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ABSTRACT
Currently, traditional methods such as short-term average/long-term average (STA/LTA) are used to 
detect arrivals in three-component seismic waveform data. Accurately establishing the identity and arrival 
of these waves is helpful in detecting and locating seismic events. Convolutional Neural Networks (CNNs) 
have been shown to significantly improve performance at local distances. This work will expand the use of 
CNNs to more remote distances and lower magnitudes. Sandia National Labs (SNL) will explore the 
advantages and limits of a particular approach and investigate requirements for expanding this technique 
to different types, distances, and magnitudes of events in the future. The team will describe detailed 
performance results of this method tuned on a curated dataset from Utah with its expert-defined arrival 
picks.
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1. INTRODUCTION
The ability to comprehensively detect and properly classify low magnitude earthquakes using ground 
motion recorded at remote distances is key to understanding fundamental seismological activity and 
a plethora of terrestrial and anthropogenic processes. 

Characterizing lower magnitude events, where signal may be masked by significant noise, requires 
powerful and interesting analysis in a variety of fields.  Data that has traditionally been gathered by 
high quality seismometers is now complimented with data from more unique, common, and varied 
sensors. The results are orders of magnitude more data, which present fantastic scientific 
opportunities yet fundamentally change the tools and techniques required to make use of this data. 
For example, template methods that use per-station historic patterns may not be practically feasible 
with significantly more new stations that lack a long history of labeled events.  

To build seismic events from ground motion data recorded by a network of stations, we generally 
first classify phases in several single station seismograms. The quality of these initial phase picks 
determines the quality and magnitude of the event that is built from them; hence analysts often 
spend a lot of their time editing these picks. However, human effort is better spent on the higher-
level logical tasks associated with event building and refinement rather than determining phases in 
particular waveforms. 

Fortunately, signal detection is well suited for neural networks. There is a tremendous amount of 
human labeled data available whose quality is cross checked by expert visual inspection, including 
comparison with data at other stations. Generally, the data is well understood, fairly consistent, and 
for many sensor networks, a significant quantity exists even for a single station.  

However, there are significant challenges in applying neural networks to seismic data for signal 
detection. Most event catalogs deliberately prioritize high magnitude seismic events, with far fewer 
low amplitude examples available, hence some potentially valuable training inputs that should have 
been labeled as signals are by default mislabeled as noise. Further, once neural networks have been 
trained, they may output real events that do not appear in catalogs and hence are scored as false 
positives. Therefore, determining accurate performance metrics for low magnitude event signal 
detection is difficult. 

We find, through detailed analysis of two stations from the University of Utah Seismic Station 
(UUSS) network, that significantly less training data is to create an effective detector than has been 
shown in other recent studies applying neural networks to signal detections (e.g. Ross et al., 2018). 
This is an important result because in many areas of monitoring interest, large labeled training sets 
may not be available. For station PNSU our results are particularly impressive, with an AUC of 0.95 
and a true positive rate of 69%. For the BPRU station we have a TPR of 67% and an AUC of 0.83, 
and we also note a very high false positive rate. We believe this is because the data available to train 
BPRU is inadequate for our methods.
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2. HISTORIC WORK
Historically there have been significant improvements to earthquake detection from upgraded 
detector technologies and analysis approaches. The STA/LTA approach (Allen, 1978) is a robust 
standard in detection that compares signal amplitudes ratios over varying time windows. While 
simple and effective across a variety of scales and geographic regions, more modern techniques have 
been demonstrated to capture more true events, though typically they require more tuning and use 
significantly more computational resources. Waveform correlation approaches (template matching) 
exploit the similarity between seismic traces observed for an event that recurs in the same location 
and is of the same type; these methods are computationally expensive in that they must compare 
repeated waveforms point by point, but modern versions (Yann LeCun, 1998) use approximation 
methods to provide improved performance (Clara E. Yoon, 2015) relative to earlier methods. To 
implement waveform correlation as a signal detector, relevant templates of waveforms for individual 
stations are built up in a database, then compared to continuous incoming waveform data from that 
station. As these historical databases increase in size, hence sampling a greater range of source 
locations and types, the method becomes more powerful. However, computational requirements 
grow significantly as the size of the template database increases. Additionally, all waveform 
correlation methods are only effective for repeated events, and they perform very poorly on 
unfamiliar seismic activity (i.e. new source types and/or source regions). 

