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ABSTRACT

Connected and autonomous vehicles (CAVs) have the
potential to bring in safety, mobility, and energy benefits to
transportation. The control decisions of CAVs are usually
determined for a look-ahead horizon based on previewed traffic
information. This requires an effective prediction of future traffic
conditions and its integration with the CAV control framework.
However, the short-term traffic prediction using information
from connectivity is a challenging research topic, especially for
mixed traffic scenarios. This work focuses on the development of
a traffic prediction framework for a merging coordination
controller. The previously developed merging controller
coordinates the merging sequence and travel speed of CAVs to
maximize the energy efficiency and overall mobility. In mixed
traffic scenarios, the controller receives information regarding
the position of all the vehicles traveling inside a control zone and
controls the desired speed of all CAVs. The controller has no
control on the human-driven vehicles. The merging controller
does not have direct information or an explicit prediction on the
behaviors of human-driven vehicles. Aiming to improve the
performance of the merging controller in various mixed traffic
conditions, a traffic prediction algorithm is developed and
evaluated in this work. The performance of this traffic prediction
algorithm is investigated for various penetration rates of
connectivity for a single-lane secondary road merging to a
single-lane primary road. The results show that compared to a
constant speed assumption of human-driven vehicles, the

proposed traffic prediction algorithm is able to reduce the
prediction error of the arrival time of human-driven vehicles at
the merging zone by more than 50%.

Keywords: Connected and autonomous vehicle, cooperative
merging, optimal merging coordination, traffic prediction

1. INTRODUCTION

Connected and autonomous vehicles (CAVs) have the
potential to benefit safety, mobility, and energy aspects of
transportation systems [1]. Connectivity enables vehicle-to-
vehicle and vehicle-to-infrastructure communication, allowing
vehicles to have access to real-time information not available
before. Such information includes preceding vehicles’ location
and speed, signal phase and timing, road curvature and slope
angles, etc. In addition, full or partial automation enables precise
control of vehicle speed and acceleration. The information
brought by connectivity and on-board sensors of automated
vehicles provides an opportunity to effectively predict the future
traffic conditions. Therefore, CAVs can be proactively controlled
based on the previewed information in an optimal fashion.
Control decisions of CAVs are usually determined for a look-
ahead horizon based on predicted traffic information. For
example, when approaching a signalized intersection with
broadcast SPaT information, a CAV can adjust its vehicle speed
and arrival time to pass the intersection without braking and
idling [2,3]. When following other vehicles with broadcast
vehicle information, a CAV can anticipate slowdowns and
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maintain a steady and smooth vehicle speed profile [4,5]. In these
example applications, an optimization problem is usually solved
to minimize a particular cost function, such as control effort,
energy consumption, travel time, etc., for an upcoming time
horizon [6-9]. Thus, it becomes apparent that the integration of
traffic prediction algorithms with optimal control frameworks
for CAVs is critical to achieve more effective control.

The traffic prediction discussed here is short-term covering
prediction for tens of seconds in the future [3]. The prediction
horizon has to be determined considering the benefits from
optimal control and accuracy of prediction, which will vary
according to each specific CAV application. It is ideal to have a
long preview horizon to maximize the benefits from the CAV
optimization. However, usually the longer the horizon, the lower
the accuracy [10], particularly when human drivers are involved
given their unknown and uncertain behaviors. In literature,
researchers [11,12] have developed short-term prediction of
individual driver’s behavior using information of an immediate
preceding vehicle (e.g. from radar system). While it is possible
to obtain reasonable predictions for very short time horizons
(few seconds in the future), it is challenging to provide accurate
prediction for longer time horizons. This is because a driver’s
behavior is uncertain in nature and depends on the traffic
conditions in front of it. Connectivity enables access to the
current status of vehicles in front of a vehicle, thus making it
possible for both drivers and CAV controllers to preview
upcoming traffic conditions to plan ahead their maneuvers.

