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Novel Geometric Operations for Linear Programming

Mohamed Ebeida1, Ahmed Abdelkader 2, Nina Amenta3, Drew P. Kouri1, Ojas Parekh1, Cynthia A.
Phillips1,Nickolas Winovich4

ABSTRACT

This report summarizes the work performed under the project “Linear Programming in Strongly
Polynomial Time.” Linear programming (LP) is a classic combinatorial optimization problem
heavily used directly and as an enabling subroutine in integer programming (IP). Specifically IP is
the same as LP except that some solution variables must take integer values (e.g. to represent
yes/no decisions). Together LP and IP have many applications in resource allocation including
general logistics, and infrastructure design and vulnerability analysis.

The project was motivated by the PI’s recent success developing methods to efficiently sample
Voronoi vertices (essentially finding nearest neighbors in high-dimensional point sets) in arbitrary
dimension. His method seems applicable to exploring the high-dimensional convex feasible space
of an LP problem.

Although the project did not provably find a strongly-polynomial algorithm, it explored multiple
algorithm classes. The new medial simplex algorithms may still lead to solvers with improved
provable complexity. We describe medial simplex algorithms and some relevant
structural/complexity results.

We also designed a novel parallel LP algorithm based on our geometric insights and implemented it
in the Spoke-LP code. A major part of the computational step is many independent vector dot
products. Our parallel algorithm distributes the problem constraints across processors. Current
commercial and high-quality free LP solvers require all problem details to fit onto a single
processor or multicore. Our new algorithm might enable the solution of problems too large for any
current LP solvers. We describe our new algorithm, give preliminary proof-of-concept experiments,
and describe a new generator for arbitrarily large LP instances.
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3University of California, Davis
4Purdue University
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1. INTRODUCTION

Linear Programming (LP) is the optimization of a linear function subject to linear inequality
constraints. One example is multicommodity flow: movement of material through a network
sharing link capacity. This applies to telecommunication network design, transportation and
manufacturing. Linear programming is also a fundamental subroutine in algorithms to find exact
and approximate solutions for Integer Programs (IPs). These are LPs with additional (non-linear)
integerality constraints on some variables, representing decisions. IPs model a wide range of
problems including mission-relevant applications in scheduling, NW logistics, infrastructure
analysis, cybersecurity, and sensor placement and management.

LPs, and especially the integer programs LP enables, are workhorse optimization solvers. Those
familiar with the method can quickly express practical applications that are within the class using
an intuitive set of standard constructs. One can use IPs to express a linear optimization problem
much the way a programmer uses a code to express an algorithm. Furthermore, commercial solvers
(e.g. CPLEX, Gurobi) and free solvers (CLP or CBC) are good enough that they can solve many
useful instances. This brings LP/IP methods to the “masses” of optimization consumers. It is worth
taking the (short) time to code an application using a mathematical programming language (such as
AMPL or pyomo) and seeing if the solvers can handle the problem. If so, the search gives a
provably correct answer for the instance. This is true even for theoretically-intractable IP problems,
because the search proved optimality for that instance.

Still, there are problems that are too big or too difficult for these solvers. This is a clear issue for
problems directly expressed as LPs. Futhermore, even though many of the LPs solved as
subroutines in an IP search are closely related to the last search, all IP solvers must solve the
original full LP from scratch. If that that takes too long, then there is no hope for solving the IP. As
an example of difficult LPs, Gearhart et. al. [6] did a comparitive study of free vs. commercial LP
solvers because many government customers require delivered applications to depend only on free
software. The military-personnel-management problem they were considering was an LP. They
found that on challenging LP benchmark instances 7 years ago, even the best commercial solver,
CPLEX timed out after attempting to solve the problem for 8 hours. The free solvers failed at this
level on even more instances. We have experienced similar problems more recently. Our research
problems tend to have different structure than the industrial problems commercial solvers are tuned
for.

The most heavily used LP solvers also assume the whole constraint matrix fits into a single core.
Extremely large problems have to be distributed across many processors and solved in parallel. No
LP solver does that effectively now.