Recent advances in identifying phases in seismic waveforms have been made by leveraging deep 
neural networks. The key insight is that methods developed for other fields are incredibly powerful 
when applied to time series data.  Neural networks are trained to construct abstract representations 
of input data based on multiple layers of internal weights and connections. Convolutional neural 
networks (CNNs) (Yann LeCun, 1998) leverage the convolutional operation to essentially learn 
relevant filters at varying scales of the input. These convolutions act at various time scales and 
therefore can construct generalized representations of waveforms that do seem do have the ability to 
generalize where template matching cannot.

Recent advances in seismic CNNs have shown significant advances relative to previously state of the 
art results. ConvNetQuake (Thibaut Perol, 2017) both detects and locates earthquakes from a single 
waveform and finds twenty times more earthquakes than are recorded in catalogs  generated with 
traditional methods, and with significantly fewer computational resources required. Another method 
(Zachary E. Ross, 2018) has shown the ability to achieve generalized phase detection (GPD) by 
training with large amounts of analyst-reviewed P and S phase data from Southern California. Both 
methods demonstrate the ability to generalize over both magnitude and region, which is important 
in that it significantly increases the utility of the technique and moves towards the capability to apply 
CNNs trained in one region to data from new regions. 

As these methods move to maturity and become commonly used, it is important to understand the 
specific behaviors and how they generalize. As we introduce additional phases and vary epicentral 
distances, categorizing the behavior and capability will allow a deeper understanding of how to apply 
these tools and where the approach may break down. Additionally, understanding the effectiveness 
of neural networks when applied to smaller datasets in new geographies allows us to round out our 
knowledge.
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In this paper we apply the ConvNetQuake method to a highly curated benchmark dataset of seismic 
events from Utah (Linville L. B., 2019). Using such a detailed human-labeled catalog gives us the 
ability to more deeply understand the training and performance of ConvNetQuake. We are able to 
look for recordings of different phases recorded at a range of epicentral distances for low magnitude 
events. Significantly, we have the ability to understand the false positive rate through the use of 
additional curated noise windows. We look at single stations to understand them more completely, 
then expand to multiple station systems to examine how our results generalize. The results presented 
here reinforce the impressive performance of the neural network approach shown in other studies 
and allow us to characterizer its generalizability, particularly with regard to different phases and 
different regions of seismicity. Most significantly, it allows us to more deeply understand the 
performance of these detectors.
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3. METHOD
Recently, various approaches have emerged that classify phases in waveforms with convolutional 
neural networks. Fundamentally, they all map input windows to an output classification through a 
series of simple mathematical operations, that form a complex overall system due to the large 
number of operations that are involved. The exact architecture varies between approaches but 
consists of layers of connections in which the output of one layer is the input of the next. 
Commonly, the first layer takes a window of time series data and subsequent layers convolve 
channels of the previous layer with learned filters before passing them on. Normally the last layer is 
a fully connected linear layer that is reduced into a feature vector used for classification. 

In this work we use ConvNetQuake as described in (Thibaut Perol, 2017) as our reference 
framework. We found that altering the structure of the network did not result in any significant 
improvements, though we did update the software framework to TensorFlow 2.0.   

A detailed description of the network is available in the original ConvNetQuake paper, but we will 
review it briefly here. A diagram is provided in Figure 1 The network architecture is fairly simple, 
with eight convolutional layers, followed by a fully connected layer that outputs class scores. At each 
convolutional layer except the first, there are 32 channels. Linear 1D filters (kernel size of 3) are 
convolved with the previous layer’s channels and summed. This quantity and a bias term are input to 
a non-linear ReLU function, then output to the next layer.  Convolutions are strided at each level 
with S=2, resulting in an effective down sampling at each layer. This means that at each layer, filters 
essentially act on raw data and draw out features at different time scales. At the earliest layers, full 
resolution high frequency features are learned, while deeper levels act on the down sampled results 
picking out lower frequency features over a wider time window.

