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ABSTRACT

The widely parallel, spiking neural networks of neuromorphic pro-
cessors can enable computationally powerful formulations. While
recent interest has focused on primarily machine learning tasks,
the space of appropriate applications is wide and continually ex-
panding. Here, we leverage the parallel and event-driven structure
to solve a steady state heat equation using a random walk method.
The random walk can be executed fully within a spiking neural net-
work using stochastic neuron behavior, and we provide results from
both IBM TrueNorth and Intel Loihi implementations. Additionally,
we position this algorithm as a potential scalable benchmark for
neuromorphic systems.
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1 INTRODUCTION

As traditional von Neumann architectures are facing increasing
scaling challenges, several beyond Moores Law technologies offer
promising and competitive advantages. In particular, neuromorphic
or neural-inspired computer architectures have seen a recent resur-
gence and are finding new, growing application spaces [19]. While
many of the proposed applications focus on size, weight and power
(SWaP)-constrained computation [23], a high level of scalability is
achievable using neural approaches, and this has lead to increasing
interest in large-scale neuromorphic systems to accompany high-
performance computing systems [1, 8, 11, 17]. For large-scale or
scientific applications, neuromorphic approaches have been applied
to a number of fields and functions including cross-correlation [21],
dynamic programming [2], and graph algorithms [10].
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In this paper we focus on extensions to a specific algorithm first
introduced in [20] designed to calculate a density-based random
walk process. We leverage this existing result as a base algorithm
and extend it via its application to a steady state heat equation.
Our approach has some similarities to other neural algorithms that
have been used to calculate physics systems previously, for example
in [13]. However, our method is differentiated by a neuromorphic-
compatible random walk method applied to a steady state problem.

Additionally, we suggest that this spiking network and algorithm
serves as an effective and approachable neuromorphic benchmark
task. The field is still forming best practices for benchmarking
neuromorphic systems, but as new and upcoming platforms be-
come available, it will be critical that effective benchmark tasks are
developed to evaluate these systems.
As the field develops and researches new neuromorphic applica-

tions, we expand the potential workload of neuromorphic systems
from a seemingly one-trick-pony to a multi-use co-processor with
well-defined advantages. We remark that while applications are, of
course, critical, theoretical understanding and characterization of
these systems is equally important. In this paper, we will provide
some theoretical justification for our approach, but a full theoretical
characterization of complexity is beyond the scope of this paper.
Some references on spiking network complexity are [12, 22].

This paper is organized as follows. First, we provide a short
introduction to the density-based random walk method and random
walk methods in general in Section 1.1. A mathematical description
of our physics application and its probabilistic interpretation follow
in Section 2. Details on our neuromorphic implementation are
presented in Section 3. Results from simulation and on-hardware
are provided in Section 4 and Section 5 respectively. In Section 6,
we discuss the current state of benchmarking for neuromorphic
systems and the appropriateness of the algorithm presented herein
as a benchmark for current and future neuromorphic systems.

1.1 Random Walk Methods

Probabilistic methods have a celebrated history among multiple
disciplines. In particular, random walk methods are harnessed to
provide solutions in a variety of fields including computer science,
physics, and operations research [15]. A well-known example is
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the construction of the Black-Scholes equation in financial option
pricing [4].
Random walk methods stem from and are inspired by the basic

connection between Brownian motion and the heat equation. Con-
sider the one-dimensional heat equation initial value problem. The
temperature u at time t and position x in the open domain satisfies

a2
—u = — —u,
dt 2 ax2

u(O, x) = f(x).