There have been some preliminary work focused on how to
use the information from connectivity to anticipate short-term
future traffic conditions [13,14]. In these studies, it is typically
assumed that all vehicles on the road are connected. This
corresponds to an ideal case and there will be a transitional
period where human-driven non-connected vehicles will share
the road with connected and/or automated vehicles [15]. Such
mixed traffic scenario brings additional challenges for traffic
prediction since there is no direct information regarding the
behavior of human-driven vehicles. The uncertain behavior of
the human-driven vehicles can significantly affect the
performance of CAVs [16-18]. It is critical to integrate traffic
prediction algorithms with optimal control frameworks for CAVs
to achieve a more effective control.

Generally, traffic models can be divided into two categories
[19]: microscopic models and macroscopic models. Microscopic
models describe each individual vehicle’s behavior explicitly
and have been widely implemented in many traffic simulator
software [20]. It is challenging to model behaviors of human-
driven vehicles in a real-time CAV application due to lack of
direct information. In addition, microscopic models may become
computationally intractable as the complexity of the traffic
network and the number of vehicles increase. Macroscopic
models [21,22] describe the vehicle stream as a whole and uses
traffic characteristics that are analog to a fluid stream, such as
flow, density, and flow speed. Therefore, these models can be
readily applied to mixed-traffic scenarios [23,24]. Another
advantage of macroscopic-level modeling is the ability to
capture traffic bottlenecks which fundamentally affect the

behavior of vehicles. The bottlenecks refer to any roadway
features that will alter or constrain the traffic such as traffic
signal light, on-ramp/off-ramp, lane closure, etc. Modeling the
bottlenecks is crucial for predicting more than next few seconds.
With the emerging of data-driven models, researchers have
studied both data based microscopic and macroscopic traffic
prediction models [25-27]. Data-driven models usually require
lots of real-world data to calibrate and train the model, which is
not trivial given the challenges in obtaining and calibrating the
data from heterogeneous sources.

Considering the challenges and the advantage of using
traffic prediction for effective CAV control, the contribution of
this work is the development of a traffic prediction framework
for a merging coordination application under a mixed traffic
scenario. In this scenario, the merging controller receives
information regarding the position of all vehicles traveling inside
a control zone. The controller coordinates the vehicle arrival time
at the merging zone and controls the desired speed of all CAVs.
The controller has no control on the human-driven vehicles. The
merging coordination controller developed in previous work [9]
assumes the human-driven vehicles travel at constant speed
within the control zone to anticipate their arrival time at the
merging zone (see Figure 1). This assumption works in light
traffic conditions but may not always hold for dense traffic
scenarios. Therefore, the motivation of this work is to develop a
traffic prediction algorithm that can be later integrated into the
merging coordination control for various traffic scenarios. Note
that this work focuses on the development of the traffic
prediction algorithm but the integration of the traffic prediction
with the merging coordination control is part of the future work.
The performance of the traffic prediction algorithm is
investigated for various penetration rates of connectivity for a
single-lane secondary road merging to a single-lane primary road
(see Figure 1), but the proposed prediction algorithm has the
potential to be extended to more complex merging scenarios.

The remainder of the paper is organized as follows: Section
2 formulates the traffic prediction framework; Section 3
evaluates the proposed traffic prediction in various traffic
scenarios and finally, Section 4 concludes the paper.

2. TRAFFIC PREDICTION FRAMEWORK

The traffic around the merging area is modeled as a
dynamical system based on the traffic flow model (see Figure 1).
The underlining prediction framework builds upon the work in
[3], where a simple single-lane road is considered with no
merging and lane-change. As shown in Figure 1, the entire
roadway is divided into multiple cells with length dx. The
dynamic of each cell is described using two states: density and
flow speed. The prediction is updated as new information
becomes available. The merging coordination control is
implemented in a rolling horizon fashion, i.e., it is updated at
each control time step. At every update instance, information
regarding speed and location is shared by each CAV located
inside the control zone. This information provides partial
measurement of the traffic states of the cell where the CAV is
located. A state estimator (observer) is then applied to estimate
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all the rest unknown traffic states for the entire roadway. Once
the current traffic states are known, future traffic states are
predicted by propagating the traffic model forward in time. Then,
the arrival time of the human-driven vehicles at the merging zone
is predicted and used as an input to the merging coordination
control. The controller [9] will then coordinate the arrival time
of all CAVs at the merging zone and optimize their speed.

