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Vision for an Ideal Fuel Screening Platform
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Vision for an Ideal Fuel Screening Platform
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Simulations of Expected OH/HO, Profiles
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Perturbing Mechanisms to Generate Dataset

”Real” Fuels with Validated Chemical Mechanisms "Hypothetical” Fuels with Perturbed Chemical Mechanisms
Class Fuel
Pentane 1somers
n-Heplane 1. Sensitive Reaction h3och202<=>ch2och202h A-factor Multiplied by 0.5 x
. . Sensitive Reaction ch3och202<=>ch2och20 -factor Multiplie D X
Alkanes i-Octane : PHEC DY
|
Cyclohexane '2. Sensitive Reaction ch3och202<=>ch2och202h A-factor Multiplied by 2.0 X
Methylcyclohexane :
. 13. Sensitive Reaction ho2ch2ocho<=>och2ocho+oh A-factor Multiplied by 0.5 X
Butene 1somers |
Alkenes/Aromatics Hexene isomers | 4. Sensitive Reaction ho2ch2ocho<=>och2ocho+oh A-factor Multiplied by 2.0 x

Butylbenzene :

I'5. Sensitive Reaction 02ch2och202h<=>ho2ch2ocho+oh A-factor Multiplied by 0.5 X
1-Butanol !
» |

______ i-Pentanol _______________l6. Sensitive Reaction 02ch20och202h<=>ho2ch2ocho+oh A-factor Multiplied by 2.0 x
_Dimethyl Ether OME) __ ________.

Oxygenates Dimothoxy Methane (DMM) | 7. Sensitive Reaction ho2+oh<=>h20+02 A-factor Multiplied by 0.5 X
|
|
Tetrahydmfuran (THF) ! 8. Sensitive Reaction ho2+oh<=>h20+02 A-factor Multiplied by 2.0 X
Methyl Decanoate e e e e e e
Binary/Ternary/Quaternary Blends
Blends of

n-Heptane/i-Octane/Ethanol/Toluene

~10 Validated Chemical Mechanisms »~14,000 Hypothetical Fuel Mechanisms

B Z. Buras, C. Safta, J. Zador, L. Sheps, Simulated production of OH, HO,, CH,0O, and CO, during dilute fuel oxidation can predict 1st-stage ignition delays, Combust. Flame (2020) ™




AT

Qualitative Trend between Tgp and 15-Stage IDT
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Mechanistic Effect of Fuel Dilution

¢ = 1.0 in air:

¢ =~ 0.001
([Fuel] = 1 Torr):
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Correlation from Polynomial Chaos Expansion (PCE) with Regularization
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Leave-One-Fuel-Out Tests: 1St-Stag§ IDT
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Leave-One-Fuel-Out Tests:

For Example:
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Leave-One-Fuel-Out Tests: ¢p-sensitivity

For Example (smaller dataset):
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Conclusions

Used PCE to find correlations between OH/HO, profiles simulated in a high-P flow reactor with dilute fuel and:
1. 1st-Stage IDT = Correlation predicts values within a factor of 2

2. LTHR % —> Correlation predicts absolute values within 4%

3. ¢-Sensitivity = Correlation does not predict (interesting) high values

= A different experiment that can measure intermediate-T chemistry might be more suitable

Next Steps

Experimental measurements of OH currently being conducted in a new, high-P (up to 100 bar) laminar flow reactor:
HO, In Progress...
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