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PREDICTING THE EVOLUTION OF MICROSTUCTURES @iz, (4

Thin-film deposition Grain growth Solidification Phase separation
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EXAMPLE: PIHYSICAL VAPOR DEPOSITION OF THIN FILMS

-

Heating, rotating stage

Deposition ' Substrate

Target A | Target B



'MODELING PVD USING PHASE-FIELD

1. Explicitly model vapor
transport
...s0 we can model multiple

PVD processes

vs
X
o

®
- 5 . Vapor transport s .
e o0 o, 2. No artificial deposition of
vapotr
...s0 we can capture hillock
formation

Deposition 3. Account for surface and
Surface diffusion Bulk bulk diffusion into one

{ > o phase ordering model

00 ® ...SO we can account for the
composition of surface vs. bulk
phenomena

Growth direction

Substrate



'MODELING PVD USING PHASE-FIELD
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Only considered within the solid thin film

Describes concentration & elastic fields

Describes two-way coupling between

elastic and concentration fields (Vegard)



- TRANSPORT & EVOLUTION OF INCIDENT VAPOR

s
@0 1. Local vapor pressure
<2 " ~ U
P 2. Sputtering power (velocity)
® ® o 5. Vapor density and velocity can be
o0 5 ° Vapor transport adapted to simulated various PVD
e o0%0 0, processes
° o S ° 4. Random distribution of vapor phase
® 0% o initially
® 5. Source term to allow for removal of
® .. vapor that is being converted to solid
Deposition at thin-film interface
O P 6. Inclusion of LB capability in the
=V ( D( p)v ,0) = N ( pﬂl’) — S (ﬁ) future to include hydrodynamic

ot

effects (ALD, CVD)

Convection-diffusion




KINETICS OF THIN-FILM GROWTH

Allows for arbitrary surface
morphology formation

2. Captures surface-diffusion effects

. Coupling of thin-film evolution to

incident-vapor flux




PHASE ORDERING IN THIN-FILM

Growth direction

Substrate

Bulk or surface mobilities are

selected through a ¢-dependent
switching function

. Ensure that surface mobility is

localized to vapor-solid interface

. Explicitly capture both surface and

bulk diffusion




'MODELING PVD USING PHASE-FIELD
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CURRENT EFFORTS FOCUS ON LEVERAGING
HIGH-PERFORMANCE COMPUTING ARCHITECTURES

AND ADVANCED NUMERICAL
SCHEMES ANSWERS,

SIMPLE co - |
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[Courtesy R. Wixom]



CURRENT EFFORTS FOCUS ON LEVERAGING

HIGH-PERFORMANCE COMPUTING ARCHITECTURES
AND ADVANCED NUMERICAL
SCHEMES




ALGORITHMIC APPROACH

1. Data preparation 3. LSTM neural

v

2. Low-Dimensional representation 4. ML-trained surrogate



DIMENSIONALITY REDUCTION

1. Simulation by phase-field 2. Reduction of microstructural space




NATIONAL LABORATORY
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MICROSTRUCTURE TRAJECTORY IN PC SPACE = (@) G

Training Data and Testing Data

Spinodal Decomposition Example 1
Spinodal Decomposition Example 2
Spinodal Decomposition Example 3
Timestep 10




Number of Components
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DIMENSIONALITY REDUCTION



FINGERPRINT OF THE MICROSTRUCTURE!?




'RAPIDLY PREDICTING MORPHOLOGY!

1. Simulation by phase-field 2. Reduction of microstructural space
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3. Construction of surrogate-based model for PVD
SpvD (d, fc) e d
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np— J=1 fe

Polynomial chaos




'BEYOND CLASSICAL REGRESSION?

PCA reduces the dimensionality PCE maps back to processing parameters
< A Q Li
Spca — Z aZ(O)goz <= S Spredicted — S: S:p;qj(e)sz = S

NPCM VCM
. . Small changes in processing input space
Basis elements capture complexity of results in drastic changes in morphology:
morphology and long-range correlations but...Legendre polynomial in PCE are

continuous polynomials

19



CAN WE LEAP IN TIME?




TIME-SERIES FORECASTING

TIME-SERIES MULTIVARIATE
ADAPTIVE REGRESSION SPLINES
(TSMARS)

Useful for identifying nonlinear structure in
time series

Non-parametric

Autoregressive: divide time-series into optimal
subdomains to fit splines

Predicting microstructure evolution trajectories
in PC space

Use m most recent time steps to predict N+1,
N+2,...




TIME-SERIES FORECASTING
LONG SHORT TERM MEMORY NETWORK (LSTM)

1. LSTM is a special kind of a recurrent neural net (RNNN):
Network with loops in them allowing information to persist (i.e., memotry)

2. Looping connect previous information to current: TIME HISTORY!
5. Uses previous states, and current input

4. Learn/forget gate (internal structure) used to form long-term memory (known as cell
state)and short-term memory (hidden state)

5. Predicting microstructure evolution trajectories in PC space
6. Use entire history to predict N+1, N+2,...

Nomenclature

- Neural network
layer

‘ Pointwise

operation

el \ector transfer

T> Concatenate
< Copy

ell state

Current Hidden
input state



WHY Do WE NEED A DEEP LEARNING STRATEGY! @
TSMARS LSTM

Depreciation of Error for LSTM Model Trained for 70 Timesteps

0 2la)epreciation of Error for TSMARS Model Trained from Timestep 50

: : 99 TSMARS Test Set Error
; ; 08¢ TSMARS Training Set Error

#®¢ LSTM Test Set Error
0®¢ LSTM Training Set Error

. When using TSMARS, error in the
prediction of microstructure
evolution is increasing due to the
accumulation of error from one time
step to the next
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TSMARS for data augmentation? LSTM for PF acceleration?




. OPTIMUM LSTM ARCHITECTURE

Training Loss 4 LSTM Cells
Training Loss 14 LSTM Cells
Training Loss 30 LSTM Cells
Training Loss 40 LSTM Cells
Training Loss 50 LSTM Cells

Number Of LSTM CCHS: Training Loss 2 LSTM Cells

400 600 800

Epoch number

Number of time frames needed for training:
1 5 50

Time

Absolute relative error

20 40 60
Number of time frames trained




PERFORMANCE OF LSTM-TRAINED MODEL
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High-fidelity LSTM-trained
1 simulation for 5M time steps 96 mins

50,000 simulations ~9 year and 1 month

Our LSTM-trained framework is nearly 50,000 faster
than the high-fidelity simulation with comparable
accuracy!

Opens a promising path forward for
lisc verlng, understanding and predicting
) microstructural phenomena



ACCELERATING MICROSTRUCTURE EVOLUTION PREDICTIONS:
LEAPING IN TIME USING MACHINE-LEARNED MODEL

‘—> High-fidelity phase field trajectory

Accelerated trajectory

LSTM-TRAINED MODEL



ACCELERATING MICROSTRUCTURE EVOLUTION PREDICTIONS:
LEAPING IN TIME USING MACHINE-LEARNED MODEL

0.40 Radially Averaged 2—point‘ statistiqs

— LSTM onlv predicted statistics
— True statistics
LSTM + phase field predicted statistics

035 LSTM + phase-field
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FREE SCIENCE...

rdingre@sandia.gov

THE ONLY THING WE REGUIRE 15

CINT is a user facility providing cutting-edge — [ fomorsx O e Cro LasA ™
nanoscience and nanotechnology capabilities to the v ; Wt
research community.

Access to our facilities and scientific expertise is
FREE for non-proprietary research.
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