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ABSTRACT 
Connected and autonomous vehicles (CAVs) have the 

potential to bring in safety, mobility, and energy benefits to 

transportation. The control decisions of CAVs are usually 

determined for a look-ahead horizon based on previewed traffic 

information. This requires an effective prediction of future traffic 

conditions and its integration with the CAV control framework. 

However, the short-term traffic prediction using information 

from connectivity is a challenging research topic, especially for 

mixed traffic scenarios. This work focuses on the development of 

a traffic prediction framework for a merging coordination 

controller. The previously developed merging controller 

coordinates the merging sequence and travel speed of CAVs to 

maximize the energy efficiency and overall mobility. In mixed 

traffic scenarios, the controller receives information regarding 

the position of all the vehicles traveling inside a control zone and 

controls the desired speed of all CAVs. The controller has no 

control on the human-driven vehicles. The merging controller 

does not have direct information or an explicit prediction on the 

behaviors of human-driven vehicles. Aiming to improve the 

performance of the merging controller in various mixed traffic 

conditions, a traffic prediction algorithm is developed and 

evaluated in this work. The performance of this traffic prediction 

algorithm is investigated for various penetration rates of 

connectivity for a single-lane secondary road merging to a 

single-lane primary road. The results show that compared to a 

constant speed assumption of human-driven vehicles, the 

 

This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US 

Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, 

acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or 

reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will 

provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan 

(http://energy.gov/downloads/doe-public-access-plan). 

 
* Contact author: shaoy@ornl.gov 

proposed traffic prediction algorithm is able to reduce the 

prediction error of the arrival time of human-driven vehicles at 

the merging zone by more than 50%.  

Keywords: Connected and autonomous vehicle, cooperative 

merging, optimal merging coordination, traffic prediction 

 

1. INTRODUCTION 
Connected and autonomous vehicles (CAVs) have the 

potential to benefit safety, mobility, and energy aspects of 

transportation systems [1]. Connectivity enables vehicle-to-

vehicle and vehicle-to-infrastructure communication, allowing 

vehicles to have access to real-time information not available 

before. Such information includes preceding vehicles’ location 

and speed, signal phase and timing, road curvature and slope 

angles, etc. In addition, full or partial automation enables precise 

control of vehicle speed and acceleration. The information 

brought by connectivity and on-board sensors of automated 

vehicles provides an opportunity to effectively predict the future 

traffic conditions. Therefore, CAVs can be proactively controlled 

based on the previewed information in an optimal fashion. 

Control decisions of CAVs are usually determined for a look-

ahead horizon based on predicted traffic information. For 

example, when approaching a signalized intersection with 

broadcast SPaT information, a CAV can adjust its vehicle speed 

and arrival time to pass the intersection without braking and 

idling [2,3]. When following other vehicles with broadcast 

vehicle information, a CAV can anticipate slowdowns and 
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maintain a steady and smooth vehicle speed profile [4,5]. In these 

example applications, an optimization problem is usually solved 

to minimize a particular cost function, such as control effort, 

energy consumption, travel time, etc., for an upcoming time 

horizon [6–9]. Thus, it becomes apparent that the integration of 

traffic prediction algorithms with optimal control frameworks 

for CAVs is critical to achieve more effective control.  

The traffic prediction discussed here is short-term covering 

prediction for tens of seconds in the future [3]. The prediction 

horizon has to be determined considering the benefits from 

optimal control and accuracy of prediction, which will vary 

according to each specific CAV application. It is ideal to have a 

long preview horizon to maximize the benefits from the CAV 

optimization. However, usually the longer the horizon, the lower 

the accuracy [10], particularly when human drivers are involved 

given their unknown and uncertain behaviors. In literature, 

researchers [11,12] have developed short-term prediction of 

individual driver’s behavior using information of an immediate 

preceding vehicle (e.g. from radar system). While it is possible 

to obtain reasonable predictions for very short time horizons 

(few seconds in the future), it is challenging to provide accurate 

prediction for longer time horizons. This is because a driver’s 

behavior is uncertain in nature and depends on the traffic 

conditions in front of it. Connectivity enables access to the 

current status of vehicles in front of a vehicle, thus making it 

possible for both drivers and CAV controllers to preview 

upcoming traffic conditions to plan ahead their maneuvers.  

There have been some preliminary work focused on how to 

use the information from connectivity to anticipate short-term 

future traffic conditions [13,14]. In these studies, it is typically 

assumed that all vehicles on the road are connected. This 

corresponds to an ideal case and there will be a transitional 

period where human-driven non-connected vehicles will share 

the road with connected and/or automated vehicles [15]. Such 

mixed traffic scenario brings additional challenges for traffic 

prediction since there is no direct information regarding the 

behavior of human-driven vehicles. The uncertain behavior of 

the human-driven vehicles can significantly affect the 

performance of CAVs [16–18]. It is critical to integrate traffic 

prediction algorithms with optimal control frameworks for CAVs 

to achieve a more effective control.  

