D2U: Data Driven User Emulation for the Enhancement
of Cyber Testing, Training, and Data Set Generation

Anonymous Author(s)

ABSTRACT

Whether testing intrusion detection systems, conducting training
exercises, or creating data sets to be used by the broader cyberse-
curity community, realistic user behavior is a critical component
of a cyber range. Existing methods either rely on network level
data or replay recorded user actions to approximate real users in a
network. Our work is the first to produce generative models trained
on actual user data (sequences of application usage) collected on
endpoints. Once trained to the user’s behavioral data, these models
can generate novel sequences of actions from the same distribution
as the training data. These sequences of actions are then fed to
our custom software via configuration files, which replicate those
behaviors on end devices. Notably, our models are platform agnos-
tic and could generate behavior data for any emulation software
package. In this paper we present our model generation process,
software architecture, and an initial evaluation of the fidelity of our
models. Our software is currently deployed in a cyber range to help
evaluate the efficacy of defensive cyber technologies. We suggest
additional ways that the cyber community as a whole can benefit
from more realistic user behavior emulation. The data used to train
our model, as well as sample configuration files produced by the
model, are available at [redacted].

KEYWORDS

data sets, experimental infrastructure, user emulation, data driven

1 INTRODUCTION

It is difficult to generate benign data sets for training cyber tools
and realistic background traffic to use in cyber exercises or tool
testing [1, 17], yet both are critical to the cybersecurity community.
In this paper we present D2U, a novel user behavior emulation
technology. Unlike current user emulators [5, 16, 20], D2U does
more than replay previously-observed behavior, or call heuristics
for stringing together patterns of actions. Instead, D2U provides the
ability to generate unlimited, novel sequences of realistic behavior
and orchestrate a plethora of virtual machines to enact these behav-
iors, thereby emulating a network of users. This ability to generate
realistic, new behaviors sets D2U apart from existing emulation
technologies.

In a one-time training phase D2U collects fine-grained data on
real computer users and creates probabilistic generative models

Notice: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-
AC05-000R22725 with the U.S. Department of Energy. The United States Government
retains and the publisher, by accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide
license to publish or reproduce the published form of this manuscript, or allow others to
do so, for United States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance with the
DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
CSET’21, August 09, 2021, Virtual

2021. ACM ISBN 978-x-xxxx-xxxX-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

of each users’ unique patterns of behaviors. These models enable
the production of new sequences of behaviors that appear like real
user data. D2U includes a suite of metrics allowing visual quality
analysis to measure the realism of the generated behaviors.

Next, user behavior, as generated by our models, is fed into cus-
tom software that is able to actuate those behaviors on real or virtual
devices—a “digital twin” of the user on that device. By placing these
twins on many devices on the network, D2U provides solutions to
a variety of problems, including: (1) generating realistic host and
network data for testing cyber tools (e.g., needed to evaluate emerg-
ing cybersecurity technologies, such as User Behavior Analytics
(UEBA), Anomaly Detection (AD), and Intrusion Detection System
(IDS) technologies), (2) creating cyber deception technologies (e.g.,
camouflaging real users/traffic with realistic emulated versions),
(3) creating training data for machine-learning-based IT and cyber
tools, (4) enhancing the realism of cyber exercises (e.g., red-team
events for testing and practicing network defense), and (5) generat-
ing novel datasets to support both research and industry. D2U is
currently running in a cyber testbed with over 300 active emulated
users at [redacted] to support large-scale experiments of defensive
cyber technologies.

2 MODELING APP USAGE SEQUENCES

To create a data-driven model of a user’s behavior, data recording
the user’s activity is collected from the user’s host for an ample
period of time (many days to weeks). The data is used to train a
generative model, that is, an algorithm that, once trained, can be
used to produce novel sequences of activities that mimic the input
data’s qualities. This section details the data collection and prepro-
cessing, then introduces the generative models tested alongside
sequential qualities of the data from previous research that drive
evaluation and model selection.