Our goal in this project was to explore new LP algorithms based on geometric insights from
implicit Voronoi meshing and recursive hyperplane sampling research. This earlier work used
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combinatorial geometric operations including, but not limited to, the pivot operation which is the
basis of the simplex algorithm for LP, and used randomization in new ways. Since no previous LP
researchers have come from this perspective, we hoped to succeed where previous researchers have
failed, by combining our insights with the best aspects of previous approaches to solving LPs.

We envisioned making progress in two ways. On the theoretical end, our “moon shot" goal was to
find an LP algorithms with strongly polynomial complexity. That is, we wanted an algorithm for
which we could prove that the running time was bounded by a polynomial function of size only
(number of variables and constraints) and does not depend on the numerical values in the input.
Finding a strongly polynomial LP algorithm is 9th on Smale’s list of greatest unsolved math
problems of the 21st century [12]. While we did not succeed in this ambitious goal, we did get
some interesting results about polytope combinatorics, and advanced our understanding in this
challenging area. We hope to do more work in this direction in the future.

Our practical goal was to develop parallel algorithms based on our collection of randomized
combinatorial geometry operations that would allow larger LP problems to be solved on distributed
systems. Current commercial and free LP solvers cannot scale to use more than a couple dozen
processors despite multiple efforts. A new faster distributed LP solver will change the way the
international optimization community computes. In this direction, we developed a new algorithm
that does many fewer sparse linear system solves, instead relying on independent, easily distributed
vector operations. We have a prototype implementation of this algorithm, and we report some
results on distributed instances.
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2. LINEAR PROGRAMMING METHODS

A linear program is the optimization (we will use minimization) of a linear objective function
subject to linear constraints. A canonical form is min cT x subject to Ax≤ b and x≥ 0. The input is
an n×d matrix A, an d-vector c of costs, and an n-vector b. A linear equality aT x = 0 forms a
hyperplane in d dimensions. Each inequality restricts variables to a halfspace on one side of the
hyperplane. The intersection of all the inequalities forms a convex polytope (we will assume the
region is bounded) which is called the feasible region. The set of points x with a given objective
cost γ (i.e. cT x = γ) is a hyperplane. Figure 2-1(a) illustrates this hyperplane for several values of γ .
The minimum possible cost is the smallest γ whose corresponding hyperplane still touches the
feasible region. Thus the optimal solution is on the exterior of the polytope, and there is always an
optimal vertex (point).

There are two practical classes of LP search-based solvers. The simplex method moves from vertex
to vertex along edges on the polytope exterior (Figure 2-1(b)). Interior-point methods move
exclusively through the polytope interior (Figure 2-1(c)). Both methods require sparse linear
systems solves.

LP is solvable in polynomial time, but all previous provably-efficient methods have running times
that depend on the sizes of numerical values in the input. A strongly polynomial-time algorithm for
LP is one whose running time is bounded by a polynomial in n and d, independent of the sizes of
the entries of A, b, and c. Arithmetic operations are treated as constant-time black-box operations.
In particular, the number of high-level iterations of strongly polynomial-time algorithms do not
depend on numerical properties such as condition numbers. Strongly polynomial-time algorithms
are sometimes called combinatorial algorithms, since they are described in terms of high-level
arithmetic operations on numbers. Such algorithms produce exact solutions as opposed to
numerically approximate solutions, where the exact solution to a linear program would be
represented by the set of input constraints that meet at an optimal vertex. Thus an implementation
of a strongly polynomial-time algorithm would guarantee the exact solutions as long as numbers
with sufficient precision are used. In contrast numerical optimization algorithms are only able to
approach exact solutions as a function of the precision. Exact solutions can be critical in
mission-driven scenarios where outputs of optimization algorithms drive decisions and precise
verifiability is essential. Strongly polynomial-time algorithms are known for special classes of
LPs [15].