Here f (x) describes the initial distribution of temperature. Let
E [A l B] denote the expected value of A given B. Recall that if the
probability density function (pdf) of A is known, say cr(s), then
IE [f (A)] = f f (s)cr(s)ds. Consider a Brownian motion, Wt. For a
fixed t, Wt is a random variable with pdf given by

P(t, vvo, ) = exp (Y vv 2o) 

27rt 2t

But note that

[f (Wt) WO = xl = f f (013(t x, y) dY

1
= f f (y) exp (Y 

2tx
)2

2rt 
dy,

which is exactly the known solution to the heat equation. Hence

u(t,x) = E [f (vvt) I vvo =
This equation allows us to directly link the solution of the heat

equation to a Monte Carlo sampling method. Specifically, paths of
the process Wt are sampled (i.e., random walks are sampled), the
paths are evaluated at the function f, and then these results are
averaged to obtain an approximation for the solution. To lend a
physical heuristic to this probabilistic equation, the random walks
can be thought of as the paths of "heat particles." Their density at a
given location is related to the temperature at that location.
The density-based algorithm presented in [20] approaches the

random walk computation by associating each node or area in the
given space with a sub-circuit of neurons. Walkers are then repre-
sented by spikes which travel from node to node or equivalently
from sub-circuit to sub-circuit. This sub-circuit has several key
functional components each of which is designed using a leaky-
integrate-and-fire neuron model:

• Counter: Represents the count of walkers at that location at
a given time;

• Probability Gate: Computes the appropriate random draw
deciding the direction of the walker;

• Output Gates: Sends the walkers to the connected neighbors;
• Buffer: Collects the incoming walkers as a staging area before

the counter.

2 RANDOM WALKS FOR THE STEADY STATE

HEAT EQUATION

2.1 Problem Statement

Consider a thin wire of length f meters. At position x = 0, the wire
is attached to a cool external wash (T = 0 degrees) such that the
heat gradient is zero. Somewhere else in the space, a heat source
gives a heat-flux density q(x) W/m3. The thin wire is assumed to

have a heat capacity k measured in W/m.degrees. Then, the steady
state temperature of the wire at position x is given by

—ku"(x) = q(x), x E [0, f],

u(0) = 0,

7/(0) = 0.

Suppose we divide through by the constant k, absorbing it into
the quantity q(x) (now measured in degrees/m2). Take q(x) =
—F (f — x) for some positive value F. Physically, the interpretation
is that the gradient of the heat source is —F at the right endpoint of
the wire and decays linearly towards the left endpoint. We rewrite
this specific problem as:

d2
0 = u — F (€ — x) , E [0, f],dx2

u(0) = 0, (1)

u'(0) = 0.

We will focus on this specific 1D steady state heat problem. This
second-order ODE can easily be solved for an analytic solution:

Ff x2 Fx3u(x) 
= —

2 6
(2)

2.2 Probabilistic Interpretation

We would like to recapture the analytic solution using a random
walk. To do this, we need a probabilistic interpretation of (1). We
appeal to the following theorem from Grigoriu [9].

THEOREM 2.1. Let x = . . . , xd) E Rd. Consider the PDE

0 = a, (X) fizi (X) 
a2 (x) 

+ p(x),
au(x) 1 v

dxt 2 44 dx 

u 
axi=1 4_1=1

u(x) = (x) , x E dD.

X E D

(3)

Let a = (ai) and let W t be a d-dimensional white noise process.
Suppose:

• at, flu, and p are all real-valued functions defined on D and
d E N \ {0};

• the matrix 13 = [NJ) is a symmetric positive definite matrix
for each x E d ;

• there exists a matrix a(x) such that 13 = 6aT ;
• there exists a process Xt satisfying

dXt = a (Xt) dt + a (Xt) dArtft

for each initial condition X0 = x with x E D;
• the function is continuous in dD;
• p is Hölder continuous in D;
• the boundaries of D are regular;
• and the partial derivatives of u are bounded in D.

Define the random variable

T = inf ft > 0 l Xt 1Z DI.

Then the solution to (3) is

u (x) = E (X(T))+ p (X(s)) ds X0 = xl . (4)
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The assumptions in the theorem impose appropriate continuity,
existence, and smoothness conditions on the functions a, 13, a, p,

the derivatives of u, and their domains to ensure that both Xt
exists for each initial condition and that u exists and is unique. Xt
is described as a process satisfying a stochastic differential equation
(SDE). This is merely shorthand notation for a process that satisfies
the integral equation

tX(t) = X0 + J a (X (s)) ds + J Cf (X (s)) dW (s) .