2.1 Data Collection & Preprocessing

For D2U a collection script was deployed to a user’s host, which
records a timestamped observation each 0.5s of the user’s “active
application”, i.e., the frontmost application in the operating system’s
(OS’s) user interface (UI). Our collection script, written in Python,
leverages the AppKit! package for Mac OS data collection, which is
used in this paper, although we created analogous collection scripts
for Linux and Windows OSes from a variety of Python modules. The
program was designed to collect data continuously for eight active
hours (not including sleep periods where logging was automatically
paused). Notably, the program recorded loginwindow as the app
name before the computer would sleep/pause logging, which allows
our model to generate realistic pauses in the user’s day. For data
collection, users were instructed to use their computers as normal,
but to not turn off their machines at the end of a work day. When a

Ihttps://developer.apple.com/documentation/appkit

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://developer.apple.com/documentation/appkit

CSET’21, August 09, 2021, Virtual

4§ e L L e
o I A T R I [| {110
oo [| 1111 00
r~ AN 0100010000 A T
=
£ o [N | I |
& o [N
~ [VA0 OO
- I I
~ [— 111 —
— I . | |
I T
07:00:00 08:50:00 10:40:00 12:30:00 14:20:00 16:10:00 18:00:00 19:50:00 21:40:00
& Atom E iTerm2 [Outlook B RStudio
O Chrome @ loginwindow [Preview O Slack
@ Finder @ MacDown [RARE O Teams

Figure 1: Ground Truth Data Example: Ten days (2 work
weeks) of data (after preprocessing) for a user.

collection period was complete, they were instructed to restart the
data collection program.

Each run of the collection program provides a time series of
active app observations: (s’ (), ...,s’(t1)), where fg1 = f+ 0.5s
for most k, and L = 8hrs x602s/hr x2 = 57.6K observations. Note,
we use s’ to denote the raw sequence reserving the simple notation
s for it’s analogous sequence of apps after preprocessing. Once we
have obtained a sufficient number of observation sequences from a
user, we normalize our data to have the following properties:

o A single sequence per day, filtering out days in which there
was insufficient active data (e.g. user was logged out). When
denoting the sequence for a particular day is needed, we let
s denote the sequence for the i-th day.

e A uniform start and end time (this depends on the user),
which we define as simply the minimum start time (miny #o)
and maximum end time (maxg t7) observed.

e Uniform and uniformly spaced timestamps in each day’s
sequence (i.e., all s are sequences with the same time stamps),
coarsened to five second intervals. To do this we simply set
s(t) to be the closest previous observation—set s(t) = s’(t;)
where t € (#, ty,1)—provided we have observations s’ near
time t. In the alternative case, where there is a large gap in a
day’s data collection (e.g., from the collection script ending
but not being restarted quickly) we copy subsequences of
s’ occurring before and after the gap to fill in the unknown
portion, then define s(t) as just previously mentioned.

e We replace seldomly used apps—defined as apps that occur
in only a single collection period or that make up less than 1%
of the data—with a distinguished symbol, RARE, effectively
binning all infrequent observations.

Now armed with uniform sequences of user behavior for many
days, we consider the sequential properties and models that may
faithfully reproduce those properties.

Before proceeding we note that Figures 1, 2, 3, and in Table 3
leverage R package of Gabadinho et al. [6].

2.2 Sequential Concepts and Modeling

We seek models that are “high-fidelity”, where we define the fidelity
of a user model in terms of the similarity of the activity sequences

Anon.

the model generates to that of the true user sequences; hence, gaug-
ing how “good” a model is depends solely on defining similarity
of two sequences. Sequential data appears in a wide variety of do-
mains, hence, a wide variety of similarity measures for sequences
exist; e.g., string metrics such as Hamming for binary data [10],
edit distances (e.g., Levenshtein) often for text applications [9], or
Kendall-Tao distance often for ranking comparisons [11], to name
a few. Studer & Ritschard [19] provide a thorough survey.