Ten second segments of three component 100Hz seismic waveform data are introduced into the 
first layer as a 2D tensor “2-D tensor Z0”. At the eighth layer, the network processes the final tensor 
of shape (4,32) into a vector and then a fully connected layer that outputs the classification scores. 
These scores are normalized by a SoftMax function to what is interpreted as a probability function.  
Our work only differs from the original paper in that we have just one output node, as we disregard 
location data associated with region identification.
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Figure 1: ConvNetQuake Architecture, from (Thibaut Perol, 2017)
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4. DATA SET - GENERAL QUALITIES
Part of the challenge of developing new arrival detection methodologies is the lack of appropriate 
datasets to assess performance, especially at low detection thresholds that may include significant 
anthropogenic sources. Lowering detection thresholds introduces significant complications that 
must be assessed. Anthropogenic noise may dominate and look similar to event-generated seismic 
activity at very local scales. Additionally, event-generated seismic activity may be present at 
individual stations, but from events that are so small that they cannot be detected at other nearby 
stations, eliminating the ability to confirm a signal detection or construct the corresponding event.

In general, there are several advantages to using high quality standard datasets for training and 
testing CNNs. Primarily, significant effort and expertise has already been put into grooming and 
labeling the dataset, something that may be very costly on an ad-hoc basis. Additionally, standard 
datasets allow for a more equitable comparison of results between approaches and algorithms. 
Nominally, datasets are chosen based on availability to the researcher and compatibility with their 
approach, leading to results that are difficult to interpret more broadly.

Additionally, as we describe below, seismic event bulletins by their nature are downstream in the 
analysis process pipeline and are built on mostly automatically detected arrivals. As our method 
improves arrival picking, the quantity event construction is built on, we will have to address this 
discrepancy in arrivals (as we will describe below) to faithfully test the method. Nevertheless, starting 
from a high-resolution reference dataset built around confirmed smaller magnitude events is 
important for both algorithm training and testing. 

1.1 Dataset - Our Data

We use a unique, high-quality standard dataset of events and associated arrivals called the 
Unconstrained Utah Event Bulletin (UUEB), (Linville L. R., 2019). The UUEB greatly extends the 
much less complete catalog that is routinely produced by the University of Utah using their regional 
University of Utah Seismograph Stations network (UUSS). The University operates this network 
throughout the state to better understand local earthquake behavior for the purpose of assessing 
seismic hazard in populated areas. The UUSS event bulletin as well as UUSS waveform data are 
freely available from IRIS (Utah, 1962).

The UUEB event catalog spans January 1 through Jan 14th, 2011. This timeframe was selected 
explicitly to include extensive low magnitude events from both anthropogenic and natural sources. 
The catalog contains seismic aftershock events from a large earthquake in southern Utah, as well as 
extensive mining events of various types from various locations. Each event in the dataset has been 
built and reviewed by an expert analyst, including careful examination of all associated arrivals. 
Accordingly, the catalog is much more complete than the UUSS catalog for the same time period. In 
total, 8270 events in or close to the state of Utah are included in the UUEB catalog in the two-week 
period, as compared to less than 200 in the UUSS catalog. 
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1.2 Data Set - Further Investigations by Experts

We used UUEB events in our analysis that had three confirmed arrivals. If we detected arrivals at 
additional stations, we examined the waveforms to determine if the detected arrivals associated with 
a given event were present. The advantage of using this dataset is that we were able to focus on 
small events that would otherwise been skipped in most operational environments.

During the final data quality pass, an expert augmented our picks to be more appropriate for 
assessing signal detection. Additional real arrivals (as judged by an expert manually reviewing 
waveforms) were added, even if they could not be associated with a 3-station event. This has the 
effect of identifying smaller signals that should have been detected.

Significantly smaller arrivals were suppressed to avoid contaminating our results. When an analyst is 
examining signals across a network of stations for a given event, some marginal quality signals may 
be associated primarily based on evidence provided by the quality of signal detection on adjacent 
stations in order to produce an event with three arrivals. That is, two obvious arrivals at nearby 
stations point the analyst to a specific time window in which a marginal signal may be discerned on a 
third station. We screened such events in our final data quality pass.