Generally, traffic models can be divided into two categories 

[19]: microscopic models and macroscopic models. Microscopic 

models describe each individual vehicle’s behavior explicitly 

and have been widely implemented in many traffic simulator 

software [20]. It is challenging to model behaviors of human-

driven vehicles in a real-time CAV application due to lack of 

direct information. In addition, microscopic models may become 

computationally intractable as the complexity of the traffic 

network and the number of vehicles increase. Macroscopic 

models [21,22] describe the vehicle stream as a whole and uses 

traffic characteristics that are analog to a fluid stream, such as 

flow, density, and flow speed. Therefore, these models can be 

readily applied to mixed-traffic scenarios [23,24]. Another 

advantage of macroscopic-level modeling is the ability to 

capture traffic bottlenecks which fundamentally affect the 

behavior of vehicles. The bottlenecks refer to any roadway 

features that will alter or constrain the traffic such as traffic 

signal light, on-ramp/off-ramp, lane closure, etc. Modeling the 

bottlenecks is crucial for predicting more than next few seconds. 

With the emerging of data-driven models, researchers have 

studied both data based microscopic and macroscopic traffic 

prediction models [25–27]. Data-driven models usually require 

lots of real-world data to calibrate and train the model, which is 

not trivial given the challenges in obtaining and calibrating the 

data from heterogeneous sources. 

Considering the challenges and the advantage of using 

traffic prediction for effective CAV control, the contribution of 

this work is the development of a traffic prediction framework 

for a merging coordination application under a mixed traffic 

scenario. In this scenario, the merging controller receives 

information regarding the position of all vehicles traveling inside 

a control zone. The controller coordinates the vehicle arrival time 

at the merging zone and controls the desired speed of all CAVs. 

The controller has no control on the human-driven vehicles. The 

merging coordination controller developed in previous work [9] 

assumes the human-driven vehicles travel at constant speed 

within the control zone to anticipate their arrival time at the 

merging zone (see Figure 1). This assumption works in light 

traffic conditions but may not always hold for dense traffic 

scenarios. Therefore, the motivation of this work is to develop a 

traffic prediction algorithm that can be later integrated into the 

merging coordination control for various traffic scenarios. Note 

that this work focuses on the development of the traffic 

prediction algorithm but the integration of the traffic prediction 

with the merging coordination control is part of the future work. 

The performance of the traffic prediction algorithm is 

investigated for various penetration rates of connectivity for a 

single-lane secondary road merging to a single-lane primary road 

(see Figure 1), but the proposed prediction algorithm has the 

potential to be extended to more complex merging scenarios.  

The remainder of the paper is organized as follows: Section 

2 formulates the traffic prediction framework; Section 3 

evaluates the proposed traffic prediction in various traffic 

scenarios and finally, Section 4 concludes the paper. 

2. TRAFFIC PREDICTION FRAMEWORK 
The traffic around the merging area is modeled as a 

dynamical system based on the traffic flow model (see Figure 1). 

The underlining prediction framework builds upon the work in 

[3], where a simple single-lane road is considered with no 

merging and lane-change. As shown in Figure 1, the entire 

roadway is divided into multiple cells with length 𝑑𝑥 . The 

dynamic of each cell is described using two states: density and 

flow speed. The prediction is updated as new information 

becomes available. The merging coordination control is 

implemented in a rolling horizon fashion, i.e., it is updated at 

each control time step. At every update instance, information 

regarding speed and location is shared by each CAV located 

inside the control zone. This information provides partial 

measurement of the traffic states of the cell where the CAV is 

located. A state estimator (observer) is then applied to estimate 
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all the rest unknown traffic states for the entire roadway. Once 

the current traffic states are known, future traffic states are 

predicted by propagating the traffic model forward in time. Then, 

the arrival time of the human-driven vehicles at the merging zone 

is predicted and used as an input to the merging coordination 

control. The controller [9] will then coordinate the arrival time 

of all CAVs at the merging zone and optimize their speed.  

As shown in Figure 1, the merging zone includes two lanes 

where vehicles from the acceleration lane changes lane to the 

merge lane. This require the traffic model to consider multi-lane 

as well as lane-change behaviors. Typically, traffic flow models 

are applied to study the overall behavior of the aggregated traffic 

considering a time scale in the order of minutes and cell length 

in the order of hundreds of meters. The merging zone is usually 

considered as a single cell and lane-change behaviors are 

simplified or neglected. In this work, a detailed merging zone is 

considered to provide the desired prediction resolution, i.e., the 

next 10-20 seconds and cell length of 10-20 meters, which is 

required for the merging coordination control. The lane-change 

and merging behaviors are considered, and the merging zone is 

modeled with multiple cells. The traffic prediction framework in 

this work is applied to a single-lane secondary road merging into 

a single-lane primary road as a case study. The general concept 

of the framework can be extended and applied to other merging 

applications of CAVs, or the modeling and speed prediction of 

merging control. 

 

 

Figure 1 Discretized merging area for traffic modeling 

 

2.1. Traffic model 
As shown in Figure 1, the entire roadway around the 

merging area is modeled and divided into five road segments: 

primary, secondary, merge, acceleration lane, and combined. It 

is important to model a segment downstream the merge segment, 

which is identified as the combined road segment, since its traffic 

conditions will affect the dynamics inside the merging zone. Any 

congestion inside the combined road segment will propagate 

upstream to the merging zone. For primary, secondary and 

combined road segments, there is only a single-lane with no lane-

changing and merging. The dynamic of these segments is 

described using the same model (Section 2.1.1). For merge and 

acceleration lane segments, a lane-changing and merging model 

is developed and applied (Section 2.1.2 and Section 2.1.3). These 

two road segments have different models as the vehicle can only 

move from the acceleration lane road segment to the merge road 

segment but not vice versa. The five road segments are divided 

into cells of length 𝑑𝑥 = 20 meters. It is assumed that control 

zones of both primary and secondary road segments have the 

same total length (400 meters) and are divided into 𝓇  cells. 