A full treatment of stochastic calculus is beyond the scope of this
work, see [18] or [24] for a detailed study or broad introduction,
respectfully.

The theorem does not directly apply to (1) because it has mixed
boundary conditions. However, it can be modified to work in this
scenario.

First note that the condition u' (0) = 0 can be absorbed into
the process Xt. This condition says that the flow of heat at x = 0
must be zero. Heuristically, we would say that the flux of our "heat
particlee at zero must be zero. Therefore, any sample of the random
process Xt must not cross zero. Accordingly, we require Xt to be a
process reflecting at zero.

Next we consider the term E (X(T)) X0 = x] from (4). In our
scenario, the boundary condition is only given at zero and we
have ensured the process Xt will never exit at zero by making it
a reflective process. There is no condition given for x = t, so we
cannot evaluate this term. However, we must enforce u(0) = O. To
do this we define

143' = E 1- J F(f - X(s)) ds Xo = 01 .
0

Then, the probabilistic solution to (1) is

T
u(x) = E [- f F (t - X(s)) ds Xo = xl- uos ,

where Xt is a random process reflecting at zero with law

dXt = 1/2 dWt

(5)

elsewhere.
We take a brief moment to address the random variable T for this

specific problem. T is interpreted as the stopping time or absorption
time of the process Xt. If we knew the distribution of T for the
process Xt Xo = y , then we could infer how long any simulation
would need to run. Define r(y) = E [T X0 = y]. Let the survival
probability, or the probability that the process Xt Xo = y has not
yet left the interval [0, t] by time t, be given by Sp (y, t). Then
IP [T < t X0 = y] = 1- Sp (y, t). From this relation and the Fokker-
Planck equation, it can be shown that

e2 _ y2
r(y) = E [T Xo = y] = 2 •  

(6)

While this gives us the mean of random variable T, the full distri-
bution is not a straightforward calculation.

3 NEUROMORPHIC IMPLEMENTATION

To numerically approximate via (5), for each x we would need to
sample a large number of paths of the process Xt beginning at

X(0) = x, and average the values - foT F (t - X(s)) ds obtained

for each path. We cannot sample continuous paths of the process
Xt; we must discretize in time. We further discretize in space in
order to develop a grid for a random walk. This combination yields
a Markov Chain approximation for samples of the process Xt.

Divide the interval of length t into N equal divisions, each of
length 4x. We construct a Markov process where random walkers
move between the midpoints of these divisions according to the law
of Xt. For a division of time At, Xt+At - Xt ~ N (0, 240. Hence we
will use the Gaussian distribution to inform transition probabilities.
To simplify the random walk, we will only allow random walkers
to move to an adjacent point or back to themselves. Define

1 1
Ps = r F-24x < XAt < 24x Xo = 01

1  r Ax 2X

j-p,x exp 44t dx'

and

pg = P IXAt --
2
4x Xo = 01

1  r - 

1-00 

1Ax
exp ( 

2
- —
X
) dx.

2 -‘1,6 - 44 t

By the symmetry and translation invariance of the Gaussian distri-
bution, analogous probabilities centered at different points will be
equal to these two values. Since we are restricting movement only
to the nearest neighbors, it is important to choose 4t so that you
can be reasonably sure that a random walker would only move to
an adjacent point or back to itself. That is

21P [XAt < - -
3
4x
2

Xo = 01 < c,

for some threshold probability c.
With these probabilities calculated, we can construct a Markov

process as in Figure 1. A random walker can move to adjacent
points on the mesh with probability pg and stays in place with
probability ps. If at zero, the reflecting nature of the walk forces it
to the right with probability 2pg. When the walker leaves the wire,
it exits forever into an absorbing state.

• • •

Ax 2Ax 3Ax - 2Ax - Ax

Figure 1: Illustration of Markov random walk process obey-
ing the law of Xt. For all positions in the interior of the wire,
a walker may move in a single timestep 4t to the left or right
with equal probability or stay in place. Zero is a reflecting
boundary and a walker ends its journey by stepping into the
absorbing state beyond the length of the wire.
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To approximate the solution, we can use the following algorithm.