The most relevant related works include ongoing work on efficient interior point methods, both
randomized [8] and deterministic [16]. There is continued interest in exact algorithms whose
running times depend on instance-specific parameters, e.g., the constraint matrix [3, 4]. Perhaps
more related to the original goal of an exact algorithm with strongly-polynomial time, a randomized
variant of simplex algorithm, leveraging ideas from smoothed analysis [2, 13], was shown to run in
expected polynomial time [7] albeit with dependence on the encoding length.
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(a) (b) (c)

Figure 2-1. The feasible region of an LP is a convex polytope. The optimal so-
lution is always on the outside. LP algorithms search through d-dimensional
space for an optimal solution, differing in their search paths.

Novel combinatorial geometry operations The classic simplex algorithm for LP is based
on the pivot operation. The input to the pivot operation is a set of n input constraints which meet to
form a vertex of the feasible polytope P. The pivot operation swaps out one of those constraints for
a new one, defining a new vertex of the feasible polytope with an improved value of the objective
function. A sequence of pivots forms a path along the boundary of the feasible polytope, ending at
the optimal vertex.

We explored the use of other combinatorial operations, which describe motions in the interior of the
feasible polytope, hoping to achieve a combination of the advantages of the simplex algorithms and
interior-point algorithms.

The first novel operation is random spoke shooting. The PI developed the Recursive Spoke Darts
method in 2016 for tractable sampling of Voronoi vertices in arbitrary dimensions [5]. In a spoke
shooting operation, we throw a ray, or spoke, from an initial point x0 in the interior of P. We
proceed along the spoke until we hit a facet (i.e., a polytope “side”) f1 of P. The facet f1 can be
determined by computing a dot product ĉ ·ai for each normalized row ai of A. We select as f1 an ai
that achieves the minimum nonnegative value of ĉ ·ai. Computing these intersections of spokes
with facets is computationally efficient and naturally paralleizable.

Once we have found f1, we can recursively shoot spokes contained in the lower-dimensional
feasible region of f1; we say that f1 has become a tight constraint, in which any extension to the
path must be contained. While shooting spokes with a non-zero set of tight constraints does
produce a path on the boundary of P, these spokes can be in the interior of a larger-dimensional
face. Thus the set of paths we consider is much larger than the family of classic simplex paths,
which are restricted to the one-dimensional edges of P.

When we shoot a spoke inside f1, we end up at an (n−2)-dimensional face of P, formed by the
intersection of f1 and some additional facet f2. At this point we have two options. First, we can
reduce dimension by shooting spokes into the (n−2)-dimensional face, making both f1 and f2
tight constraints. If we reduce dimension at every step, we eventually end up with a set of n facets
determining a feasible vertex of P. Second, we can shuffle, by swapping f2 for f1, if shooting
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spokes in f2 would allow us to improve the objective function. In general, a shuffle operation swaps
out one tight constraint for a new constraint, giving a higher-dimensional analog for the pivot
operation.

Whatever the dimension of the face formed by the current set of tight constraints, when shooting
spokes into its interior, it is not clear what the best spoke direction is. Shooting spokes in the
direction that best optimizes the objective function in the space (formed by projecting the objective
function −c into the linear space containing the face) is an obvious choice and, because it is easy to
analyze, might lead to theoretical advances (although we have not been successful so far in proving
that it does). Shooting several random spokes, on the other hand, allows much more parallelism,
and gives us multiple chances to find a direction that gives us a significant improvement in the
objective function. The use of random spokes is another idea that we borrow from the Recursive
Spoke Darts algorithm.

In addition to shooting spokes, which gives us a wide range of possible paths on the polytope
surface, we considered a class of paths which are forced to lie in the polytope interior. This was
inspired by the successful weakly polynomial time algorithms, in which a path is constructed in the
interior of P, ending very near the optimal vertex. We considered both pivot and spoke-shooting
steps on the medial axis of the polytope, which is a combinatorial structure defining paths in the
polytope interior. The medial axis is the locus of points that have more than one closest point on the
boundary of P. Its edges are the locus of points with n or more closest points on the polytope
boundary; that is, each edge point is the center of a ball with empty interior but at least n points of
contact on boundary of P. The medial simplex algorithms extend simplex algorithms to consider
walks on the edges of the medial axis, as well as the edges of the feasible polyhedron. Spoke
shooting provides paths that traverse faces of the medial axis in all dimensions.