Merge and acceleration lane road segments have the same length 

(120 meters) and are divided into 𝓈 cells. The combined road 

segment is divided into 𝓉 cells. The dynamics of each cell 𝑗 is 

described using two states: flow speed 𝑉𝑗  (𝑚𝑒𝑡𝑒𝑟/𝑠𝑒𝑐𝑜𝑛𝑑) 

and density 𝜌𝑗  (𝑣𝑒ℎ/𝑚𝑒𝑡𝑒𝑟).  Variable 𝑞𝑗  ( 𝑣𝑒ℎ/𝑠𝑒𝑐𝑜𝑛𝑑 ) 

denotes the flow between each cell and the flow equals to traffic 

speed times traffic density, that is: 

𝑞𝑗(𝑘) = 𝜌𝑗(𝑘)𝑉𝑗(𝑘) (1) 

 
2.1.1. Primary, secondary, and combined road 

segments 
For each of the primary, secondary, and combined road 

segments, a stochastic traffic flow model is adopted to describe 

the dynamics of each cell 𝑗 . Stochastic model is adopted to 

facilitate the observer design in Section 2.3. The flow model is 

given by [3,28]: 

𝜌𝑗(𝑘 + 1) = 𝜌𝑗(𝑘) +
𝑑𝑡

𝑑𝑥
[𝑞𝑗−1(𝑘) − 𝑞𝑗(𝑘)] + 𝜔𝑗(𝑘) (2) 

𝑉𝑗(𝑘 + 1) = 𝑉𝑗(𝑘) +
𝑑𝑡

𝑑𝑥
𝑉𝑗(𝑘)[𝑉𝑗−1(𝑘) − 𝑉𝑗(𝑘)]

+ 𝑑𝑡 ⋅ [𝑉𝑒 (𝜌𝑗(𝑘)) − 𝑉𝑗(𝑘)] /𝜏

−
𝑑𝑡 

𝑑𝑥
⋅ 𝑐0
2
[𝜌𝑗+1(𝑘) − 𝜌𝑗(𝑘)]

(𝜌𝑗(𝑘) + 𝜖)
+ 𝜁𝑗(𝑘) 

(3) 

where (2) is the vehicle conservation equation; (3) describes the 

traffic speed dynamics; 𝑘 is the discretized time instance; 𝑑𝑡 is 
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the time step (selected as 0.5 seconds); 𝑑𝑥 is the length of each 

cell (selected as 20 meters); 𝜖 is a small value to prevent zero 

denominator; 𝜔𝑗(𝑘)  and 𝜁𝑗(𝑘)  describe model uncertainties 

and are assumed to follow stochastic Gaussian distributions. 

𝑉𝑒(𝜌𝑗(𝑘)) is based on the following fundamental diagram [19]: 

𝑉𝑒 (𝜌𝑗(𝑘)) =

{
 

 
(𝑣𝑐 − 𝑣0)

𝜌𝑐
⋅𝜌𝑗(𝑘) + 𝑣0 𝜌𝑗(𝑘) < 𝜌𝑐

𝑣𝑐𝜌𝑐
(𝜌𝑚 − 𝜌𝑐)

⋅ (
𝜌𝑚
𝜌𝑗(𝑘)

− 1) 𝜌𝑗(𝑘) ≥ 𝜌𝑐

 

 

(4) 

There are six model parameters: 𝜏 is the adaptation rate of 

the vehicle to reach the speed of the fundamental diagram; 𝑐0 

characterizes the impacts of traffic ahead (downstream traffic) 

on current cell; 𝑣0  is free driving speed; 𝑣𝑐  is the vehicle 

speed at the road capacity; 𝜌𝑚  is the density when vehicle is 

stationary; 𝜌𝑐 is the density at road capacity. 

Special treatments are necessary for the boundary cells of 

each road segment. For the first cell of primary and secondary 

road segments, it is assumed that the flow coming into the cells 

can be estimated by loop detector or connected vehicle 

information. Therefore, 𝑞0
 (𝑘) 𝑉0

 (𝑘)  and 𝑞0
 (𝑘) 𝑉𝑜

 (𝑘)  are 

assumed to be known. For the last cell of the primary and 

secondary road segments, the following relationship holds: 

𝜌𝓇+1
 (𝑘) = 𝜌1

 (𝑘) 𝜌𝓇+1
 (𝑘) = 𝜌1

 (𝑘) (5) 

For the last cell of the combined road segment, it is assumed 

that the outflow will be at free driving condition. Therefore, 

𝜌𝓉+1
 (𝑘)  is known. For the first cell of the combined road 

segment, the following relationship holds: 

𝑞0
 (𝑘) = 𝑞𝓈

 (𝑘) 𝑉0
 (𝑘) = 𝑉𝓈

 (𝑘) (6) 

The state equation for primary road segment includes total 

of 𝓇 cells. The dynamic of each cell is described using (2)(3). 