(1) For a position xi on the mesh, initialize M random walkers
starting at position xi.

(2) Simulate each of the M walkers, keeping track of the cu-
mulative number ni j of walkers on node xj which began
on node xi. End when all walkers have been absorbed. Do
not include the initialization as part of the cumulative
count.

(3) Repeat or parallelize for all positions xi
(4) Assign

lE [—F f X(s) ds
0

(5) Then,

Xo = xi 
M

— —
FAt 

Enij (f — xj) := ui.
.

(7)

U (Xi) ,=•=1 ui — Up. (8)

Note, that the solution is being approximated at the midpoints of the
divisions of the interval [0, f], and not on the division points. Hence,
in the preceding equation, uo is calculated at the first midpoint from
the left. An estimate for how long to run each until all walkers are
absorbed can be obtained through (6). This will only give the mean
running time; a considerable percentage of the walkers will run
longer.

4 SIMULATION RESULTS

To demonstrate this method, we simulated the previous algorithm
using the values F = 3, f = 2, Ax = 0.05, and At = 0.0001. For this
choice of Ax and At, the probability of transitioning more than a
single node is much less than 0.05. We simulated using M = 10, 000
random walkers for each mesh point. The approximate solution
obtained for ten separate simulations is shown in gray in Figure
2. The average of these ten runs is shown in teal. The average can
be interpreted in two ways. We can either view the average (teal)
as the empirical expected result of a simulation using M = 10, 000
walkers per mesh point with a visual range of uncertainty (gray);
or, since all ten runs were distinct, the average (teal) could also be
interpreted as a single run with M = 100, 000 walkers for each mesh
point.
We then proceeded to create a spiking neural network imple-

mentation adapted from the density-based random walk method
presented in [20]. In this network, each node of the walk is rep-
resented by a sub-circuit of neurons that collects and distributes
walkers according to the predefined probabilities (i.e. pg). The spik-
ing network performs several steps for each walker as the walker
is counted and routed (though this is done in parallel for each
node). This time cost creates two separate time scales, and to avoid
confusion, we will define two terms. The phrase neural timestep
refers to one timestep of the spiking neural network algorithms, for
example one 'tick' on TrueNorth. Explicitly, one neural time step
is a cycle that involves every neuron's integration, fire, leak, and
spike transport dynamics. The phrase simulation timestep refers to
one timestep of the random walk process.

Note that the relation between neural timesteps and simulation
timesteps is not fixed as it depends on the number of walkers at each
node. In particular, the number of walkers on the node with the
most walkers determines the number of neural timesteps required

10k Walker Run

—100k Walker Average

- •Analybc Solution

5 -- •

3 --

0:2 0.4 0:6 0.8 1 1.2 1:4

Position
1:6

Figure 2: Random walk approximation of (5) utilizing 10,000
walkers for each mesh point. Gray lines showcase ten sepa-
rate simulations and the teal line is the average of all ten
sitnulations. For comparison, the analytical solution (2) is
plotted as a dashed blue line.

to evaluate a simulation timestep. We recognize that one benefit of
the neuromorphic approach is that we can create n parallel tiles or
copies of the network with M/n walkers in each tile. This reduces
the number of neural timesteps required considerably and makes
good use of large-scale neural systems.

Finally, in our ideal random walk simulation, we run all the walk-
ers until they reach the absorption node. However, with current
interfaces to neuromorphic hardware, this is often difficult, and
instead we use a large, predetermined number of neural timesteps.
Any walkers that have not been absorbed by the end of the simula-
tion increase the error. It may be possible to estimate the number of
neural timesteps required a priori though we have not completed
this analysis. To that end, Equation (6) could be used in conjunc-
tion with the simulation time step size and a neural-to-simulation
timestep conversion metric to determine the expected number of
neural timesteps needed for any given starting node. But as we will
see in the next section, the number of simulation timesteps given
by a fixed number of neural timesteps varies based on the starting
nodes proximity to the absorption node.