Both spoke shooting and using the medial axis open up new opportunities to develop combinatorial
LP algorithms with better theoretical properties, practical advantages, or both.

13



3. THEORETICAL CONTRIBUTIONS

3.1. Theory

The theoretical goal of this project was to search for a strongly polynomial time algorithm for linear
programming. A strongly polynomial time algorithm is one whose running time is a function of n,
the dimension, and m, the number of constraints, while the running time of a a weakly polynomial
time algorithm may depend also on L, the size of the input in bits (that is, the resolution of the
numbers representing the input). Finding a strongly polynomial LP algorithm is one of the
longest-standing open problems in computer science, and we did not succeed in solving it. We did,
however, develop an interesting way of looking at the problem, which we hope will be useful.

3.1.1. Medial simplex algorithms

We focused on a particular path within the graph formed by the medial axis edges, which we call the
spine of the polytope. Let’s assume the LP is maximizing the objective function c · x. At each level
z, let s(z) be the center of the largest ball with empty interior contained in the feasible polytope and
centered at a feasible point on the plane c · x = z. Any such point lies on an edge of the medial axis,
and their union forms a path in the medial axis, the spine, containing both the minimum and
maximum feasible points with respect to c, and the largest ball enclosed in the polytope. The spine
is a natural combinatorial example of an interior path. Using LP duality, we can show that

Theorem 1. The spine corresponds to a shadow-vertex path on the feasible polytope of the dual LP.

Since we can construct an arbitrary dual polytope and place any shadow-vertex path in that position,
and there are examples of exponential-length shadow-vertex paths, this theorem implies that the
length of the spine can be exponential in n and m.

The fact that the determinisitic medial simplex algorithm has an exponential lower bound is not
surprising; progress on combinatorial LP algorithms in recent years has mostly been based instead
on creative applications of randomization. Specifically, the breakthrough 2004 “smoothed analysis”
paper of Spielman and Teng [14] considered perturbing both the constraints and objective function
of an LP, and showed that the perturbed LP could be solved in polynomial time using the shadow
vertex algorithm. Of course, the solution of the perturbed LP is not the same as the solution of the
original problem. This was followed by a series of refinements and simplifications. In 2006, Kelner
and Spielman showed that a less consequential perturbation only of the right-hand side of an LP
could be used as a subroutine in an algorithm that uses iterative rounding of the polytope (eg. like
the ellipsoid method) to give a weakly polynomial LP algorithm. We attempted to build on both of
these approaches.
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We considered randomizing the medial simplex algorithm by assigning a multiplicative weight wi
to each constraint, so that the medial axis, and the spine, is computed with respect to weighted
distance wiai · x instead of the usual Euclidean distance given by ai · x. This is similar to, but not
exactly the same as, the one-dimensional perturbation used by Kelner and Spielman. We hoped that
in the geometric framework of the medial simplex algorithm we could get a better bound on the
length of the spine, but unfortunately we found that:

Theorem 2. The expected length of an edge on the dual shadow can be exponentially small in n,m
and L.

This implies that even after randomization the spine might contain an exponential number edges.

This hardly exhausts the possibilities of the medial simplex algorithm. One question we are
interested in pursing is the relationship between the complexity of the spine and the central curve,
the smooth path followed by interior point algorithms.
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4. SERIAL AND PARALLEL LINEAR PROGRAMMING SOLVER
IMPLEMENTATIONS

In this section, we will describe our parallel LP code. In contrast to our efforts in the theory section,
the goal here is to design an algorithm that can scale on a large number of processors in a
distributed memory system.

We begin by describing the randomized techniques used to explore the feasible region in Section 4.1
and Section 4.2. These techniques assume that we already have an initial feasible starting position,
however, and in Section 4.3 we introduce a procedure for obtaining a feasible position that can be
used to initiate the algorithm.