The important implication is that, although this is an excellent dataset for our study due to the detail 
in which it has been carefully reviewed by an expert analyst, we note that is still incomplete. Marginal 
three-station events we screened, as were one or two station events 

1.3 Data Set - Specifics

The intent of this study primarily is to understand in detail the subtleties of training seismic neural 
networks. Specifically, we intend to understand the benefits, if any, to including waveforms from 
other local stations to supplement the data available to train on a per-station basis. As stated above, 
we hope this will add to our understanding of training neural networks in general, and area that is 
often overlooked. Equally important, we hope that by looking at supplementing training data in this 
way, we can understand the extent of potential generalizability of these methods and the extent to 
which each station may benefit from supplemental training with data from other local stations.
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To this end we choose two stations the UU network that we believe are suitable to understand the 
effect of supplemental data in training. Station PNSU has more associated signals in the UUEB than 
any other UUSS station. These are dominated by Lg waves likely from nearby mining activity. 

Station BRPU is close to PNSU and hence can potentially detected a lot of the events PNSU sees. 
Data available used in the analysis is in Table 1.

Station Total Arrivals Total Lg waves

PNSU 13883 4603

BRPU 3611 1726

Table 1: Arrivals available at Used UUSS Stations
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5. NETWORK DESIGN

5.1. Differences from Original paper

In terms of significant differences from the original ConvNetQuake approach there are a few key 
points. First, we do not investigate the ability to locate the seismic event, as we are exploring more 
general capabilities of phase detection. Because we have an abundance of Lg waves in the two-week 
window, and because other work has looked at P and S wave detection, we chose to focus on the Lg 
phase.

The dataset is significantly smaller than some other analyses (Zachary E. Ross, 2018) and is limited 
to single station models deliberately, because we want to examine how such models generalize. Also, 
we test on real, continuous data (as opposed to windowed data around known signals) which we 
believe is the ultimate test of the capability of a detector.  

5.2. Training the Network

For all our training we use data from Jan 3-14th and test on held out Jan 1-2 waveforms. We also 
trained and tested on different days of data (train on Jan 1-11 and test on 12, 13, 14th) but found 
that results did not differ. Because of the relatively small amount of data, it is difficult to have a 
training, development and test set. Therefore, we use a portion of the training set timeframe as a 
development set during training. 

As in the original ConvNetQuake paper (Thibaut Perol, 2017), ten second fixed windows of the 
three-component waveform are used for training. We found, after significant investigation, that 
performance suffers if the training event signal onset is centered (t=4s) in the window. Centering the 
wave in the window for training decreases sensitivity to waves not close to the center. We therefore 
introduce a shift around the onset of the wave in the window at training (see section A.1). The 
results show that performance is significantly improved if training includes waves beginning within 
the first approximately 8 seconds of the ten second window, enough to capture some significant part 
of the onset. Unlike the original approach, we do not add gaussian noise to our training events.

The network minimizes an L2 regularized cross entropy loss function that essentially classifies as 
noise or signal at the output. We use the ADAM optimizer with all other parameters the same as in 
the original work. ConvNetQuake is implemented in TensorFlow 2.0. We train the network until the 
loss plateaus, and when this occurs varies for different stations based on the available training data. 
We use batches of 256 events to train balanced between noise and signal. Because of the plethora of 
noise windows available as compared to signal windows, we train in epochs defined as one full pass 
of the set of noise windows. Therefore, one epoch may contain the signal events more than once. 
Because each station has a significantly different quantity of data available (imbalance of quantity of 
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signal and noise) and because the random nature of events and noise that are introduced at each 
step, we converge at varying rates per dataset when looking at plots of loss during training.
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6. RESULTS
To measure performance, we run the trained CNN on streaming data from the test set time period 
and compare the results to our expert picked event catalog. Our network requires 10 second 
windows, and we employ two methods to prevent potential overlap of signal events between 
windows. First, we choose windows every 11 seconds. Second, we count as a successful pick any 10 
second window in which there is an event from t = -1 s to t = 10s.

Figure 2: Acceptance window. We count as a success any test set pick that occurs from t=-1s to t=10s. We avoid 
overlap by testing on 10s windows, spaced by 11 seconds.

To prevent overtraining, we stop training when the loss plateaus, or does not decrease, for several 
epochs in a row. 