Considering Figure 1, which visualizes ten days (sequences) of a
user’s application usage, we observe wide variance in behaviors that
characterizes real user data: different app distributions appear at
different times, long spells of usage of a particular app are common,
but frequently with many short interruptions into multiple other
apps; and there is a general time window of work hours in the day.
Our goal is to create/discover a model that, when trained on data as
in Figure 1, will produce data that has similar qualities. While the
general workflow for creating such a model is to identify metrics
that measure the desired qualities, and then leverage these metrics
to design and evaluate models, it is unknown what combination of
sequential measures capture the qualities of real user’s behavior—
and this is a highly non-trivial problem.

Although working in social sciences, Studer & Ritschard [19]
encountered this very problem, and have laid a foundation of se-
quential concepts that frames our approach. We consider similarity
of sequential activity data with regard to four dimensions or se-
quence characteristics as itemized by Studer & Ritschard:

e Sequencing - the ordering of distinct applications (i.e., order
in which a user jumps from one application to another);

e Duration - the lengths of consecutive observations of the
same application (i.e., uninterrupted time spent in each ap-
plication);

o Timing - the time(s) of day at which each application is used;

o Distribution - the total time spent in each distinct application.

Continuing, we introduce necessary terminology and notation,
following previous works ([6, 19]) but adapted for our needs.

o The terms state and app and symbol are used interchangeably
to refer to the user’s active application.

o A Symbol Time Sequence (STS) is a sequence s(t) where each
element of the sequence s(t;) denotes the symbol at time ;.

o A spell is a consecutive subsequence of the same symbol,
or equivalently, an uninterrupted period spent in the same
application; it follows that spell length, the number of con-
secutive same symbols, is duration as defined above.

o The Distinct Successive States (DSS) is the sequence of distinct
symbols observed, where all spells are treated as length 1.
We denote a DSS using u = (u(1),...,u(m)).

o A Distinct Successive State Duration Sequence (DSSDS) is a
sequence of (symbol, spell duration) tuples for each spell in
the DSS.

Example: For the toy STS, s = (a, b, b, b, a, c, c) there are three
states or symbols, namely, a, b and c¢; symbol a has two spells of
length 1, b has a spell of length 3, and ¢ has a spell of length 2;
the DSS is u = (a, b, a, c); the corresponding DSSDS is ((a, 1), (b, 3),
(a,1), (¢, 2)).

Knowing the DSSDS is a redundant but alternative specification
of the original STS. As we shall see, choosing whether to consider a

D2U: Data Driven User Emulation

user activity sequences as an STS or a DSSDS has impact on model
choice and accuracy that we explore via initial results.

2.3 Modeling

We develop a flexible framework for modeling user activity se-
quences where a model can be specified by three modeling deci-
sions:

(1) Sequence Representation: STS or DSSDS (Sec. 2.3.1);

(2) Temporal Structure: Flat or Hierarchical (Sec. 2.3.2).

(3) Model Type & Hyperparameters: Markov Chain (MC), Hidden
Markov Model (HMM), or Random Surfer (RS); hyperparam-
eters vary per model type (Sec. 2.3.3);

The four possible graphical model frameworks are depicted in Table
1 and correspond to each of the two choices for the two structural
modeling decisions ((1) and (2)). Model types (3) are shown in Table
2 with the model-specific hyperparameters tested. Each of the four
structures (choices for (1) and (2)) are used with one of the three
model types, yielding a total of 4 X 3 = 12 model combinations
(4 X 6 = 24 when considering hyperparameters we tested).

