION
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FINGERPRINT OF THE MICROSTRUCTURE? 0 Sandia
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RAPIDLY PREDICTING MORPHOLOGY?
1. Simulation by phase-field -
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Phase-field

4 2. Reduction of microstructural spacc

Principal Component Analysis

2-point statistics
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3. Construction of surrogate-based model for PVD
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BEYOND CLASSICAL REGRESSION?
PCA reduces the dimensionality PCE maps back to processing parameters
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TIME-SERIES FORECASTING
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TIME-SERIES MULTIVARIATE
ADAPTIVE REGRESSION SPLINES

(TSMARS)

Useful for identifying nonlinear structure in
time series

Non-parametric

Autoregressive: divide time-series into optimal
subdomains to fit splines

Predicting microstructure evolution trajectories
in PC space

Use m most recent time steps to predict N+1,
N+2,...



TIME-SERIES FORECASTING
LONG SHORT TERM MEMORY NETWORK (LSTM)

LSTM is a special kind of a recurrent neural net (RNN):
Network with loops in them allowing information to persist (i.e., memory)

Looping connect previous information to current: TIME HISTORY!

Uses previous states, and current input

Learn/forget gate (internal structure) used to form long-term memory (known as cell
state)and short-term memory (hidden state)

b. Predicting microstructure evolution trajectories in PC space

6. Use entire history to predict N+1, N+2,...

a a tar h a

Current
input

Cell state

Hidden
state

Nomenclature

Neural network
layer

Pointwise
operation

Vector transfer

Concatenate

Copy



WHY Do WE NEED A DEEP LEARNING STRATEGY? 0 riod°L
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When using TSMARS, error in the
prediction of microstructure
evolution is increasing due to the
accumulation of error from one time
step to the next
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TSMARS for data augmentation?
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LSTM for PF acceleration?



OPTIMUM LSTM ARCHITECTURE

Number of LSTM cells:

Number of time frames needed for training:
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Training Loss 2 LSTM Cells
Training Loss 4 LSTM Cells

Training Loss 14 LSTM Cells
Training Lass 30 LSTM Cells
Training Loss 40 LSTM Cells
Training Loss 50 LSTM Cells
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Number of time frames trained



PERFORMANCE OF LSTM TRAINED MODEL (3 Sandia
National
Laboratories • IN-A9.!` , 1,..?,',5st,

,,t 0.0 
1 92 93 94 95 96 97 98 99 160

Frame predicted

0 256

0.16 1.0

0.12 ca 0.8

sa0.6
0.08

0.4

0.01 zE 0.2

0.00 0.0
—0.05

c3
t 0.20

0.15 -

0.10

0.05

0.00 0.05

(b)
5% target
Train
Test

91 92 93 94 95 96 67 98 99 100
Frame predicted

0.55

0 15

0.10 0.15
Absolute relative error, ARE

0.95

(e)
Predicted Statistics - - - - -

True. Statistics

0 50 150 250 350
Radius, r



COMPUTATIONAL EFFICIENCY

1 simulation for 5M time steps

50,000 simulations

\

High-fidelity

96 mins

-9 year and 1 month

LSTM-trained

0.06s

50 mins

Our LSTM-trained framework is nearly 50,000 faster
than the high-fidelity simulation with comparable
accu racy!

Opens a promising path forward for
discovering, understanding and predicting
evolutionary microstructural phenomena



ACCELERATING MICROSTRUCTURE EVOLUTION PREDICTIONS:
LEAPING IN TIME USING MACHINE-LEARNED MODEL

# High-fidelity phase field ajectory

Accelerated trajectory

LSTM-TRAINED MODEL



ACCELERATING MICROSTRUCTURE EVOLUTION PREDICTIONS:
LEAPING IN TIME USING MACHINE-LEARNED MODEL

LSTM only
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MOVING FORWARD

Open-source and available through ser program
(rdingre@sandia.gov)
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FREE SCIENCE...

rdingre@sandia.gov

CINT is a user facility providing cutting-edge
nanoscience and nanotechnology capabilities to the
research community.

Access to our facilities and scientific expertise is
FREE for non-proprietary research.

Research areas:
• Quantum Materials Systems
• Nanophotonics and Optical Nanomaterials
• In-Situ Characterization and Nanomechanics
• Soft, Biological, and Composite Nanomaterials
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0 ;me ;

To learn more and
apply to use the facilities, visit:

https://cint.lanl.gov