The dynamic of the entire primary road segment can be concisely 

written as: 

𝒙 (𝑘 + 1) = 𝑓 (𝒙 (𝑘) 𝝎 (𝑘) 𝜻 (𝑘)) 

 

(7) 

where 𝑓  denotes the functions in (2), (3), and vector 

𝒙 (𝑘) 𝝎 (𝑘) 𝜻 (𝑘) are described by: 

𝒙 (𝑘) = [𝜌1
 𝜌2

 ⋯ 𝜌𝓇
 𝑉1

 𝑉2
 ⋯ 𝑉𝓇

 ] 

 

(8) 

𝝎 (𝑘) = [𝜔1
 𝜔2

 ⋯ 𝜔𝓇
 ] 

 

(9) 

𝜻 (𝑘) = [𝜁1
 𝜁2

 ⋯ 𝜁𝓇
 ] 

 

(10) 

Similarly, for the secondary road segment there are total of 

𝓇 cells, thus the state equation can be denoted as: 

𝒙 (𝑘 + 1) = 𝑓 (𝒙 (𝑘) 𝝎 (𝑘) 𝜻 (𝑘)) 

 

(11) 

𝒙 (𝑘) = [𝜌1
 𝜌2

 ⋯ 𝜌𝓇
 𝑉1

 𝑉2
 ⋯ 𝑉𝓇

 ] 

 

(12) 

𝝎 (𝑘) = [𝜔1
 𝜔2

 ⋯ 𝜔𝓇
 ] 

 

(13) 

𝜻 (𝑘) = [𝜁1
 𝜁2

 ⋯ 𝜁𝓇
 ] 

 

(14) 

For the combined road segment there are a total of 𝓉 cells, 

thus the state equation can be denoted as: 

𝒙 (𝑘 + 1) = 𝑓 (𝒙 (𝑘) 𝝎 (𝑘) 𝜻 (𝑘)) 

 

(15) 

𝒙 (𝑘) = [𝜌1
 𝜌2

 ⋯ 𝜌𝓉
 𝑉1

 𝑉2
 ⋯ 𝑉𝓉

 ] 

 

(16) 

𝝎 (𝑘) = [𝜔1
 𝜔2

 ⋯ 𝜔𝓉
 ] 

 

(17) 

𝜻 (𝑘) = [𝜁1
 𝜁2

 ⋯ 𝜁𝓉
 ] 

 

(18) 

 
2.1.2. Acceleration lane road segment 

 

Figure 2 Model of the merging flow ratio 

In the acceleration lane, at each cell, part of the traffic flow 

will enter the adjacent cell of the merge road segment (lane-

change), and part of the traffic flow will continue to the next cell 

of the acceleration lane. The model of this lane-change and 

merging behavior is based on the observation that drivers are 

more likely to change lane to the merge segment if the traffic in 

merge segment is lighter, i.e., if the density in the merge road 

segment is low. Therefore, the ratio of the traffic flow moving to 

the adjacent cell in the merge road segment is described as a 

function of the density of the cell as represented in Figure 2. 

Mathematically, the traffic flow model of the acceleration lane 

road segment is described by: 

𝜌𝑗
 (𝑘 + 1) = 𝜌𝑗

 (𝑘)

+
𝑑𝑡

𝑑𝑥
[(1 − 𝛾𝑗−1(𝑘))𝑞𝑗−1

 (𝑘) − 𝑞𝑗
 (𝑘)] + 𝜔𝑗

 (𝑘) 
(19) 

𝑉𝑗
 (𝑘 + 1) = 𝑉𝑗

 (𝑘) +
𝑑𝑡

𝑑𝑥
𝑉𝑗
 (𝑘)[𝑉𝑗−1

 (𝑘) − 𝑉𝑗
 (𝑘)]

+ 𝑑𝑡 ⋅ [𝑉𝑒 (𝜌𝑗
 (𝑘)) − 𝑉𝑗

 (𝑘)] /𝜏

−
𝑑𝑡 

𝑑𝑥
⋅ 𝑐0
2
[𝜌𝑗+1
 (𝑘) − 𝜌𝑗

 (𝑘)]

(𝜌𝑗
 (𝑘) + 𝜖)

+ 𝜁𝑗
 (𝑘) 

(20) 

𝛾𝑗(𝑘) = 𝑚𝑖𝑛(𝛾𝑓  𝑚𝑎𝑥(𝑘𝛼 ⋅ 𝜌𝑗
 (𝑘) + 𝑏𝛼  𝛾𝑠)) (21) 

𝑘𝛾 =
𝛾𝑓−𝛾𝑠

𝜌𝑓−𝜌𝑠
, 𝑏𝛾 = −

𝛾𝑓−𝛾𝑠

𝜌𝑓−𝜌𝑠
⋅ 𝜌𝑠 + 𝛾𝑠 (22) 

where the variable symbols and model parameters follow the 

description in Section 2.1.1. There are four additional model 

parameters which describe the merging ratio 𝛾𝑗(𝑘) of each cell 

(see Figure 2): 𝛾𝑓  is the ratio at free flow; 𝛾𝑠  is the ratio at 

saturation flow (congestion); 𝜌𝑓  is the turnaround density of 

free flow ratio; 𝜌𝑠  is the turnaround density of the saturation 

flow ratio.  