As shown in Figure 1, the merging zone includes two lanes
where vehicles from the acceleration lane changes lane to the
merge lane. This require the traffic model to consider multi-lane
as well as lane-change behaviors. Typically, traffic flow models
are applied to study the overall behavior of the aggregated traffic
considering a time scale in the order of minutes and cell length

in the order of hundreds of meters. The merging zone is usually
considered as a single cell and lane-change behaviors are
simplified or neglected. In this work, a detailed merging zone is
considered to provide the desired prediction resolution, i.e., the
next 10-20 seconds and cell length of 10-20 meters, which is
required for the merging coordination control. The lane-change
and merging behaviors are considered, and the merging zone is
modeled with multiple cells. The traffic prediction framework in
this work is applied to a single-lane secondary road merging into
a single-lane primary road as a case study. The general concept
of the framework can be extended and applied to other merging
applications of CAVs, or the modeling and speed prediction of
merging control.
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Figure 1 Discretized merging area for traffic modeling

2.1. Traffic model

As shown in Figure 1, the entire roadway around the
merging area is modeled and divided into five road segments:
primary, secondary, merge, acceleration lane, and combined. It
is important to model a segment downstream the merge segment,
which is identified as the combined road segment, since its traffic
conditions will affect the dynamics inside the merging zone. Any
congestion inside the combined road segment will propagate
upstream to the merging zone. For primary, secondary and
combined road segments, there is only a single-lane with no lane-
changing and merging. The dynamic of these segments is
described using the same model (Section 2.1.1). For merge and
acceleration lane segments, a lane-changing and merging model
is developed and applied (Section 2.1.2 and Section 2.1.3). These
two road segments have different models as the vehicle can only
move from the acceleration lane road segment to the merge road
segment but not vice versa. The five road segments are divided
into cells of length dx = 20 meters. It is assumed that control
zones of both primary and secondary road segments have the
same total length (400 meters) and are divided into # cells.
Merge and acceleration lane road segments have the same length
(120 meters) and are divided into s cells. The combined road
segment is divided into # cells. The dynamics of each cell j is
described using two states: flow speed V; (meter/second)

and density p; (veh/meter). Variable q; (veh/second)
denotes the flow between each cell and the flow equals to traffic
speed times traffic density, that is:

q;(k) = p;(k)V; (k) M

2.1.1. Primary, combined road
segments
For each of the primary, secondary, and combined road
segments, a stochastic traffic flow model is adopted to describe
the dynamics of each cell j. Stochastic model is adopted to
facilitate the observer design in Section 2.3. The flow model is

given by [3,28]:

secondary, and

dt
pi(k+1)=p;jk) + E[Q;q(k) —q;(K)] + w; (k) 2
d
Vi(k + 1) = Vi(k) + d—iV,-(k)[V,-_l(k) - V()]
vt [V, (p,(0) = V(0| /7 3)
dt , [pjsa(k) = p;(K)]

where (2) is the vehicle conservation equation; (3) describes the
traffic speed dynamics; k is the discretized time instance; dt is
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the time step (selected as 0.5 seconds); dx is the length of each
cell (selected as 20 meters); € is a small value to prevent zero
denominator; w;(k) and {;(k) describe model uncertainties
and are assumed to follow stochastic Gaussian distributions.
Ve(pj(k)) is based on the following fundamental diagram [19]:

(=) pik) +vy  pi(k) <p.
)| @
(Om — Pe) (p,-(k) —D Al =

There are six model parameters: 7 is the adaptation rate of
the vehicle to reach the speed of the fundamental diagram; c,
characterizes the impacts of traffic ahead (downstream traffic)
on current cell; v, is free driving speed; v, is the vehicle
speed at the road capacity; p,, is the density when vehicle is
stationary; p. is the density at road capacity.

Special treatments are necessary for the boundary cells of
each road segment. For the first cell of primary and secondary
road segments, it is assumed that the flow coming into the cells
can be estimated by loop detector or connected vehicle
information. Therefore, qf (k),V{ (k) and q3(k),V, (k) are
assumed to be known. For the last cell of the primary and
secondary road segments, the following relationship holds:

pria (k) = pi' (k), P4§+1(k) = pi'(k) Q)

For the last cell of the combined road segment, it is assumed

that the outflow will be at free driving condition. Therefore,

pé,.1(k) is known. For the first cell of the combined road
segment, the following relationship holds:

q5 (k) = qi'(k), V5 (k) = V.M (k) (6)

The state equation for primary road segment includes total

of # cells. The dynamic of each cell is described using (2)(3).

