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Simulations of Expected OH/H02 Profiles
n-Heptane (600 K, 13 Bar) i-Pentanol  700 K 20 Bar)
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For n-heptane:

• Tso lst-stage IDT
• Peak [OH] rr,' 1013 cm-3

For i-pentanol:

• Tso » 1st-Stage IDT
• Peak [OH] rr,' 1010 cm-3

Is this a general trend among
all fuels?

• To answer, simulated —14k

perturbed mechanisms
for a diversity of fuels
from 600-700 K and 10-40
bar



Perturbing Mechanisms to Generate Dataset
"Real" Fuels with Validated Chemical Mechanisms

Class Fuel
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Reaction ch3och2o2<=>ch2och2o2h A-factor Multiplied by 0.5 x

Reaction ch3och2o2<=>ch2och2o2h A-factor Multiplied by 2.0 x

Reaction ho2ch2ocho<=>och2ocho+oh A-factor Multiplied by 0.5 x

Reaction ho2ch2ocho<=>och2ocho+oh A-factor Multiplied by 2.0 x

Reaction o2ch2och2o2h<=>ho2ch2ocho+oh A-factor Multiplied by 0.5 x

Reaction o2ch2och2o2h<=>ho2ch2ocho+oh A-factor Multiplied by 2.0 x

Sensitive Reaction ho2+oh<=>h2o+o2 A-factor Multiplied by 0.5 x
1
1
: 8. Sensitive Reaction ho2+oh<=>h2o+o2 A-factor Multiplied by 2.0 x
1 

 ► "14,000 Hypothetical Fuel Mechanisms

Z. Buras, C. Safta, J. Zador, L. Sheps, Simulated production of OH, H02, CH2O, and CO2 during dilute fuel oxidation can predict lst-stage ignition delays, Combust. Flame (2020)



1 0
-3

Qualitative Trend between Tsc, and 1st-Stage IDT
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Mechanistic Effect of Fuel Dilution

its = 1.0 in air:
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Correlation from Polynomial Chaos Expansion (PCE) with Regularization
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Leave-One-Fuel-Out Tests: 1st-Stage IDTso0 25 (median 75 
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Leave-One-Fuel-Out Tests: LTHR
For Example:

Train on All f'i13k Simulations Except n-Heptane

Test on "lk n-Heptane Simulations:
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Leave-One-Fuel-Out Tests: 013s-sensitivity
For Example (smaller dataset):

Train on All ̂ J1.8k Simulations Except n-Heptane
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2.0

•>

1.0

0.0
0.0 0.5 1.0 1.5 2.0

Simulated szp-Sensitivity

1

cr)

o

I I I MO 

10

5

-1 0 +1
Abs. Error

0

-• 4,
•

• (41 , "
S'‘

%.0
b

1/4.5)0

correlation unable to —
predict highest sto-Sensitivity

0
(min) 10

Percentiles: o

50

25 (median 75 
100

90 (max)
o

Propane
n-Butane

n- Pentane
i- Pentane
n-Hexane

2-Methylhexane
n-Heptane
i-Octane

Cyclopentane
1-Butene
i-Butene

1-Pentene
1-Hexene
2-Hexene
3-Hexene

2,4,4-Trimethy1-2-pentene
2,4,4-Trimethy1-1-pentene

Ethylbenzene

c —
OF  

2-Butanol
i-Pentanol

DME
2-MF

2,5-DMF
Methylbutanoate

Ethylacetate
Cyclopentanone

Anisole
O

1.0

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Absolute Error 4-Sensitivity)



Conclusions 
Used PCE to find correlations between OH/H02 profiles simulated in a high-P flow reactor with dilute fuel and:

1. lst-stage IDT 4 Correlation predicts values within a factor of 2

2. LTHR % 4 Correlation predicts absolute values within 4%

3. cl)-Sensitivity -› Correlation does not predict (interesting) high values

4 A different experiment that can measure intermediate-T chemistry might be more suitable

Next Steps 
Experimental measurements of OH currently being conducted in a new, high-P (up to 100 bar) laminar flow reactor:
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