4.1. Random spokes

At an intuitive level, the algorithm consists of an iterative procedure designed to answer the
following question at each step: given the current position, what is the direction and distance we
should travel in order to improve our chances of finding the optimal vertex? The concept of random
spokes, first introduced by the PI in [9] and [5], provides a natural framework for addressing this
question. To construct a random spoke centered at a feasible position x ∈ Rd , we first sample a
direction θ from the unit-sphere Sd−1 = {u ∈ Rd : 〈u,u〉= 1}. Once the spoke direction has been
selected, we probe the polytope along the ray {x+ t ·θ : t > 0} to obtain geometric information
used to compute the length of the spoke.

In order to fully specify how spokes are constructed, we make use of two fundamental spoke
operations: spoke trimming and spoke projection. We use the trimming operation to determine the
appropriate length of each spoke relative the problem geometry, and we use the spoke projection
operation to restrict the direction of each spoke to a particular region of interest. Importantly, we
perform both of these operations using only vector inner-products and matrix-vector multiplication
with the constraint rows so that the resulting algorithm generalizes naturally to the distributed
setting (i.e. by partitioning the constraints and distributing them across the available processors).

4.1.1. Spoke trimming

The main goal of the trimming operation is to compute how far we should travel along the ray
{x+ t ·θ : t > 0} in order to make the most progress possible without leaving the feasible region.
In the absence of numerical considerations, we can perform this task quite easily since the distance
Ti(x ;θ) that can be traveled before violating constraint i is given by:

Ti(x ;θ) = max
(
(bi−〈ai,x〉)/〈ai,θ〉 , 0

)
(4.1)
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Figure 4-1. Spoke trimming operation using constraint residuals for im-
proved numerical stability. When computing the trim distance, we include
the scaling factor λ to account for scenarios where the constraint hyperplane
and spoke direction are approximately parallel.

Since leaving the feasible region is equivalent to violating one of the constraints, the maximum
distance T (x ;θ) that can be traveled along the ray inside of the feasible region is given by:

T (x ;θ) = max{t ≥ 0 : x+ t ·θ ∼ feasible} = min
i

Ti(x ;θ) (4.2)

In practice, traveling the full distance T (x ;θ) at each step can be problematic due to numerical
issues. To improve the stability of the algorithm, we can repose the trimming operation in terms of
the constraint residuals, ρ

(i)
start and ρ

(i)
end, associated with the beginning and end of the spoke:

ρ
(i)
start = bi − 〈ai,x〉 and ρ

(i)
end = bi − 〈ai,x+T (x ;θ) ·θ〉 (4.3)

To begin, we identify and remove constraints with ρ
(i)
start ≤ ρ

(i)
end from the trimming procedure.

For the remaining constraints, we use the constraint residuals to compute scaling factors λ (i):

λ
(i) = ρ

(i)
start

/ (
ρ
(i)
start − ρ

(i)
end

)
(4.4)

and define the final trimming distance by setting τ = λ ∗ ·T (x ;θ) where λ ∗ = min λ (i). We also
record the constraint index i∗ = argminλ (i) corresponding to the constraint that ultimately trimmed
the spoke (i.e. the constraint which first blocks progress in the selected spoke direction). We use the
computed trim length τ to update the current position: x 7→ x+ τ ·θ . We also use the constraint
information i∗ to inform how we navigate through the polytope in subsequent steps.

4.1.2. Spoke projection

We control the algorithm’s search space by placing constraints on the random directions used to
construct spokes. This is particularly helpful when dealing with “nearby” constraints; these
constraints effectively block movement in an entire half-space, and when the current position is
located near several constraints the probability of making progress is reduced dramatically. To
avoid being immediately blocked by nearby constraints, we restrict the random spoke directions to
a subspace that is parallel to the (currently identified) nearby constraints. We enforce this restriction
by projecting directions that have been sampled uniformly from the unit sphere onto the subspace
consisting of directions that are orthogonal to the normal vectors of all nearby constraints.
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Given a collection of nearby row constraints, we assemble the rows into a submatrix Ap and form
the associated right-hand-side vector bp. We then compute the projection π of the current position x
by solving the linear system:

[
I AT

p
Ap 0

][
π

v

]
=

[
x

bp

]
=⇒

{
π + AT

p v = x
Apπ = bp

(4.5)

We then isolate the unknown vector v by multiplying the top equation by Ap and making the
substitution Apπ = bp from the bottom equation to obtain:

ApAT
p v = Apx − bp (4.6)

After solving this system for v using the conjugate gradient method, we obtain the desired
projection π by recalling that π = x−AT

p v.