2.3.1 Sequence Representation: STS vs. DSSDS. Refer to Section
2.2 for definitions and examples of STS, DSSDS, and related con-
cepts/terminology. STS models regard and generate the original,
full, STS sequence, which includes constant subsequences if an app
is used for consecutive time intervals. For models with Markov

CSET’21, August 09, 2021, Virtual

assumptions, spell lengths that deviate from the mean can be prob-
lematic. On the contrary, the DSSDS modeling choice indicates
that the model will be trained on and generate a DSS (Distinct
State Sequence, containing no repeated symbols) combined with
the number of intervals to remain in each symbol. More specifically,
a symbol is drawn from the symbol model; then, the duration for
the chosen symbol is sampled from the given symbols’ duration
probability distribution. The spell duration distributions are learned
for each symbol from all training sequences.

2.3.2 Temporal Structure: Flat vs. Hierarchical. The Flat structure
simply regards data throughout the day identically and builds a user
model (based on other structural choices (1), and modeling choices
(3)), while the Hierarchical structure incorporates a latent variable
c that regards the time of day. For the Hierarchical structure, the
input data sequences are split into time window subsequences (1
hour in our case), vectorized, and clustered via K—means clustering.
We learn K from each user via the elbow method. See Figure 2.
Let vy, ..., vk denote the cluster centers, which are simply the
expected percent each app appeared in that cluster’s constituent
data. Since each time window, w, in the training data now dons
a cluster assignment, c,, € {1,...,K}, a Markov distribution of
order 2 is learned on the sequence of clusters observed. (This is
used to generate a cluster for each hour of the day). Finally, a user
model is trained from the data in each cluster, resulting in models
M, ..., Mk (based on the other structural and modeling choices (1),

Table 1: Graphical Models: Four general model frameworks where the Hierarchical models contain Flat models as submodels
(shown in rectangles). s; denotes th app at timepoint ¢; u; denotes the i—th successive app in the DSS; d; denotes the duration
of app u;; ¢y is the temporal cluster for window w. Dotted lines dependence, as dictated by the specific model types (see

Table 2); whereas solid lines indicate dependence that is computed simply as P(X;|Pax,) =

#(Xi)
#(Pax;)

where Pay, denotes the

parents of node X;, and #(-) denotes the empirical frequency of the node(s)’ value(s). Note that dependencies shown may not be
complete/accurate for all the model types; e.g., for a Markov chain of order 2 (a Flat STS model), s; is dependent on s;_; as well
as s;—1, and for a Hidden Markov Model (a Flat STS model), the hidden states, H;_1, H; are not depicted.

STS DSSDS
Flat N >
................... -
fessanannand)))
Hierarchical

CSET’21, August 09, 2021, Virtual

Table 2: Specific Model Types with Tested Hyperparameters

Type Hyperparameters
Markov Chain (MC) m=1,2

Hidden Markov Model HMM) nj =3,5,7

Random Surfer (RS) a = [20,20], B;j = 6;; = 1.1

(3), (4)). These K user models attempt to capture that users’ behav-
ior as observed in the data that forms that particular cluster. The
generative model process is then as follows: at each time window
(w) a cluster (c4y) is chosen based on the current time window, and
the previous two chosen time window clusters; a subsequence for
that time window (that hour of the day) is generated from the cor-
responding cluster’s user model (M,). A priori, the benefit of this
approach is that natural differences in behavior throughout the day
are taken into account. As our results show, this hierarchical model
also generates higher variance sets of sequences, which tends to
produce more realistic sequence sets.

10

¢ -

Day Index

° _

7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22

Figure 2: Clusters for each 1-hour time window (w) found
for user data from Figure 1) with K = 7 (for Hierarchical
temporal structure).

2.3.3 Specific Model Types. Markov Chain (MC): This model uses
an MC model of order m, the lone hyperparameter; i.e., the proba-
bility of a symbol depends only on the previous m symbols. This
model is learned from the input data sequences and is implemented
using Pomegranate Python package.? For details on theory see, e.g.,
[7]. As a MC of order m = 1 is perhaps the simplest model that
respects sequential data, we consider it the benchmark.