6.1. Results from PNSU

We first look at the results from training only PNSU. The training curves can be found in the 
appendix. The receiver operator curve (ROC) of True Positive Rate versus False positive rate is 
shown in Error! Reference source not found.:

1s
Gap

1s
Gap

11 s acceptance
window
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Figure 3: The receiver operator curve (ROC) of True Positive Rate versus False positive rate for PNSU. Area Under 
the Curve (AUC) is 0.95.

This result is at a decision on the probability threshold of 0.5, as shown in Figure 3, we can adjust the 
confidence level of the decision threshold and potentially tradeoff between FPR and TPR according 
to desired usage of the detector, therefore ROC is a valid measure of overall detector performance. 

The confusion matrix from the test set is shown in Table 2:

PNSU Confusion Matrix

T F
T 321 145

F 52 16763

Table 2: Confusion Matrix of PNSU. Predicted (Vertical) events versus real events (Horizontal).
We can see that for the 466 real signals, the network found 321 and missed 145 (false negatives). 
The great majority of examples in the test set (17,280) are noise and the network correctly identified 
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16,763 of these, while falsely classifying just 52 samples (i.e. false positives). The accuracy on the test 
set is 91% and the false positive rate is 0.86%.

6.2. BRPU Results
Results from BRPU were significantly worse, likely because of the lack of data available in that 
station, see Table 1 where true negatives dominate because of the predominance of noise. While 
there may be useful techniques to assist with this in the future, such as weight transfer, we wanted a 
valid comparison to PNSU. Results are in Table 3. We can see that for the 175 real signals, the 
network found 118 and missed 57 (false negatives). The great majority of examples in the test set are 
noise and the network correctly identified 17,105 of these, while falsely classifying 2260 samples (i.e. 
false positives), a considerably higher number than for PNSU. The AUC is 0.83. We tried to 
decrease the false positive rate but were unable to do so. We believe the problem is the small 
number of signals available for training at BRPU compared to PNSU. This sharp decrease in 
performance may indicate that with these two stations we have made a significant advancement in 
establishing the minimum number of arrivals needed to train an effective CNN signal detector 
(somewhere between BRPU number and PNSU number).

Table 3: Confusion matrix for BRPU Predicted (Vertical) events versus real events (Horizontal).

BRPU Confusion Matrix

T F
T 118 57

F 2260 17105

6.3. False Positives
Noise waveform windows may be falsely identified as signals for a variety of reasons that are 
important to understand. We look at randomly selected false positive windows to understand what 
features the detector may be triggering on. For example, there may be a simplistic average energy 
component that dominates selection, or a more complex selection of frequency content within the 
waveform, or a more non-linear combination of many features.

Because of the nature of the noise waveforms which are automatically selected to precede first P 
arrivals and are not manually reviewed, sometimes false positive windows do actually include a real, 
legitimate signal, and we confirmed this does occur in our dataset. We cannot look at all of the FP 
windows to understand the breakdown completely, but based on looking at a random sampling, we 
estimate that at least 70% of false positive noise windows actually have genuine signal. The 
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percentage could be even higher because for very weak signals from low magnitude events, 
confidently identifying a signal becomes subjective even for expert analysts. 
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7. CONCLUSION
We have explored the performance of a convolutional neural network Lg phase detector suing local 
distance events recorded by two stations from the University of Utah Seismic Stations network. 
Training data and test data were taken from a highly curated event catalog that included far more 
low magnitude events than in typical event catalog. Because of the dataset used, we are able to 
determine with confidence the performance on both signal and noise events with high confidence. 

Ideally, additional signal data at each station would be added to the training set to achieve better 
performance. However, even when only a small amount of training data are available, these 
networks show promise in detecting phases other than P and S waves that have been the focus of 
many previous studies. Additionally, we discovered new real arrivals that were not present in our 
curated event catalog, implying this method is more sensitive than traditional methods. However, for 
one of our stations we also generated high numbers of false positives, which we attributed to an 
inadequate number of signals available for training, suggesting that there are limits to how small a 
training set is needed to achieve good results. Although we investigated various methods to remedy 
this limitation, we were unable to overcome it and believe that there may be a hard limit on the 
number of labelled signals needed.
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APPENDIX A. TRAINING AND LEARNING CURVES
An integral part of effectively using convolutional neural networks is understanding behavior when 
training. Especially in the regime of smaller quantities of signal data, it is vital to discern when the 
network is overtraining, how to make the network converge, when to use pretrained weights, and 
the effect of training signal data on performance. To reiterate, we have 10 second windows of 100 
Hz three component data. We have a relatively small amount of signal data windows (~1000) 
relative to noise (~10,000), and in each step of training we use an equal number of signal and noise 
windows. Therefore, in training, the network will see less of a variety of signal data relative to noise. 
Here we describe important training effects we have seen, the data augmentation we perform and 
show the learning curves of the network.