For the first cell of the acceleration lane: 

𝑞0
 (𝑘) = 𝑞𝓇

 (𝑘) 𝑉0
 (𝑘) = 𝑉𝓇

 (𝑘) 𝛾0(𝑘) = 0 (23) 

For the last cell of the acceleration lane: 

𝛾

𝜌𝑗
 (𝑘)

𝛾𝑓

𝜌𝑓 𝜌𝑠 𝜌𝑚

𝛾𝑠
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𝜌𝓈+1
 (𝑘) = 𝜌𝓈

 (𝑘) (24) 

The acceleration lane road segment has total of 𝓈 cells. The 

state equation can be denoted as  

𝒙 (𝑘 + 1) = 𝑓 (𝒙 (𝑘) 𝝎 (𝑘) 𝜻 (𝑘)) 

 

(25) 

𝒙 (𝑘) = [𝜌1
 𝜌2

 ⋯ 𝜌𝓈
 𝑉1

 𝑉2
 ⋯ 𝑉𝓈

 ] 

 

(26) 

𝝎 (𝑘) = [𝜔1
 𝜔2

 ⋯ 𝜔𝓈
 ] 

 

(27) 

𝜻 (𝑘) = [𝜁1
 𝜁2

 ⋯ 𝜁𝓈
 ] 

 

(28) 

 
2.1.3. Merge road segment 

For each cell of the merge road segment, the input traffic 

flow includes the flow from the previous merge road cell and the 

merge-in flow from the adjacent cell of the acceleration lane. In 

addition, due to the difference in the flow speed of acceleration 

lane and the merge road segments, the merge-in flow will create 

a transient in the flow speed of the merge road cell. This is 

modeled using an additional lane-change acceleration term 

𝑎𝑗
ℓ(𝑘). The dynamic model is defined by: 

𝜌𝑗
 (𝑘 + 1) = 𝜌𝑗

 (𝑘)

+
𝑑𝑡

𝑑𝑥
[𝑞𝑗−1
 (𝑘) − 𝑞𝑗

 (𝑘) + 𝛾𝑗(𝑘)𝑞𝑗
 (𝑘)] + 𝜔𝑗

 (𝑘) 
(29) 

𝑉𝑗
 (𝑘 + 1) = 𝑉𝑗

 (𝑘) +
𝑑𝑡

𝑑𝑥
𝑉𝑗
 (𝑘)[𝑉𝑗−1

 (𝑘) − 𝑉𝑗
 (𝑘)]

+ 𝑑𝑡 ⋅ [𝑉𝑒 (𝜌𝑗
 (𝑘)) − 𝑉𝑗

 (𝑘)] /𝜏

−
𝑑𝑡 

𝑑𝑥
⋅
𝑐0
2[𝜌𝑗+1

 (𝑘) − 𝜌𝑗
 (𝑘)]

(𝜌𝑗
 (𝑘) + 𝜖)

+ 𝑎𝑗
ℓ(𝑘) + 𝜁𝑗

 (𝑘) 

(30) 

𝑎𝑗
ℓ(𝑘) =

𝑞𝑗
 (𝑘) (𝑉𝑗

 (𝑘) − 𝑉𝑗
 (𝑘))

𝜌𝑗
 (𝑘) + 𝜖

 (31) 

All the model parameters follow the previous definitions in 

Section 2.1.1 and Section 2.1.2.  

For the first cell of the merge road segment: 

𝑞0
 (𝑘) = 𝑞𝓇

 (𝑘) 𝑉0
 (𝑘) = 𝑉𝓇

 (𝑘) (32) 

For the last cell of the merge road segment: 

𝜌𝓈+1
 (𝑘) = 𝜌1

 (𝑘) (33) 

The merge road segment has total of 𝓈  cells. The state 

equation can be denoted as: 

𝒙 (𝑘 + 1) = 𝑓 (𝒙 (𝑘) 𝝎 (𝑘) 𝜻 (𝑘)) 

 

(34) 

𝒙 (𝑘) = [𝜌1
 𝜌2

 ⋯ 𝜌𝓈
 𝑉1

 𝑉2
 ⋯ 𝑉𝓈

 ] 

 

(35) 

𝝎 (𝑘) = [𝜔1
 𝜔2

 ⋯ 𝜔𝓈
 ] 

 

(36) 

𝜻 (𝑘) = [𝜁1
 𝜁2

 ⋯ 𝜁𝓈
 ] 

 

(37) 

 
2.1.4. State equation for entire merging area 

The state equation for the entire merging area consists of the 

dynamic model for each of the five road segments. The state 

equation can be written as 

𝒙(𝑘 + 1) =

[
 
 
 
 
 
𝒙 (𝑘 + 1)

𝒙 (𝑘 + 1)

𝒙 (𝑘 + 1)

𝒙 (𝑘 + 1)

𝒙 (𝑘 + 1)]
 
 
 
 
 

=

[
 
 
 
 
 
𝑓 (𝒙 (𝑘) 𝝎 (𝑘) 𝜻 (𝑘))