The dynamic of the entire primary road segment can be concisely
written as:

xP(k +1) = fP(x"(k), @" (k), " (k) (7
where f? denotes the functions in (2), (3), and vector
xf (k), wf (k), ¢F (k) are described by:

xX"(kK)=[pf p5 - pp V& Vi o VF] ®)
o' (k) =[o] o] - /] ©)
Py =130 ¢ -~ ¢l (10)

Similarly, for the secondary road segment there are total of
7 cells, thus the state equation can be denoted as:

x5(k+1) = FS(x5(k), w5 (k), {5 (k)) (11)
k) =[p7 p5 - pE VE VS - VS (12)
o’(k) = [0} w; - ] (13)

Cw =0 ¢ - G (14)

For the combined road segment there are a total of z cells,
thus the state equation can be denoted as:

xC(k +1) = fE(xC(k),  (k), € (k)) (15)

x6(k) =[pf p§ - pf VE VS o VE] (16)

o’ (k) = [0f wi - wf] (17)
k=01 & - ] (18)
2.1.2. Acceleration lane road segment
y A
Yr
Vs

pr Ps Pm P}VI (k)

Figure 2 Model of the merging flow ratio

In the acceleration lane, at each cell, part of the traffic flow
will enter the adjacent cell of the merge road segment (lane-
change), and part of the traffic flow will continue to the next cell
of the acceleration lane. The model of this lane-change and
merging behavior is based on the observation that drivers are
more likely to change lane to the merge segment if the traffic in
merge segment is lighter, i.e., if the density in the merge road
segment is low. Therefore, the ratio of the traffic flow moving to
the adjacent cell in the merge road segment is described as a
function of the density of the cell as represented in Figure 2.
Mathematically, the traffic flow model of the acceleration lane
road segment is described by:

Pk +1) = pf ()

+ % [(1 =¥ (g (k) — qf ()] + wf (k) (19
VAU +1) = Vi () + %V;‘(k) V2100 - V()]
vde- [V, (pf(0) = V2G| /7 20)
—%wﬂﬁiiigm+¢m
¥; (k) = min(yy, max(k, - pf' (k) + ba, ¥5)) (21)
y=Z)f::SS, by=—%-ps+ys 22)

where the variable symbols and model parameters follow the
description in Section 2.1.1. There are four additional model
parameters which describe the merging ratio y;(k) of each cell
(see Figure 2): y; is the ratio at free flow; y, is the ratio at
saturation flow (congestion); p; is the turnaround density of
free flow ratio; p, is the turnaround density of the saturation
flow ratio.

For the first cell of the acceleration lane:

q5(k) = qi(k),  Vi(k) =VS(k),
For the last cell of the acceleration lane:

Yolk) =0 (23)
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pis1(k) = pi! (k) (24)

The acceleration lane road segment has total of s cells. The
state equation can be denoted as

x4k + 1) = fAXA(K), w? (k), T4 (k) (25)

x4 (k) = [pff  p3 o pd oV VS VA (26)
w?(k) = [wf wi - wi] (27

Py =15t ¢ - ¢4l (28)

2.1.3. Merge road segment

For each cell of the merge road segment, the input traffic
flow includes the flow from the previous merge road cell and the
merge-in flow from the adjacent cell of the acceleration lane. In
addition, due to the difference in the flow speed of acceleration
lane and the merge road segments, the merge-in flow will create
a transient in the flow speed of the merge road cell. This is
modeled using an additional lane-change acceleration term
af(k). The dynamic model is defined by:

Pk +1) = pl! (K)
d
F a0 = g G + 3 (g (0] + @l (k)
d
VPG + 1) = V) + VMG ()~ V)
e [V, (o) (0) = V@) /2 (30)
_dt c§[pfia() — pj' (k)]
dx (P} () +€)
HOIAGEIAG)
py(k) + €

All the model parameters follow the previous definitions in
Section 2.1.1 and Section 2.1.2.