A.1. Signal Position in the 10s Window

An important variable in the ability to train ConvNetQuake is the position of the signal onset Lg 
wave in the 10 second window. Initially, the signal in the training data was placed in the middle of 
the 10s window at t=4s. The network would converge (loss decreased) after several epochs. During 
test time, we test in consecutive 10s windows, overlapping by However, we noticed that in running 
over the test set, performance would suffer. The intuition is that the network would be trained to 
expect the onset of the Lg wave at t=4s and would not be robust to streaming data. We then began 
to shift the signal onset wave around in the window from t=0s to t=8s. When we did this with 
window weights initialized randomly, the loss would not decrease. We found after many iterations 
and much effort, that we initially needed to train with the signal sitting statically at one position in 
the time window (t=4s). After the initial convergence with this signal data, we were able to introduce 
windows containing the signal onset shifted, and the network would then recognize the possibility of 
the signal onset at any time in the 10s window. Performance on the test set then improved 
dramatically. We found this effect by plotting the percentage of missed test set events against where 
the signal occurred in the window, as illustrated below in Figure 4. When trained with signal only 
occurring at t=1s (Left) we see that the network detects events that predominantly start in a window 
from -4s (Lg wave starts before test window, but coda is detected). When trained incrementally with 
signal that starts from t=0s-7s (Right) the percentage of TP is more evenly distributed, as it should 
be and the edges of the window contain most of the FP’s, mostly because those events are being 
picked up by the subsequent window, as it should be. When tested, the network on the right 
detected 231 out of 298 events, while the network on the left detected only 99.

Figure 4:Percentage of True Positives (TP) and False Negatives (FN) as a function of test set PNSU Lg wave onset.
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A.2. Training Curves
Here we show representative training curves for the PNSU station. As we became familiar with 
training, we noticed a few common effects. First, as mentioned in A.1, initial convergence was 
altered based on the amount of data containing events starting at t=4s. Second, for certain stations 
with small amounts of data, training was unstable and training curves such as loss tended to oscillate. 
PNSU is a representative example of training behavior that is somewhat stable. If we look at Figure 5 
we see the training set accuracy increasing significantly through epoch 20 and then leveling off to 
98% in this case. The validation set oscillates and may decrease a small amount as the network 
overfits the training data, but largely remains stable. In  Figure 6 we see the same behavior as the loss 
function similarly decreases monotonically for the training set and oscillates a bit for the validation 
set. Unfortunately, we did observe the performance of the network does vary based on how and on 
which epoch one stops training. Because of the small amount of data, our validation and test sets are 
the same, so we pick epoch=100 a-priori to stop training to avoid bias.

Figure 5: Accuracy of training (Orange)and test (Blue) set.

Figure 6: Loss of training (Orange)and test (Blue) set.
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A.3. Overtraining
In our formulation, as described above, we train the network with a balance of signal and noise data 
windows. However, stations contain significantly more variety of noise than of signal. The result of 
this is that we are in danger of overtraining on signal while simultaneously under training on noise. 
As an example of overtraining, we look at a histogram of output probability (probability that event is 
real and not noise) of labeled test events and noise from station BRPU trained with 100 epochs 
versus 300 epochs in Figure 7. One can see that as the network overtrains, it continues to try to 
differentiate signal and noise with more events pushed towards the extremes, but ultimately 
performance degrades. After training for 100 epochs many noise events are considered uncertain, as 
their probabilities remain in the 0.1-0.9 range. As the network is overtrained, essentially all events are 
binned near 0 or 1, as the network essentially memorizes certain events or features. Ideally, we 
would not have a network overtrained in this way, so we could select the threshold at which to 
operate on the ROC curve, based on the task at hand. 

Figure 7: Probability of being an event after training for 100 epochs (Left) versus 300 epochs (right)
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