𝑓 (𝒙 (𝑘) 𝝎 (𝑘) 𝜻 (𝑘))

𝑓 (𝒙 (𝑘) 𝝎 (𝑘) 𝜻 (𝑘))

𝑓 (𝒙 (𝑘) 𝝎 (𝑘) 𝜻 (𝑘))

𝑓 (𝒙 (𝑘) 𝝎 (𝑘) 𝜻 (𝑘)) ]
 
 
 
 
 

⏟                  
𝑓(𝒙(𝑘) 𝝎(𝑘) 𝜻(𝑘))

 

 

(38) 

2.2. Measurement model 
Real-time information communicated from CAVs provide 

partial measurement on flow speed of the cells where the CAVs 

are located. If there are multiple CAVs within the same cell, their 

averaged speed is considered as the flow speed for that cell. The 

speed measurement equation is:  

𝑦𝒾(𝑘) =  𝑉𝑗𝒾(𝑘) + 𝛿𝒾 (39) 

where 𝑦𝒾 is the speed measurement of 𝒾-th cell (or generally 

𝒾 -th CAV); 𝑗𝒾  is the index of the cell; 𝛿𝒾  is the Gaussian 

random variable to model measurement uncertainties. 

Suppose the CAVs provide measurement on a total of ℊ 

cells among all road segments, the measurement equation can be 

written as: 

𝒚(𝑘) = [

𝑦1(𝑘)

𝑦2(𝑘)
⋮

𝑦ℊ(𝑘)

] =

[
 
 
 
ℎ1(𝒙(𝑘) 𝛿1(𝑘))

ℎ2(𝒙(𝑘) 𝛿2(𝑘))
⋮

ℎℊ(𝒙(𝑘) 𝛿ℊ(𝑘))]
 
 
 

⏟          
𝒉(𝒙(𝑘) 𝜹(𝑘))

 
(40) 

𝜹(𝑘) = [𝛿1 𝛿2 ⋯ 𝛿ℊ] 

 

(41) 

 
2.3. Observer 

As partial flow speed is measured by CAVs, the rest 

unknown traffic states are estimated using an observer. The 

traffic model in Section 2.1 has several nonlinearities and 

discontinuities. It is challenging to apply analytical nonlinear 

observer techniques such as those based on Lipschitz analysis 

[29,30]. Among other nonlinear observers, Unscented Kalman 

Filter (UKF) [26,27] is selected. Extended Kalman Filter (EKF) 

is not considered due to the discontinuities in the model. Particle 

Filters are not selected due to their potential computational 

burden. UKF provides a systematic approach to use the partially 

measured traffic states obtained from CAVs to correct the state 

estimation from the traffic flow model. The system state 

equation and measurement equation are (from (38) and (39)) 

𝒙(𝑘 + 1) = 𝑓(𝒙(𝑘) 𝝎(𝑘) 𝜻(𝑘)) 
𝒚(𝑘) = ℎ(𝒙(𝑘) 𝜹(𝑘)) 

(42) 

The total size of the states is 𝑁 = 2𝓇 + 2𝓈 + 𝓉 . The 

standard UKF is applied [31]. The procedure of UKF is briefly 

summarized here and a detailed description can be found in 

[26,28]. First, calculate a priori state estimation 𝒙−(𝑘)  and 

covariance estimation 𝑷𝒙
−(𝑘). Denote sigma points as 𝒙(𝑖): 

𝒙(𝑖)(𝑘) = 𝒙+(𝑘 − 1) + 𝒙(𝑖) 𝑖 = 1 2 ⋯  2 ⋅ 𝑁 (43) 
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𝒙(𝑖) = (√𝑁 ⋅ 𝑷𝒙
+(𝑘 − 1))

𝑖

𝑇

 𝑖 = 1 2 ⋯  𝑁 

𝒙(𝑖+𝑁) = −(√𝑁 ⋅ 𝑷𝒙
+(𝑘 − 1))

𝑖

𝑇

 𝑖 = 1 2 ⋯  𝑁 
(44) 

𝒙−(𝑘) =
1

2𝑁
∑ 𝑓(𝒙(𝒊)(𝑘) 𝟎 𝟎)

2𝑁

𝑖=1
 (45) 

𝑷𝒙
−(𝑘) =

1

2𝑁
∑(𝒙(𝑖)(𝑘) − 𝒙−(𝑘)) (𝒙(𝑖)(𝑘) − 𝒙−(𝑘))

𝑇
2𝑁

𝑖=1

+ 𝑸 

(46) 

Second, estimate measurement output 𝒚̂(𝑘), measurement 

covariance 𝑷𝒚(𝑘) and cross covariance 𝑷𝒙𝒚(𝑘): 

𝒚̂(𝑖)(𝑘) = ℎ(𝒙(𝑖)(𝑘) 𝟎) (47) 

𝒚̂(𝑘) =
1

2𝑁
∑ 𝒚̂(𝑖)(𝑘)

2𝑁

𝑖=1
 (48) 

𝑷𝒚(𝑘) =
1

2𝑁
∑(𝒚̂(𝑖)(𝑘) − 𝒚̂−(𝑘)) (𝒚̂(𝑖)(𝑘) − 𝒚̂−(𝑘))