Hidden Markov Model (HMM): HMM models are comprised of
ny, hidden or latent states (ny, is a hyperparameter), an MC model
for transitioning among the hidden states (of order 1 in our case,

Zhttps://github.com/jmschrei/pomegranate

Anon.

so a transition matrix), and each hidden state is furnished with
an emission probability, which is simply a distribution over the
observed symbols; for details on HMM theory, see, e.g., [15]. The
generative process uses the transition matrix to sample the latent
state, then a symbol is sampled from emission probability for that
state. This model is trained from the input data sequences using
the Baum-Welch algorithm and implemented using Pomegranate
Python package.?

Random Surfer: The Random Surfer model is the underlying
model in the PageRank algorithm [3]. The “surfer” (user) moves
between applications (symbols) as a mixture of a symbol transition
matrix T (row-stochastic matrix giving an MC model of order 1) and
a “teleportation” distribution p (multinomial distribution) on the n
symbols. Specifically, at each step, the user will, with probability r,
choose the next symbol based on T and the current symbol, or, with
probability 1 — s, sample the next symbol from the multinomial
distribution of symbols, p, which is independent of the current sym-
bol. This model was developed to mimic the behavior of a surfer
browsing through web pages, choosing at each step to either follow
alink on the current page, or jump to a entirely unrelated page. The
model is parameterized by 7, p, and T, which are learned from data
by optimizing the posterior distribution (Maximum a Posteriori
estimate), using a gradient ascent algorithm. See A for more de-
tails. The hyperparameters of our implementation define the prior
distributions on each parameter: mixing parameter 7 ~ Beta(a),
transition matrix rows (multinomials) T (i, -) ~ Dirichlet(f;) and
multinomial p ~ Dirichlet(d). As shown in Table 2, we use 20 for
both a components, strongly encouraging equal use of T and p, and
use 1.1 for all Dirichlet values.

2.4 Qualitative Modeling Results

We present results for a particular user for which we have 42 days
of sequential data after the preprocessing step, collected across ~ 2
months. For the hierarchical models, K = 7 clusters were found for
this user by the elbow method. A sample of the clusters is depicted
in Figure 2. We note that K varies per user in empirical experiments,
so we suggest learning this parameter per user.

Regardless of the model used, our results found trends based
on each of the structural decisions (choices (1) and (2)). Regard
Figure 3, which shows representative samples from the benchmark
model, (MC, m = 1) for each of the four structural decisions. In
short, regardless of model choice, STS models have spell lengths
that are all very short—i.e., apps are changed too often and too
sporadically. To explain this, consider sampling the same apps
for an extended period of time. Although longer spells are not
infrequent, the probability of staying in the same app, say P(ala), is
small since our data has so many app changes. Thus, the probability
of a spell of length k is equal (for MC with m = 1 or otherwise close
to) P(ala)*, which tends to 0 quickly as k grows.

Our results also confirm that Flat models provide unrealistic data
for the time of day (unsurprisingly as they do not regard the time of
day), while the Hierarchical models do capture time-of-day trends.
Overall, regardless of the model choice, DSSDS Hierarchical models
are best, as they have much more realistic spell lengths (app use
duration) and regard the time of day.

D2U: Data Driven User Emulation CSET’21, August 09, 2021, Virtual

Table 3: Structural Choices Pros & Cons: Two days (7AM - midnight) of data sampled from the trained Markov chain of order 1
(benchmark model) for each structural choice. Compare with ground truth data and regard color key in Figure 1. For both
Flat and Hierarchical structure, STS models have unrealistically short spell length; that is, they jump between apps too often.
DSSDS models (which sample a necessarily different symbol and the duration to remain in that symbol) capture much more
realistic spells. For both STS and DSSDS models, the Flat structure disregards time of day—notice early and late app usage along
with long periods logged out during the middle of the day, neither of which occurred in ground truth data. As designed, the
Hierarchical models capture time-of-day trends in the data. Finally, we note that while this data is only two days from the MC

order 1 model, the advantages and pitfalls of these structural choices are representative for all models.