Figure 3 shows the results of a software simulation of the spik-
ing neural network. As expected, increasing the number of neural
timesteps (thereby increasing the number of simulation timesteps)
improves the approximation considerably. The listed results are
from 100 tiles of 100 walkers which is equivalent to a simulation
with lOk walkers. To increase performance, walkers that reach the
absorption node are removed from the simulation.
To help quantify the load on a neuromorphic system, we analyzed

the number of spikes in flight at each timestep, see Figure 4. Like
the results in Figure 3, the simulation was divided into 100 tiles of
100-walker runs for an effective 10k walker run. Interestingly, the
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6

2

i  

—SNN RW 1M neural timesteps

 —SNN RW 100k neural tirnesteps

—SNN RW 500k neural tirnesteps

- •Analytic Solution

0 0 2 0 4 0 6 0.8 1 1 2

Position

1 4 1 6 1 8

Figure 3: Random walk approximations using a spiking neu-
ral network simulator at various lengths of simulation. Each
line represents the results of 10,000 walkers.

moving average shows that the load increases suddenly in the early
part of the simulation but quickly reaches a maximum. After the
maximum, the spike counts slightly decrease.

BOk

8 
60k

20k

0.1M 0.210 0.3M OAM 0.5m 0.6m 0.7,0 0.BM 0.9M 1M
Neural Timestep

Figure 4: The moving average (25 timestep window) of spikes
in flight at each timestep during a simulation of 1M neural
timesteps with 10k walkers distributed evenly over 100 tiles.
Results are aggregated across all the starting node positions
and all tiles. Each tile requires approximately 400 neurons;
the total number of neurons is approximately 1.6M.

5 HARDWARE RESULTS

We implemented this algorithm on both the IBM TrueNorth [16]
and Intel Loihi [6] Neuromorphic systems. The spiking network
is relatively simple, with relatively low connectivity requirements;
however, the stochastic component benefits from a platform de-
pendent formulation. Functionally, this collection of neurons must
take a walker (represented by a spike) and route it to a number of
output neurons according to a mutually exclusive probability draw.
There are several ways to accomplish this functionality depending
on the neuron model used and the way each platform implements
stochasticity. Because Loihi and TrueNorth have different stochas-
tic neuron models, our implementations of the circuits between the
two platforms are different, but functionally equivalent. Since the
simple structure of the underlying example problem requires only
3 neighboring nodes, the difference in the time and resource costs
between the two stochastic implementations is low. Additionally,

both Loihi and TrueNorth have limited precision in their random
number generators, which required some care in configuring these
circuits, and likely explains some of the differences between our
neuromorphic results and the analytical solution, which assumes a
much greater precision in the probabilities.

5.1 Loihi Results

We deployed our neural circuit onto an 8 Loihi-chip Nahuku neuro-
morphic platform. As this model is relatively compact in size, we fit
a single instance onto three cores: one for model supervision, one
for deterministic mesh points, and one for the stochastic neurons.
A11 simulations were performed in serial to enable benchmarking,
however in principle the 8 Loihi chips could run several hundred
copies of this network in parallel.

Simulation execution time on Loihi was constant across starting
locations, taking 42 seconds on average to simulate 250 walkers
over 7.5 million neural timesteps (Figure 5, top). The number of
simulation timesteps (i.e., number of wire model updates) did vary
considerably according to starting location (Figure 5, botom). This
is because simulations whose walkers start on the right side near
the sink were removed from the simulation faster, thus speeding up
overall execution time. Overall execution time and number of sim-
ulation timesteps scaled linearly with number of neural timesteps
(data not shown).

Figure 6 shows results from Loihi considering 10,000 walkers
starting on each wire location. These simulations were performed
in batches of 250 walkers each, though this number could be in-
creased with minor changes to the network. Overall, the Loihi
results match the analytical solution reasonably well, remaining
within the variation captured in Figure 2.

