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Background

• important kernel in many applications, but challenging to parallelize
• Sparsity structure may limit the parallel scalability
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• focus on particular cases where each process uses sparse direct solve
• SIERRA-Structural Dynamics (SIERRA-SD): distributed-memory domain-decomposition based linear solver

that uses a local direct solver and applies SpTRSV —104 times for each factorization

• Low Mach fluid simulation: multigrid preconditioner that uses local direct solver on a coarse grid and

potentially as a smoother

• study two algorithmic variants
• Supernode/block based level-set scheduling to exploits hierarchical parallelism

• Partitioned inverse to transform SpTRSV into a sequence of SpMV
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Triangular solve with level-set scheduling [Anderson & Saad'891

• Dense triangular solve computes each solution element
in sequence through backward/forward substitution

• For a sparse triangular matrix, multiple independent
elements can be computed at each step

• Level-set scheduling finds a independent elements

(e.g., using DAG), and computes these elements
in parallel at each level
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Supernode-based level-set scheduling

■ Sparsity often limits the available parallelism
• lots of levels with small number of tasks at each level

(e.g., tri-diagonal matrix)

• We exploit the block structure in the matrix
• direct factorization leads to triangular matrices

with the block structure called supernodes

• merge columns with a similar sparsity structure

into a singe block column

• these columns in a supernode leads to the chain

■ We used supernode-based level-set scheduling
• reduces the number of levels

• batched kernels for hierarchical parallelism

all the leaf-supernodes in parallel

threaded kernels (e.g., BLAS/LAPACK) on each block column
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Partitioned inverse with supernode-based level-set

• Dense triangular solve with the diagonal block
is fundamentally sequential (chain)

• Invert diagonal block to replace TRSM with GEMV

for computing the solution blocks, and then

use another GEMV to update the RHS

• Use batched GEMV to update all solutions

in parallel with a single kernel launch
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1. for each level
2. parallel-for each .S in this level

3. // compute sth solution

4. x, :=

5. // use .sth solution

// to update child RHS

6 . for each non-empty block L,
7. xi := xi —

8. end for  
9. end for update with single gemv
10 . end for with gather/scatter of x

(b) Push (col-niajor/left-look).

• Apply the inverse of the diagonal blocks to the corresponding off-diagonal blocks

to merge these two batched GEMV calls into one

• Partitioned inverse [Alvardo, Pothen, Schreiber,93 based on level-set partition of supernodes

• It transforms SpTrsv into a sequence of SpMVs
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• Instead of batched GEMVs, we can use a single SpMV call

no operation with explicit zeros, but lose block structure
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Implementation

■ Kokkos & Kokkos-kernels

■ Portable to different manycore architectures

■ Some more details in the paper

■ Data structure

■ CSR/CSC, with explicit zeros to form supernodal

blocks for dense operations, e.g., TRSM+GEMV

■ Interfaced with SuperLU & Cholmod packages

Experiment setups
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colptr: 1 5 8 11 13 16 18 19
values: abc 0 d 0 e fg0 hi jOklOm
rowind: 1 2 5 6 2 5 6 3 4 7 4 7 5 6 7 6 7 7

■ SuperLU to factor the matrix with METIS ordering

■ Performance on an NVIDIA V100 and P100 GPU

■ gcc compiler version 6.40 or 5.40 and nvcc 10.1 or 10.0

■ Performance comparison with NVIDIA's CuSPARSE, cusparseDcsrsv2 solve

■ Use level-set scheduling cusparseDcsrsv2 analysis with CUSPARSE SOLVE POLICY USE LEVEL
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SIERRA-SD matrix (n=27k)
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• Lots of small blocks in the beginning and a fewer larger blocks at the end

• Merging block columns with the same sparsity pattern reduce the number of levels and

increase the compute intensity per level
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Performance results with SIERRA-SD on v100
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symbolic compute
L-solve
CSC

U-solve
CSR CSC fill-ratio

CuSparse 0.0487 0.2587 0.0087 0.0167 0.0185 13.7
Default 0.3000 0.2712 0.0888 0.0918 0.1343 28.9
Team 0.2921 0.3067 0.0038 0.0111 0.0051 28.9
Merge 0.5611 0.6444 0.0031 0.0083 0.0037 35.4
InvertDiag 0.5575 1.2576 0.0016 0.0076 0.0024 35.4
InvertOff 0.7067 7.2798 0.0015 - 0.0023 35.4
Stream(5) 0.7063 7.3001 0.0013 - 0.0020 35.4

(a) batched gemv based imp ementation.

symbolic compute L-solve U-solve fill-ratio
InvertDiag 0.6939 1.6820 0.0021 0.0018 14.7
InvertOff 0.6912 7.8646 0.0010 0.0012 15.5

(b) spmv based implement at ion.

• Default uses a standard device-level kernel (e.g., CuBLAS) on each block

• Speedups using team-level or batched kernels

• Further speedup with inversion (up to 8.7x)

• Same solution accuracy using all the approaches
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Performance results with SIERRA-SD on P100
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=batched gemv
 device gemv
 data copy

kernel-launch

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Matrix ID

• Varying, but significant, speedups for different sizes of matrices

• Kernel-launch time can become significant
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power system grid
structural problem
acoustic problem
thermal problem
thermal problem

3D finite difference
3D finite difference

2D problem
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=gemv
=spmv

5 6

n nnz nt error

69,999 12.6 83 0.003
51,537 770.4 1277 3.512
66,127 653.3 22 0.006
17,880 324.6 15 0.008
82,654 58.7 27 0.002
80,800 240.2 25 0.002
715,176 53.6 32 0.001
392,257 14.9 109 0.018
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Final remarks

• SpTRSV is an important kernel in many applications, but a challenge to parallelize

• We studied two algorithmic variants where sparse direct factorization is used
• Supernode/block based SpTRSV exploits hierarchical parallelism

• Partitioned inverse transforms SpTRSV into a sequence of SpMV

• We implemented using Kokkos and Kokkos-kernels

• Portable to different manycore architectures

Some performance results on CPUs in the paper

• We show performance results with SIERRA-SD (C. Dohrmann)
• Up to 8.3x speedup over CuSPARSE on V100, and 17.5x using partitioned inverse
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• Further extensions
• Performance improvements (reducing setup time, improving kernel performance, reducing kernel launch costs)

• Interface with other packages including ILU

• It is available from Kokkos-kernels and Trilinos packages
• iittps://githL--om/kokkosi ..-....-, ..-...—

• https://github.com/trilinos/Trilinos
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