STS

DSSDS

Flat W00 0 0 N
N1 I

Hierarchical

Figure 3 depicts the best performing models under the DSSDS
Hierarchical structure. The MC m = 2 model and the HMM ny, = 5,7
(7 not shown) provide very realistic generated app sequences. The
Random Surfer model is a bit more inclined to change apps rapidly;
in particular, the large number of logged-out periods midday seem
unrealistic. These preliminary results conclude that the DSSDS
Hierarchical MC and HMM models are the best choices.

We note that the Hierarchical modeling framework will allow
different model types per cluster (e.g., M; is MC, while M, is Ran-
dom Surfer), although we did not test this. In light of these results,
for clusters with high entropy and overall short spells, we suspect
the Random Surfer model to excel. Admittedly, further testing on
much more data from many different users is needed to draw more
convincing conclusions. As such a study will require a recruitment
and data collection from many participants, it is out of scope for
this preliminary work.

3 D2U DEPLOYMENT

To deploy D2U inside a cyber range, we developed a custom soft-

ware architecture. This architecture, shown in Figure 4, is scalable,
enabling hundreds or thousands of emulators to run simultaneously,
and extensible, allowing additional user actions to be added and

expanded with minimal effort using python. A front-end graphi-

cal user interface enables analysts to view the status of and send
commands to all active user emulators.

When using this architecture for data generation or testing, it is
important to ensure that the emulated user and the management
server are communicating out of band from the traffic generated
by the emulated user node. Generated traffic should be from the

emulated user’s actions and not from contact with the manage-

ment server. In cases where only a limited number of emulators
are required or a more lightweight solution is desired, D2U can
be run headless without connecting to either the frontend or the
management server. When running headless, less verbose logging
information is stored locally.

(a) Markov Chain Model (m = 2)

(b) Hidden Markov Model (n;, = 5)

(c) Random Surfer Model

Figure 3: Five days sampled from each of the best DSSDS
Hierarchical models, (K = 7 clusters, 1 hour window length)
trained on sequences from user in Figure 1.

CSET’21, August 09, 2021, Virtual

Scales to hundreds of emulated
machines, each with its own
unique config file

l<«—Send Command
Make Request—p|

Anon.

€ 5 C f (onendon)

= lal

Send Command——|

Model @
Generated Emulator
Config File Software Management
Server
Display Summary
Email, SSH, SFTP, Send Emulator Server Pulls Statistics
CUPS, mDNS, Logs to Kafka Log Data
SNMP, Telnet, ...
S
— Pull Log Data
> For GUI >
Mongo
Docsker H osted Kafka Instance Database
ervices

Figure 4: D2U Deployment Architecture

4 RELATED WORK

The problem of reproducing realistic data for use in cyber testing
and training is well established in the literature [1, 17]. Many exist-
ing datasets cannot be properly validated and are outdated [1, 14,
21]. A critical step towards more realistic cyber data for training
and testing is high fidelity user emulation [5]. This paper describes
D2U, a generative model based solution to the problem of emulat-
ing realistic user behavior on end devices. In the remainder of this
section, we highlight how D2U differs from existing user emulation
technologies.

4.1 Existing User Emulation Technologies

Existing user emulation technologies take one of the following ap-
proaches: (1) modeling and generating network traffic directly [12,
13, 16], (2) replaying recorded user behaviors [5], and (3) using hu-
man generated configuration files (these may be approximated from
real data) [20]. Solutions that fall into category (1) are fundamen-
tally different from D2U because they replay or generate network
traffic, whereas D2U emulates user behavior on end devices. In
addition to the fact that it is more realistic to generate network
traffic by emulating behavior on end devices, simply generating
network traffic is also limited in its ability to test tools focused on
anomalous user behavior.