𝑇
2𝑁

𝑖=1

+ 𝑹 

(49) 

𝑷𝒙𝒚(𝑘) =
1

2𝑁
∑(𝒙(𝑖)(𝑘) − 𝒙−(𝑘)) (𝒚̂(𝑖)(𝑘) − 𝒚̂−(𝑘))

𝑇
2𝑁

𝑖=1

 (50) 

Lastly, calculate observer gain 𝐾(𝑘) ,  a posteriori state 

estimation 𝑥̂+(𝑘) and covariance 𝑃𝑥
+(𝑘): 

𝑲(𝑘) = 𝑷𝒙𝒚𝑷𝒚
−1 (51) 

𝒙+(𝑘) = 𝒙−(𝑘) + 𝑲(𝑘)(𝒚(𝑘) − 𝒚̂(𝑘)) (52) 

𝑷𝒙
+(𝑘) = 𝑷𝒙

−(𝑘) − 𝑲(𝑘)𝑷𝒚(𝑘)𝑲(𝑘) (53) 

All the covariance matrices of the UKF are designed based 

on confidence level of measurement and traffic states, and 

referred to [3,28]. Initial guess of states are constant free driving 

density and flow speed at speed limit. All model parameters are 

calibrated based on the traffic scenario. Also, the estimated states 

are bounded to avoid negative density and flow speed. 

2.4. Predict the arrival time at merging zone 
After updating the state estimation using measurement from 

CAVs, future traffic states are predicted by propagating the 

traffic flow model forward in time. For each time instance 𝑘, the 

current state estimation 𝒙+(𝑘) is used as the initial state for the 

propagation. The arrival time at the merging zone is predicted for 

every human-driven vehicle. Since for every time instance, the 

desired future speed of all CAVs are determined by the merging 

controller. These speed profiles can be considered as 

‘measurement’ of future states to improve the accuracy of the 

traffic prediction. Note that the merging controller is 

implemented in a rolling horizon fashion and the desired speed 

of CAVs is updated at each control time step. Thus, the desired 

future speed will not be the same as the actual speed. 

Nevertheless, this desired future speed can provide a reasonable 

estimate of the actual speed and improve the prediction accuracy 

of the arrival time. The procedure is as the following:  

1) The initial location and speed of each human-driven 

vehicle is known at each prediction update instance. Assume the 

current time instance is 𝑘 and denote the location and speed of 

the 𝑖-th human-driven vehicle as 𝑑𝑖(𝑘) and 𝑣𝑖(𝑘). Denote the 

initial states estimation as 𝒙+(𝑘). 
2) By doing a numerical integration, the location of this 

vehicle at the next time instance can be obtained as 𝑑𝑖(𝑘 + 1) =
𝑑𝑖(𝑘) + d𝑡 ⋅ 𝑣𝑖(𝑘).  

3) The state estimation is updated using the observer 

designed in Section 2.3. The measurement comes from the 

desired future speed of CAVs at time instance 𝑘 + 1 . The 

updated states estimation is 𝒙+(𝑘 + 1). 
4) The speed of this vehicle at this next time step 𝑣𝑖(𝑘 + 1) 

is found by interpolating the traffic speed of the two adjacent 

cells to the location 𝑑𝑖(𝑘 + 1) , using the states estimation 

𝒙+(𝑘 + 1).  

5) The above process is repeated until the predicted vehicle 

trajectory arrives at the merging zone. The time difference 

between the time of arrival at the merging zone and the initial 

time is the predicted arrival time for this human-driven vehicle.  

The above procedure is repeated for all human-driven 

vehicles within the control zone. Then the traffic states 

estimation gets updated again using measurement from CAVs 

and the predicted arrival time is updated again. 

3. RESULTS AND DISCUSSION 
3.1. Scenario 

A single-lane secondary road merging onto a single-lane 

primary road scenario (see Figure 1)is simulated using the traffic 

simulator VISSIM and the proposed traffic prediction algorithm 

is used to estimate the arrival time to the merging zone of the 

human driven vehicles. The length of the control zone is selected 

as 400 meters and the length of the merging zone is 120 meters. 

The speed limit of the road is set to 50 km/h, the traffic flow 

input to the primary and secondary roads are set to 1200 veh/h 

and 900 veh/h respectively and the vehicles enter the simulated 

network following VISSIM’s default stochastic time 

distribution. In VISSIM, the human-driven vehicles are 

simulated using the Wiedemann’s car-following model. When 

CAVs enter the control zone, the merging coordination 

controller will determine their arrival time at the merging zone 

and control the desired speed. Once CAVs enter the merging 

zone, the merging controller will disengage. The lane-changing 

of CAVs within the merging zone are simulated using VISSIM’s 

lane-change model.  