4.2. Blocker constraints

To control how the algorithm explores the feasible region, we actively track which constraint trims
the best spoke at each step. We refer to these constraints as blockers and use the term blocker
subspace to refer to the space of vectors which are orthogonal to all of the current blockers.

We use the blocker subspace to restrict the randomized spokes to a search space which is parallel to
each of the blocker constraint hyperplanes. This allows us to navigate through the feasible region of
the polytope by exploring a series of feasible slices of the polytope of varying dimensions.

Since the feasible slice we are exploring is determined by the list of active blockers, we can
perform transitions between feasible slices by selectively adding and removing blockers. We do this
based on information computed in the spoke trimming operations, and introduce two fundamental
operations for updating the blocker list: search space reduction and informed shuffling.

4.2.1. Search space reduction

When a new blocker constraint is encountered, we first attempt to reduce the search space by
appending the new constraint to the current blocker list. By including the constraint as a blocker,
we ensure that the spoke directions sampled in subsequent steps will be parallel to the new
constraint’s hyperplane. This is achieved by projecting the spokes to the current blocker subspace at
each step by an application of the conjugate gradient method described in Section 4.1.2. As shown
in Figure 4-2, this results in a lower-dimensional search space which is calibrated to the geometry
of the constraint hyperplanes close to the current position. We also flip the spoke directions, if
necessary, to ensure that each spoke is oriented in the positive objective direction.
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Figure 4-2. We project the randomly sampled spoke directions onto the
blocker subspace to refine the current search space and avoid running into
nearby constraints. We also check to see whether the projected spoke di-
rections are oriented in the positive objective direction, and flip the spoke
directions if necessary.

4.2.2. Informed shuffling

In some scenarios, the algorithm will fail to make progress after reducing the search space. This
can be caused by having too many blockers relative to the problem dimension, but it can also occur
in non-trivial scenarios due to the geometry of the current constraint hyperplanes and their
orientation with respect to the objective direction.

When reducing the dimension of the search space fails, we perform a shuffling operation which
consists of removing one of the existing blockers and replacing it with the newly encountered
blocker. Geometrically, this corresponds to moving from a face of dimension k (where the number
of current blockers is n− k), through an adjacent face of dimension k−1 (in which the newly
encountered blocker is added), into an adjacent face of dimension k (where one of the old blockers
has been removed). This is a higher-dimensional generalization of a simplex pivot, which moves
from a one dimensional face of the feasible polytope, through a zero-dimensional face, to an
adjacent one-dimensional face.

Just as with the simplex pivot operation, where not all edges make progress, not all adjacent k faces
allow the shuffle step; the projection of the objective function direction c onto the adjacent face
might be infeasible. If none of the current blockers can be removed in a shuffle that allows
improvement of the objective function, the only option is to reduce the dimension. When k = 1, the
shuffle operation is the simplex pivot, and unless we are at the global optimum, one of the adjacent
edges will be in a direction improving c.

To efficiently check which constraints can be shuffled out, we compute the duality coefficients d
associated with a matrix B, whose rows are the current blockers plus the newly encountered blocker,
by solving the system BT Bd = BT c.

Observation 1. A row ai allows feasible improvement of the objective function c by projecting it
into the k-face formed by replacing ai with the newly encountered blocker if and only if its duality
coefficient is negative.
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The expression Bd gives the projection of c into the normal space of the (k−1)-face f formed by
the intersection of all the blockers in B. If di is negative, it implies that c is directed into the
negative half-space of ai, that is, the improving direction is infeasible; projecting c into the
subspace spanned by the remaining a j (that is, the adjacent k-face formed by removing ai) would
remain in the negative half-space.