(29)

+ af(k) + ¢} (k)

(€2Y)

af (k) =

For the first cell of the merge road segment:

qo' (k) = q(k),  Vg'(k) = VE(k) (32)
For the last cell of the merge road segment:

pM 1 (k) = pf (k) (33)

The merge road segment has total of s cells. The state
equation can be denoted as:

XMk 4+ 1) = FMxM(k), 0 (k), I (k)) (34
M) =[pi pit o VIV VM (35)
" (k) = [0} o) - wlf] (36)

My =1 ot 3 (37

2.1.4. State equation for entire merging area

The state equation for the entire merging area consists of the
dynamic model for each of the five road segments. The state
equation can be written as

x"(k+1) fP (P ), (), 87 (k)
x*(k + 1) £35S (), 0 (k), 8 (k)
x(k+1) =[x°(k+1) | =| fCxC ), w° k), (k)
M+ MR, 0 (K), §M (k)
A+ DI LA, 0 k), $ (k)
F (0,603

(3%)

2.2. Measurement model

Real-time information communicated from CAVs provide
partial measurement on flow speed of the cells where the CAVs
are located. If there are multiple CAVs within the same cell, their
averaged speed is considered as the flow speed for that cell. The
speed measurement equation is:

yik) =V, (k) + 6, (39)
where y; is the speed measurement of 4-th cell (or generally
i-th CAV); j, is the index of the cell; §; is the Gaussian
random variable to model measurement uncertainties.

Suppose the CAVs provide measurement on a total of g
cells among all road segments, the measurement equation can be
written as:

yi()]  [ha(x(k), 61(k))

_ |2 (B[ _ [ha(x(k), 62 (K))
yl = |75 = (40)
Yy (k) hy(x(k), 8, (k)
h(x(K),8(K))
S(k)=1[61 6, - 8] (41)
2.3. Observer

As partial flow speed is measured by CAVSs, the rest
unknown traffic states are estimated using an observer. The
traffic model in Section 2.1 has several nonlinearities and
discontinuities. It is challenging to apply analytical nonlinear
observer techniques such as those based on Lipschitz analysis
[29,30]. Among other nonlinear observers, Unscented Kalman
Filter (UKF) [26,27] is selected. Extended Kalman Filter (EKF)
is not considered due to the discontinuities in the model. Particle
Filters are not selected due to their potential computational
burden. UKF provides a systematic approach to use the partially
measured traffic states obtained from CAVs to correct the state
estimation from the traffic flow model. The system state
equation and measurement equation are (from (38) and (39))

x(k + 1) = £(x(k), w(k), 8 (K)) @2)
y(k) = h(x(k), 8(k))

The total size of the states is N =27+ 28+ 4. The
standard UKF is applied [31]. The procedure of UKF is briefly
summarized here and a detailed description can be found in
[26,28]. First, calculate a priori state estimation X~ (k) and
covariance estimation Py (k). Denote sigma points as ®:

O =zt(k-1)+x9, =122 N (43)
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] T
¥0 = (N-PEG-D) , i=12-,N
| i r 44)
%(L+N)=_( NP;'(k—l)) B i=1,2,-..,N
1 2N ]
T =55 ), @000 )
i=1

P9 = 35 ). (000 -7 0) (2900 -2 @)y

= ‘0
Second, estimate measurement output y(k), measurement
covariance P, (k) and cross covariance P, (k):

(k) = hxV k), 0) (47

1 2N
300 =55 ). IO (48)

Py (k) = %Z (790 -5 W) (390 -7 ®) 4,

+R
2N

1 . ) T
Po() =55 (R0 -2 (0) (300 - 50)  (50)
i=1
Lastly, calculate observer gain K(k), a posteriori state

a

estimation 2*(k) and covariance P} (k):

K(k) = P,O,P;1 (51)
(k) =% (k) + K(k)(y(k) — y(k)) (52)
Py (k) = Py (k) — K(k)Py(k)K (k) (33)

All the covariance matrices of the UKF are designed based
on confidence level of measurement and traffic states, and
referred to [3,28]. Initial guess of states are constant free driving
density and flow speed at speed limit. All model parameters are
calibrated based on the traffic scenario. Also, the estimated states
are bounded to avoid negative density and flow speed.