Dutta et al. [5] developed user bots to address this shortcoming
in traffic generators while testing insider threat detection systems,
and was the major work we identified in category (2). These bots
can be run in an enterprise system to test live deployments or in a

cyber range. To enhance the realism of these bots, they replay user
behavior data recorded during a study of West Point Cadets.

Finally, there are numerous technologies that fall into category
(3), so for the sake of space we include notable representative sam-
ples. GHOSTS [20] was developed by Carnegie Mellon in order to
build accurate, autonomous non-player characters (NPCs) for cyber
warfare exercises. It is written in C# and supports web browsing,
terminal commands, email, and editing office documents. It also
allows the injection of commands during the exercise. Configura-
tion of users is accomplished using JSON files that specify what
actions a user will perform and provide sample text for emails and
documents.

Some privately owned companies, such as Skaion 3 and SimSpace 4,
also provide user behavior emulation capabilities. However, the
code is proprietary and therefore cannot be analyzed or extended
by the broader community. To our knowledge, the models used in
these emulators are not based on measurements of individual user
behaviors.

4.2 Relation to D2U

In contrast to the three approaches used by existing technologies,
D2U provides the ability to generate unlimited, novel sequences
of realistic behavior by building models from collected user data.
Not only does D2U produce high fidelity user behaviors, it also
provides an endless supply of such behaviors. Given the current
lack of quality data for cyber training and testing, this capability
represents an important step forward for the cyber community.

3http://www.skaion.com/
4https://simspace.com/

http://www.skaion.com/
https://simspace.com/

D2U: Data Driven User Emulation

5 CONCLUSION

D2U provides unlimited, novel sequences of user behavior using
generative models based on actual user data for use in testing and
training. In this paper we described our processes for data collection
and model generation, as well as qualitatively demonstrating the
performance of our model and describing the software architecture
used in deployment. Next steps include the following:

(1) Collect additional forms of user data to use as input to our
models. In addition to application sequence data, file access
logs, CPU usage data, browser logs, and screenshot image
analysis would offer additional insight into user behaviors.
It would also be beneficial to explore the pros and cons of
different approaches to model generation with larger sets of
user data.

(2) Pioneer the next generation emulated users: While our ap-
proach is an adequate solution for the problem we encoun-
tered (cyber range environment), a logical next step con-
ceptually is adding a responsive and “smart” Al component
to these emulated users; e.g., embedding NLP components
to “read” and realistically respond to chat messages, emails,
etc. In short, broadening the task from faithfully generating
sequences of actions to building emulated users that seek to
pass the Turing test. An example step in this direction would
be to use an extra layer in the model where a user is “hold-
ing in mind” multiple applications per task and switching
between them.

ARTIFACT AVAILABILITY

The application sequence data used to train our model, as well as
sample configuration files produced by the model, are available at
[redacted]. This technology is currently under provisional patent
[redacted].

ACKNOWLEDGMENT

The research is based upon work supported by the Department
of Defense (DOD), Naval Information Warfare Systems Command
(NAVWAR), via the Department of Energy (DOE) under contract DE-
AC05-000R22725. The views and conclusions contained herein are
those of the authors and should not be interpreted as representing
the official policies or endorsements, either expressed or implied, of
the DOD, NAVWAR, or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon.

REFERENCES

[1] William H Allen. Mixing wheat with the chaff: Creating useful test data for ids
evaluation. IEEE Security & Privacy, 5(4):65-67, 2007.

[2] Aragats Amirkhanyan, Andrey Sapegin, Marian Gawron, Feng Cheng, and
Christoph Meinel. Simulation user behavior on a security testbed using user be-
havior states graph. In Proceedings of the 8th International Conference on Security
of Information and Networks, pages 217-223, 2015.

[3] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web
search engine. Computer networks and ISDN systems, 30(1-7):107-117, 1998.