4.3. Lifting procedure

To initiate the procedure described in the previous section, we first need to identify a feasible
starting position inside of the polytope. To accomplish this, we begin by sampling a random initial
position from a unit-sphere and projecting the sampled point onto the space of equality constraints
(i.e. constraints of the form 〈ai,x〉= bi which must be satisfied at all times). Once the point is
projected, we check whether or not the resulting position is feasible.

In most cases, the randomized starting position will not be feasible since it is unlikely to satisfy all
of the LP constraints by chance. To handle scenarios where the initial position is infeasible, we
introduce an artificial lifting procedure to account for the unsatisfied, or violated, constraints.

4.3.1. Violated constraints

When the initial position is infeasible, we introduce an additional lifting dimension to the problem.
This allows us to view the original polytope as the zero-lifting-height cross-section of an artificially
constructed “lifted” polytope in a higher dimensional space. In particular, we construct the lifted
polytope by identifying the violated constraints associated with the initial infeasible position and
tilt these constraints so that the initial position becomes feasible after increasing the lifted
component sufficiently.

ρi = max(〈ai,x〉 − bi , 0) , âi = [ai,−ρi/R] , x̂ = [x,R] where R = max
i

ρi (4.7)

This ensures that 〈âi, x̂〉 = 〈ai,x〉−ρi ≤ bi for all constraints so that the lifted position x̂ is in fact
feasible in the lifted polytope. In Figure 4-3, we show how this procedure can be visualized for a
simple two-dimensional problem.

4.3.2. Descent to feasible region

Once we have constructed a feasible starting position in the lifted problem space, we initiate a
descent procedure designed to find a feasible point with a zero-valued lifted component. This is
motivated by the fact that the collection of feasible points in the lifted space with zero-valued lifted
components coincides exactly with the feasible region of the original, unlifted problem. To perform
the required descent in the lifted space, we simply apply the LP solver to the lifted problem and
optimize in the negative direction of the lifted component.
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Figure 4-3. Artificial lifting procedure used to obtain feasible starting posi-
tions. The initial position in the unlifted problem (left) satisfies the black
constraint while violating the red constraint. The lifted problem (right) intro-
duces a new dimension to the problem, tilts the violated constraint, and lifts
the original starting position to ensure feasibility.
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5. BENCHMARKING AND EMPIRICAL RESULTS

In this section we describe our initial computational results. Since our code has a distributed matrix,
we also needed test problems that were too large to fit in the memory of a single processor. We
describe the problem generator we designed and implemented to make arbitrarily large LP
instances.

(Cindy: There was a TODO around adding a description of the Netlib problems. I’m not sure what
people wanted, but this is probably minimally OK.)

5.1. Experimental Results on Netlib

We debugged our code, Spoke-LP, on some small examples from the standard netlib dataset [10].
Table 5-1 gives some runtime statistics for a subset of the NETLIB problems. The solution matches
those given in Netlib for all but E226, where the Netlib solution is -18.751929066. Table 5-2 shows
runtimes for these problems when run on 2, 4, and 8 nodes. The runtimes actually increase with the
number of nodes. This is because these problems are tiny by LP standards. They fit comfortably in
the memory of a single processor. So the overhead for distributing the matrix is not justified.
Nevertheless, these experiments debugged the parallel distributed-matrix code.

(Cindy: It would be good to give a reason why we selected this subset.)

5.2. Generating arbitrarily large LP instances

Since we believe there is no maintained, actively used distributed-matrix LP code, there are no
public LP test sets that are so large they overwhelm the memory of a standard processor. Thus we
had to generate our own test problems. Our generator is the linear-programming formulation for a
graph problem. Therefore, by choosing a sufficiently large graph instance, we can create an
arbitrarily large LP instance.

We used the maximum-density-subgraph LP formulation from Charikar [1]. Given an input graph
G = (V,E), and a subset of vertices V ′ ⊂V , the induced subgraph is G′ = (V ′,E ′) where
E ′ = {(u,v) ∈ E|u ∈V ′∧ v ∈V ′}. That is, the induced subgraph includes all the original edges
joining two of the selected vertices. The density of a graph G = (V,E) is |E||V | . This half the average
degree over the nodes in the graph, so is a measure of how dense the graph is. The maximum density
subgraph problem takes a graph as input and finds its induced subgraph of maximum density.