2.4. Predict the arrival time at merging zone

After updating the state estimation using measurement from
CAVs, future traffic states are predicted by propagating the
traffic flow model forward in time. For each time instance k, the
current state estimation Xt (k) is used as the initial state for the
propagation. The arrival time at the merging zone is predicted for
every human-driven vehicle. Since for every time instance, the
desired future speed of all CAVs are determined by the merging
controller. These speed profiles can be considered as
‘measurement’ of future states to improve the accuracy of the
traffic prediction. Note that the merging controller is
implemented in a rolling horizon fashion and the desired speed
of CAVs is updated at each control time step. Thus, the desired
future speed will not be the same as the actual speed.
Nevertheless, this desired future speed can provide a reasonable
estimate of the actual speed and improve the prediction accuracy
of the arrival time. The procedure is as the following:

1) The initial location and speed of each human-driven
vehicle is known at each prediction update instance. Assume the
current time instance is k and denote the location and speed of
the i-th human-driven vehicle as d;(k) and v;(k). Denote the
initial states estimation as x* (k).

2) By doing a numerical integration, the location of this
vehicle at the next time instance can be obtained as d;(k + 1) =

3) The state estimation is updated using the observer
designed in Section 2.3. The measurement comes from the
desired future speed of CAVs at time instance k + 1. The
updated states estimation is ¥ (k + 1).

4) The speed of this vehicle at this next time step v;(k + 1)
is found by interpolating the traffic speed of the two adjacent
cells to the location d;(k + 1), using the states estimation
xt(k +1).

5) The above process is repeated until the predicted vehicle
trajectory arrives at the merging zone. The time difference
between the time of arrival at the merging zone and the initial
time is the predicted arrival time for this human-driven vehicle.

The above procedure is repeated for all human-driven
vehicles within the control zone. Then the traffic states
estimation gets updated again using measurement from CAVs
and the predicted arrival time is updated again.

3. RESULTS AND DISCUSSION
3.1. Scenario

A single-lane secondary road merging onto a single-lane
primary road scenario (see Figure 1)is simulated using the traffic
simulator VISSIM and the proposed traffic prediction algorithm
is used to estimate the arrival time to the merging zone of the
human driven vehicles. The length of the control zone is selected
as 400 meters and the length of the merging zone is 120 meters.
The speed limit of the road is set to 50 km/h, the traffic flow
input to the primary and secondary roads are set to 1200 veh/h
and 900 veh/h respectively and the vehicles enter the simulated
network following VISSIM’s default stochastic time
distribution. In VISSIM, the human-driven vehicles are
simulated using the Wiedemann’s car-following model. When
CAVs enter the control zone, the merging coordination
controller will determine their arrival time at the merging zone
and control the desired speed. Once CAVs enter the merging
zone, the merging controller will disengage. The lane-changing
of CAVs within the merging zone are simulated using VISSIM’s
lane-change model.

To focus on evaluating the performance of the traffic
prediction, the merging controller [9] is applied to control CAVs
and the traffic scenario is simulated in VISSIM. The vehicle
speed and location information is stored and used as input to the
traffic prediction algorithm. A total of nine penetration rates are
assessed ranging from 10% to 90%. The penetration rate refers
to the percentage of CAVs among all vehicles in the simulated
traffic scenario. Each penetration rate scenario is simulated for
500 seconds which corresponds to about total of 300 vehicles
entering the merging area (including both CAVs and human-

6 © 2020 by ASME



driven vehicles). Note that only the arrival time of the human-
driven vehicles is predicted since the merging controller will
control the arrival time of all CAVs. This means that for 10%
penetration rate, the algorithm predicts the arrival time of about
270 vehicles, while for 90% penetration rate, the arrival time of
about 30 vehicles is predicted. The baseline scenario to assess
the performance of the prediction is selected as the scenario in

which the arrival time for human-driven vehicles is estimated
assuming they follow a constant speed [17].