S5 
01

p 50 

45

0 -

6.▪ • 300k
tan

280k

t 260k

o
240k

E 220k
Li/

10 15 20 25

Starting Node

30 35 40

5 10 15 20 25

Starting Node
30 35 40

Figure 5: Simulation of wire heat distribution on Loihi. Ex-
ecution time was relatively constant for 7.5 million neural
updates with 250 walkers starting at different locations (top).
While execution time was constant, the number of simu-
lation timesteps varied considerably from left to right for
the fixed number of neural timesteps due to walkers being
removed from the simulation at the right side of the wire
(bottom). For both, plotted errors are standard deviations
(N = 40).

As has been recognized with neuromorphic platforms, I/0 is
potentially a bottleneck for applications. As these are contained
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numerical simulations, I/0 can be limited to the setup of the sim-
ulation and offloading of cumulative results. However, Loihi does
limit the number of probes that can be used to monitor activity,
which would have to be considered in models with more grid points.
Further, continuously reading out neural activity during the simu-
lation slows the simulation dramatically, so in order to minimize
I/O, the cumulative counts of walkers were stored in the voltage of
a set of no-decay neurons that were only read-out at the end of the
simulation.

8

7

6

4

3

2

- 1
—LON RW 7.5M neural timesteps
—TrueNorth RW 7M neural timesteps

- -Analytic Solution

1-

_

0.2 0.4 0.6 0.8 1 1.2

Position

1 4 1.6 1.8

Figure 6: Random walk approximations for lok walker
study on TrueNorth and Loihi.

5.2 TrueNorth Results

We implemented the density method of the spiking random walk
algorithm onto a single chip of the TrueNorth hardware. Taking
advantage of parallelism, we make 1,000 tiles of the simulation with
each tile having 10 walkers. This results in a combined simulation
of 10,000 walkers. This implementation required 4,067 of the 4,096
cores of the TrueNorth hardware. We ran the hardware for 7 million
neural timesteps. Figure 6 shows the solution results of this sim-
ulation starting at each wire location, which match the analytical
solution very closely.

Figure 7 illustrates data on the number of simulation timesteps
produced from the 7 million neural timesteps and the number of
simulation timesteps each starting location took to reach full ab-
sorption. Figure 7 (top) produces a different trend than observed
on Loihi (Figure 5, bottom) due to a difference in implementation.
On TrueNorth we did not remove any walkers once they reached
the sink. Thus, as walkers accumulate in the sink it requires more
neural timesteps per simulation timestep. Starting positions closer
to the sink accumulate walkers earlier in the simulation, increasing
the ratio of neural to simulation timesteps, and driving down the
total number of simulation timesteps produced from the fixed 7
million neural timesteps. The average number of neural timesteps
per simulation timestep was 31.8 with a standard deviation of 0.166.
The number of simulation timesteps until total absorption of all
walkers (Figure 7, bottom) varied greatly per starting location but
showed a downward trend towards the sink node. This is expected
since starting locations next to the sink would on average absorb
more walkers early in the simulation.

Timing analysis is not readily available on the TrueNorth plat-
form. The function call that executes the model in hardware in-
cludes model load time, execution time, and spike I/O. Therefore,
to derive exact execution time we run three different iterations
of the model. The first iteration executes the model for a single
hardware cycle. This tells us how long it takes to load the model
since no output spikes are produced after just one neural timestep.
The second iteration runs the full 7 million neural timesteps but has
spike I/0 disabled. This tells us the time for loading the model plus
executing the model. Since the first iteration provides us model load
time, we can subtract that out of the second iteration's time and
arrive at model execution time. The third iteration runs the model
for 7 million neural timesteps with spike I/0 enabled. Removing
the measured time of the second iteration from that of the third
produces the resultant spike I/0 time. Our reported timing is taken
from the average over 10 executions of each iteration.
We ran this timing analysis on a simulation of a single starting

position in the middle of the wire. Additionally, we configured the
tick rate of the TrueNorth hardware to be as fast as possible for
this model. The execution time was 3,386 seconds for 7 million
neural timesteps, which equates to a tick rate of approximately
484 ps per tick, or approximately 2 kHz. The simulation produced
11.25 billion spikes that were ex-filled in 834 seconds, a spike rate
of approximately 13.5 million spikes per second.