Charikar [1] gives an elegant LP to solve this problem exactly. It has O(|E|) variables and O(|E|)
constraints. The straightforward generalization of this LP to find the induced subgraph with the
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Problem Time Steps Vars Rows Eq Rows Objective
ADLITTLE 0.09 160 97 138 15 225494.9632

AFIRO 0.04 48 32 51 8 -464.7531
AGG2 0.87 387 302 758 60 -20239252.3560

BANDM 16.58 602 472 472 305 -158.6280
BEACONFD 0.42 188 262 295 140 33592.4858

BLEND 0.13 151 83 114 43 -30.8121
BORE3D 3.59 321 315 344 215 1373.0804

BRANDY 4.74 482 249 292 139 1518.5099
CAPRI 22.12 852 353 583 158 2690.0129

DEGEN2 9.72 710 534 757 221 -1435.1780
E226 7.89 839 282 472 33 -25.8649

GROW7 1.73 361 301 581 140 -47787811.8147
SCTAP1 1.85 583 480 660 120 1412.2500

SHARE1B 2.84 428 225 253 89 -76589.3186
SHARE2B 0.12 173 79 162 13 -415.7322

STANDMPS 40.84 1949 1075 1362 284 1406.0175
STOCFOR1 0.13 119 111 165 63 -41131.9762

Table 5-1. Experimental results of Spoke LP Solver on Netlib using 1 node.

2 nodes 4 nodes 8 nodes
Problem Time Steps Time Steps Time Steps

ADLITTLE 0.23 153 0.38 160 0.77 151
AFIRO 0.04 44 0.08 47 0.22 48
AGG2 1.80 370 3.40 370 4.86 374

BANDM 24.07 575 32.16 558 50.65 577
BEACONFD 0.52 193 0.77 188 1.18 192

BLEND 0.36 164 0.65 148 1.32 163
BORE3D 6.05 297 10.01 307 17.40 303

BRANDY 8.68 499 13.87 480 19.42 500
CAPRI 42.07 816 77.59 879 119.81 856

DEGEN2 13.56 700 17.28 621 115.84 1373
E226 14.35 958 23.19 919 29.57 897

GROW7 1.89 350 4.04 360 4.09 363
SCTAP1 4.41 572 7.37 575 10.20 546

SHARE1B 5.62 428 11.41 428 20.53 472
SHARE2B 0.32 157 1.30 207 1.35 158

STANDMPS 63.13 1905 98.16 1966 161.59 1967
STOCFOR1 0.33 117 0.67 101 1.28 109

Table 5-2. Time results of Spoke LP Solver on Netlib with 2, 4, and 8 nodes.
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maximum triangle density (most triangles per vertex) is even larger. It’s size is determined by the
number of triangles (3-cycles) in the graph, which can be quite large, especially for social
networks.

We then needed a graph generator. Although there are many choices, we began with just the
standard Erdös-Rényi (ER) random graphs. An ER random graph has two parameters: the number
of nodes n and a probability p. Each edge occurs with probability p. We simply used the ER
generator from the python Networkx package [11]. For a given n and p we can calculate the
number of expected edges, hence the number of constraints and variables in the LP instance. Thus
for a given fixed probability (graph density) p, we can choose values of n to give a suite of
instances that increase in size by a desired factor. This is nice for testing scalability.

For problems that are too large to run on any current commercial LP solver, we must generate both
the primal and the dual of an instance, solve both, and ensure the optimal objective values are
(sufficiently) equal to verify we have correctly solved the instance.
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6. CONCLUSION

Although we did not yet reach the “holy grail” of a strongly-polynomial LP algorithm, we believe
that medial simplex algorithms still hold promise. Also, with additional engineering, the parallel
distributed-matrix Spoke-LP code could solve problems too large to solve by any other means.
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