In this work, the traffic prediction of the arrival time is not
yet feedbacked to the merging controller, which is left for future
work. The arrival time is compared for different penetration rate
scenarios with respect to the baseline to understand and evaluate
the performance of the proposed traffic prediction algorithm.
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Figure 3 Arrival time prediction error comparison between traffic prediction and constant speed assumption

3.2. Results

Figure 3 shows the histograms for the arrival time estimation
error between the proposed traffic prediction algorithm and the
constant speed assumption. Since the merging coordination
control is updated in a rolling horizon fashion, the arrival time
prediction for each vehicle is updated at every control time step.
This means that, even for a single vehicle, multiple predictions
on the arrival time are conducted by the traffic prediction
algorithm. For example, if it takes 20 seconds for a human-driven
vehicle to cross the control zone, there will be total of 20/0.5=40
predictions (as the update time of the prediction is set to 0.5
seconds in Section 2). For each of these 40 predictions, the error
between the predicted and actual arrival time is calculated, and
this procedure is repeated for all human-driven vehicles under
the same penetration rate. After that, the histogram is plotted for
all prediction errors of all these vehicles. The y-axis of each
histogram is normalized to show the percentage of each case with
respect to the total number of predictions. This is because
scenarios of different penetration rates have different numbers of
human-driven vehicles and hence the numbers of predictions. In
general, it can be seen that the average error on arrival time
prediction is significantly reduced using the proposed traffic
prediction algorithm comparing to the constant speed
assumption. The histograms also show that the errors of the
proposed prediction algorithm are more ‘aggregated’, means that

both the standard deviations and the maximum prediction errors
are significantly reduced. The values of standard deviation for
each penetration rate are shown as the texts on each subfigure.

As shown in Figure 4, in most penetration rates, the
proposed traffic prediction can achieve more than 50% reduction
in errors of arrival time estimation, comparing to the constant
speed assumption. Figure 4 also shows that, in general, the
arrival time errors of both the proposed prediction algorithm and
the constant speed assumption is significantly decreased with
higher penetration rates. This makes sense since it is anticipated
that the traffic flow is mostly smoothed with high penetration
rates of CAVs. The arrival time is not monotonically decreasing
as the penetration rate increases, especially when there are about
the same amount of CAVs and human-driven vehicles on the
road (40%-60% penetration rates). This is because in these
scenarios, the prediction errors depend on the relative positions
of CAVs and human-driven vehicles. If several CAVs are
following each other, then the traffic flow after these CAVs will
be smoothed out as well. The human-driven vehicles following
these CAVs will benefit and have smoothed speed profiles. In
these cases, the traffic prediction can make a more accurate
prediction on arrival time. If CAVs are scattered and there will
always be human-driven vehicles in between CAVs, then the
effectiveness of traffic flow smoothing will be limited. This is
because in these scenarios the current merging controller does
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not have an accurate estimation on the behaviors of human-
driven vehicles. The different behaviors of human-driven
vehicles and CAVs will bring in ‘disturbances’ to the control of
CAVs. As a result, the controller may have to adjust the arrival
sequence and desired of CAVs frequently, which causes the
errors in traffic prediction. Figure 5 shows the spatio-temporal
traffic speed plot for the 60% penetration rate scenario as an
example. It can be seen that the predicted flow speed has
reasonable accuracy comparing to the actual flow speed of the
VISSIM simulation, which validates the proposed traffic
prediction algorithm.
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—o6— Const. Speed
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Figure 4 Average arrival time prediction error comparison
between traffic prediction and constant speed assumption
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Figure 5 Spatio-temporal states comparison between predicted
flow speed and actual flow speed of VISSIM simulation

4. CONCLUSION

In this work, a traffic prediction algorithm is developed for
a merging coordination application under mixed traffic. The
merging controller coordinates the arrival sequence and speed of
CAVs to maximize the energy efficiency and mobility. The
controller receives information from CAVs but not the human-
driven vehicles. The integration of a traffic prediction with the
merging coordination control can potentially improve the
performance under mixed traffic conditions. The performance of
the developed traffic prediction algorithm is investigated for
various penetration rates of connectivity for a single-lane

secondary road merging to a single-lane primary road. The
results show that, comparing to a constant speed assumption of
human-driven vehicles, the proposed traffic prediction algorithm
can reduce the arrival time prediction error by more than 50%.
Future work includes the integration of the traffic prediction with
the merging coordination control and evaluation of its
performance, applying the traffic prediction to multi-lane
merging scenarios, and experimental validation.
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