a,
17; • 222k

8g 221.5k
▪ 221k
a
o 220.5k

L, 220k

E 219.5k

45 219k

.11 0

E
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tEL

200k

180k

160k

140k

120k

100k

5 10 15 20 25

Starting Node

0 5 10 15 20 25

Starting Node

30

30

35

35

Figure 7: Timing results for simulations on TrueNorth: The
total number of simulation timesteps for a 7 million neural
timestep study decreases as the starting node approaches I'
(top). The number of simulation timesteps required for all
walkers to leave the system varies considerably, though con-
sistently across starting nodes before ultimately dropping
near f (bottom).

In addition to the I/0 bottlenecks discussed previously, hardware
may impose additional difficulties, limiting the ability to assign
probabilities accurately. For TrueNorth, the hardware expression of
the stochastic parameter of a neuron has a resolution of 1/256. On
a problem-specific basis, this could cause wild and significant error
with slight changes. Focusing discussion on this problem, recall (7)
and (8). For any xi E [0, a the interior of the sum in (7) is positive,
forcing the entire value of ui to be negative for any i. For a fixed i,
the value of ui is decreased most strongly if the underlying random
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walks congregate more toward the left end of the rod. That is, if the
values of ni j are higher for those indices corresponding to locations
closer to zero.

2.5

c 2

E

0.5

I I
—TrueNorth RW (Unbalanced Probabilities)
—TrueNorth RW (Balanced Probabilities)

PIP 
02 04 06 08 1 12

Position

14 1.6 1.8

Figure 8: Error resulting from an imbalance in probabilistic
values expressed in hardware

Initially, due to a one-sided round in our corelet code, our TrueNorth
network approximated ps 0.9258 while pg was different for left
and right transition. The effective probabilities were •-•4 0.0374Pleft
and Pright 0.0368. The true values for the parameters of simula-
tion should be ps 0.9229 and pleft = Pright = pg ,,t1 0.0385. While
the TrueNorth values may not appear too different from the exact
values, a problem arises because pleft > pright. Intuitively, this im-
balance means a random walk is more likely to move towards the
left than the right. This will cause higher values of nj j than normal
for locations closer to zero. This will increase the negative values of
ui causing the estimated temperature (8) to be higher than normal,
see Figure 8. An underestimation of the true temperature would
occur if the probability of transition favored the right. Therefore, for
this problem it is extremely important to ensure that the probability
of transition to the left and the right is equal.
We do not report direct comparisons of TrueNorth and Loihi's

performances in this paper. While the software interfaces for both
TrueNorth and Loihi provide estimates of power consumption, it
is unclear if these estimates are comparable, and we expect that
direct power measurements will be required. Similarly, while our
observed total simulation time is consistent with the published
clock speed difference between the chips (Loihi is several orders of
magnitude faster), we did not investigate having multiple simula-
tions running in parallel, for which the larger TrueNorth chip will
likely preferentially benefit.

6 EVALUATING NEUROMORPHIC
HARDWARE

Developing a methodology for benchmarking neuromorphic sys-
tems has become critical for the success of the field. Several efforts
have been undertaken to either benchmark specific systems or call
out larger perspectives on neuromorphic benchmarking [5, 7, 14].
Regardless, this is still a critical open question that faces the field.
Benchmarking across platforms often requires concessions due to
network incompatibilities. Without well-adopted specifications, it

is difficult to obtain the appropriate data and software as well as
run the benchmark itself. While any single task will not sufficiently
determine the performance of a system, we suggest that this ran-
dom walk/steady-state heat equation (Section 2) offers a compelling
benchmark task. Importantly, the task described here is distinct
from more commonly studied machine learning tasks in that it
is a probabilistic approximation, not an optimization problem. As
such, one can always increase the accuracy of the approximation
by increasing the number of random walkers or the mesh size if
resources permit. When viewed as a benchmark task, this algorithm
has several desirable qualities:

(1) The task does not rely on outside data, and so it is fully
self-contained.

