

Title: A physically unclonable function using micron-scale magnetic structures and NV diamond magnetic sensing

Authors: Pauli Kehayias, Ezra Bussmann, Tzu-Ming Lu, Andrew M. Mounce

Affiliation: Sandia National Laboratories

Text:

We describe a new type of physically unclonable function (PUF, a hardware “fingerprint”) based on the random magnetic moments of micron-scale ferromagnetic rods (micromagnets). We image the magnetic fields from an array of micromagnets using magnetic microscopy of nitrogen-vacancy (NV) defect centers in diamond, then use image analysis techniques to evaluate the magnetic moment of each micromagnet to use as the fingerprint. NV widefield magnetic microscopy is an appealing technique for measuring micromagnet arrays and other 2D magnetic materials, enabling parallel (rather than raster-scanned) measurements with high signal-to-noise ratio and micron-scale spatial resolution in ambient conditions. To conclude this talk, we evaluate metrics for the micromagnet PUF quality and readout rate, discuss the advantages a magnetic-based PUF can provide, and outline approaches for further optimizing and extending this scheme.

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the DOE's National Nuclear Security Administration under contract DE-NA0003525. This work was funded by the Laboratory Directed Research and Development Program and performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science.

References:

P. Kehayias et al., JAP 127 203904 (2020).