To focus on evaluating the performance of the traffic 

prediction, the merging controller [9] is applied to control CAVs 

and the traffic scenario is simulated in VISSIM. The vehicle 

speed and location information is stored and used as input to the 

traffic prediction algorithm. A total of nine penetration rates are 

assessed ranging from 10% to 90%. The penetration rate refers 

to the percentage of CAVs among all vehicles in the simulated 

traffic scenario. Each penetration rate scenario is simulated for 

500 seconds which corresponds to about total of 300 vehicles 

entering the merging area (including both CAVs and human-
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driven vehicles). Note that only the arrival time of the human-

driven vehicles is predicted since the merging controller will 

control the arrival time of all CAVs. This means that for 10% 

penetration rate, the algorithm predicts the arrival time of about 

270 vehicles, while for 90% penetration rate, the arrival time of 

about 30 vehicles is predicted. The baseline scenario to assess 

the performance of the prediction is selected as the scenario in 

which the arrival time for human-driven vehicles is estimated 

assuming they follow a constant speed [17].  

In this work, the traffic prediction of the arrival time is not 

yet feedbacked to the merging controller, which is left for future 

work. The arrival time is compared for different penetration rate 

scenarios with respect to the baseline to understand and evaluate 

the performance of the proposed traffic prediction algorithm. 

 

 
Figure 3 Arrival time prediction error comparison between traffic prediction and constant speed assumption 

 

3.2. Results 
Figure 3 shows the histograms for the arrival time estimation 

error between the proposed traffic prediction algorithm and the 

constant speed assumption. Since the merging coordination 

control is updated in a rolling horizon fashion, the arrival time 

prediction for each vehicle is updated at every control time step. 

This means that, even for a single vehicle, multiple predictions 

on the arrival time are conducted by the traffic prediction 

algorithm. For example, if it takes 20 seconds for a human-driven 

vehicle to cross the control zone, there will be total of 20/0.5=40 

predictions (as the update time of the prediction is set to 0.5 

seconds in Section 2). For each of these 40 predictions, the error 

between the predicted and actual arrival time is calculated, and 

this procedure is repeated for all human-driven vehicles under 

the same penetration rate. After that, the histogram is plotted for 

all prediction errors of all these vehicles. The y-axis of each 

histogram is normalized to show the percentage of each case with 

respect to the total number of predictions. This is because 

scenarios of different penetration rates have different numbers of 

human-driven vehicles and hence the numbers of predictions. In 

general, it can be seen that the average error on arrival time 

prediction is significantly reduced using the proposed traffic 

prediction algorithm comparing to the constant speed 

assumption. The histograms also show that the errors of the 

proposed prediction algorithm are more ‘aggregated’, means that 

both the standard deviations and the maximum prediction errors 

are significantly reduced. The values of standard deviation for 

each penetration rate are shown as the texts on each subfigure. 

As shown in Figure 4, in most penetration rates, the 

proposed traffic prediction can achieve more than 50% reduction 

in errors of arrival time estimation, comparing to the constant 

speed assumption. Figure 4 also shows that, in general, the 

arrival time errors of both the proposed prediction algorithm and 

the constant speed assumption is significantly decreased with 

higher penetration rates. This makes sense since it is anticipated 

that the traffic flow is mostly smoothed with high penetration 

rates of CAVs. The arrival time is not monotonically decreasing 

as the penetration rate increases, especially when there are about 

the same amount of CAVs and human-driven vehicles on the 

road (40%-60% penetration rates). This is because in these 

scenarios, the prediction errors depend on the relative positions 

of CAVs and human-driven vehicles. If several CAVs are 

following each other, then the traffic flow after these CAVs will 

be smoothed out as well. The human-driven vehicles following 

these CAVs will benefit and have smoothed speed profiles. In 

these cases, the traffic prediction can make a more accurate 

prediction on arrival time. If CAVs are scattered and there will 

always be human-driven vehicles in between CAVs, then the 

effectiveness of traffic flow smoothing will be limited. This is 

because in these scenarios the current merging controller does 
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not have an accurate estimation on the behaviors of human-

driven vehicles. The different behaviors of human-driven 

vehicles and CAVs will bring in ‘disturbances’ to the control of 

CAVs. As a result, the controller may have to adjust the arrival 

sequence and desired of CAVs frequently, which causes the 

errors in traffic prediction. Figure 5 shows the spatio-temporal 

traffic speed plot for the 60% penetration rate scenario as an 

example. It can be seen that the predicted flow speed has 

reasonable accuracy comparing to the actual flow speed of the 

VISSIM simulation, which validates the proposed traffic 

prediction algorithm.  

Figure 4 Average arrival time prediction error comparison 

between traffic prediction and constant speed assumption 

 

 

Figure 5 Spatio-temporal states comparison between predicted 

flow speed and actual flow speed of VISSIM simulation 

4. CONCLUSION 
In this work, a traffic prediction algorithm is developed for 

a merging coordination application under mixed traffic. The 

merging controller coordinates the arrival sequence and speed of 

CAVs to maximize the energy efficiency and mobility. The 

controller receives information from CAVs but not the human-

driven vehicles. The integration of a traffic prediction with the 

merging coordination control can potentially improve the 

performance under mixed traffic conditions. The performance of 

the developed traffic prediction algorithm is investigated for 

various penetration rates of connectivity for a single-lane 

secondary road merging to a single-lane primary road. The 

results show that, comparing to a constant speed assumption of 

human-driven vehicles, the proposed traffic prediction algorithm 

can reduce the arrival time prediction error by more than 50%. 

Future work includes the integration of the traffic prediction with 

the merging coordination control and evaluation of its 

performance, applying the traffic prediction to multi-lane 

merging scenarios, and experimental validation.  
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