(2) The steady-state heat equation has an easy-to-grasp ana-
lytic solution, and so results of the benchmark are directly
comparable.
Requirements on the neuron model are simple, allowing this
to target many hardware platforms.
The algorithm scales both in the number of nodes (neurons)
and the number of walkers (spikes), which provides an in-
teraction between space and activity costs.
The majority of connectivity is local, and the activity is
relatively sparse.

(6) The algorithm requires a simple pattern be repeated across
the fabric.

Given that the analytical solution is easily computable, the solu-
tion approximated by the simulation is not the interesting metric.
Instead, this task can be used to evaluate the performance of a
system in terms of computational speed and scalability. As shown
in Section 4, the rate of spikes is relatively low, but varies over
time, which can help characterize a system's spike routing ability.
Additionally, if possible, practitioners can compare running energy
costs across different neuromorphic platforms. Rather than a single
value, for both performance and efficiency, we suggest reporting
results relative to the simulation timestep and starting node (de-
tails in Section 3) as loads depend on both of these factors. Scaling
various parts of the algorithm can be used to test specific hardware
capabilities:

(1) The number of tiles tests the parallelism.
(2) The number of walkers tests the spike throughput.
(3) The number of neural timesteps tests performance and I/0

limits.

However, we recognize that it is difficult to report a true apples-to-
apples across systems: software interfaces for different platforms
have different capabilities; power consumption estimates may be
dependent on research agreements; I/0 may carry a prohibitively
high cost. Because of these challenges, reporting any single metric
becomes disingenuous, and we suggest that if used as a benchmark
task, a full picture of system performance is reported.

(3)

(4)

(5)

7 CONCLUSION

The task described here is an example of how neuromorphic hard-
ware can have an impact on a much broader set of numerical appli-
cations than the community generally considers. Demonstrating the
ability for spiking neuromorphic systems to impact conventional
numerical computing is important; by extending its impact beyond
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cognitive applications we increase the likelihood of a long-lasting
effect on the computing field. Notably, while we did not exert con-
siderable effort on optimizing the results presented here for either
time or space, we already have evidence that neuromorphic hard-
ware can be more efficient than conventional approaches when fully
parallelizable Monte Carlo based are implemented. For example,
with only minimal additional work and ignoring I/0 considerations,
we anticipate that we could potentially perform the complete sim-
ulations described above in parallel on a fully populated 32-Loihi
chip Nahuku board in less than a minute.

Not surprisingly, we observed several aspects of neuromorphic
hardware that will require further investigation. For one, the I/0
costs of neuromorphic hardware will likely grow as a consideration.
The costs of I/0 are often considered for streaming applications
such as real-time machine learning inference, but for the class
of numerical simulations considered here, interactive I/0 is not
required, but tracking state-or in this case accumulating state-is
required in order to properly evaluate the simulation. Since I/0
will likely continue to be a limiting factor, further processing of
simulation outputs on the neuromorphic substrate is likely ideal.
One way to do this is to implement the post-processing steps that
we performed offline as neural circuits themselves and integrate
them into a fully composed simulation [3].

The second significant consideration learned from the neuro-
morphic simulations is the potential impact of reduced precision
stochastic neurons on model performance. The stochastic steps
of our simulation are affected by the precision of internal neuron
states, precision of weights between neurons, and precision of the
random number generator. These different components interact
in complex, architecture-dependent ways and the implications of
this reduced precision merit deeper exploration. At the same time,
some of the benefits of neural hardware-the ability to have more
random number draws effectively in parallel-may be able to offset
these considerations.

Nevertheless, these neuromorphic considerations should prove
surmountable especially as future generation platforms become
available. As non-anticipated applications such as these are ex-
plored, it will be increasingly evident what the potential implica-
tions of reduced precision and I/0 are and whether the costs of
mitigation advocate for future hardware modifications or improved
circuit and algorithm design.
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