[4] Ramkumar Chinchani, Aarthie Muthukrishnan, Madhusudhanan Chan-
drasekaran, and Shambhu Upadhyaya. Racoon: rapidly generating user command
data for anomaly detection from customizable template. In 20th Annual Computer
Security Applications Conference, pages 189-202. IEEE, 2004.

[5] Preetam Dutta, Gabriel Ryan, Aleksander Zieba, and Salvatore Stolfo. Simulated
user bots: Real time testing of insider threat detection systems. In 2018 IEEE
Security and Privacy Workshops (SPW), pages 228-236. IEEE, 2018.

CSET’21, August 09, 2021, Virtual

—_

6] Alexis Gabadinho, Gilbert Ritschard, Nicolas S. Miiller, and Matthias Studer.
Analyzing and visualizing state sequences in r with traminer. Journal of Statistical
Software, 40(4), 2011.

[7] Paul A Gagniuc. Markov chains: from theory to implementation and experimenta-
tion. John Wiley & Sons, 2017.

[8] Ashish Garg, S Vidyaraman, S Upadhyaya, and K Kwiat. Usim: a user behavior
simulation framework for training and testing idses in gui based systems. In 39th
Annual Simulation Symposium (ANSS’06), pages 8-pp. IEEE, 2006.

[9] Wael H Gomaa, Aly A Fahmy, et al. A survey of text similarity approaches.
International Journal of Computer Applications, 68(13):13-18, 2013.

[10] Richard W Hamming. Error detecting and error correcting codes. The Bell system
technical journal, 29(2):147-160, 1950.

[11] William R Knight. A computer method for calculating kendall’s tau with un-
grouped data. Journal of the American Statistical Association, 61(314):436-439,
1966.

[12] Samir Mammadov, Dhanish Mehta, Evan Stoner, and Marco M Carvalho. High fi-
delity adaptive cyber emulation. In 2017 IEEE Symposium Series on Computational
Intelligence (SSCI), pages 1-8. IEEE, 2017.

[13] Frederic Massicotte, Francois Gagnon, Yvan Labiche, Lionel Briand, and Mathieu

Couture. Automatic evaluation of intrusion detection systems. In 2006 22nd

Annual Computer Security Applications Conference (ACSAC’06), pages 361-370.

IEEE, 2006.

John McHugh. Testing intrusion detection systems: a critique of the 1998 and 1999

darpa intrusion detection system evaluations as performed by lincoln laboratory.

ACM Transactions on Information and System Security (TISSEC), 3(4):262-294,

2000.

[15] Lawrence R Rabiner. A tutorial on hidden markov models and selected applica-
tions in speech recognition. Proceedings of the IEEE, 77(2):257-286, 1989.

[16] Lee M Rossey, Robert K Cunningham, David J Fried, Jesse C Rabek, Richard P
Lippmann, Joshua W Haines, and Marc A Zissman. Lariat: Lincoln adaptable real-
time information assurance testbed. In Proceedings, IEEE Aerospace Conference,
volume 6, pages 6-6. IEEE, 2002.

[17] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. Toward generating

anew intrusion detection dataset and intrusion traffic characterization. In ICISSP,

pages 108-116, 2018.

Alex Shye, Benjamin Scholbrock, Gokhan Memik, and Peter A Dinda. Character-

izing and Modeling User Activity on Smartphones. Technical report, 2010.

[19] Matthias Studer and Gilbert Ritschard. A comparative review of sequence dis-
similarity measures. 2014.

[20] Dustin D Updyke, Geoffrey B Dobson, Thomas G Podnar, Luke J Osterritter,

Benjamin L Earl, and Adam D Cerini. Ghosts in the machine: A framework for

cyber-warfare exercise npc simulation. Technical report, CARNEGIE-MELLON

UNIV PITTSBURGH PA PITTSBURGH United States, 2018.

Stefano Zanero. Flaws and frauds in the evaluation of ids/ips technologies. In

Proc. of FIRST. Citeseer, 2007.

[14

[18

[21

A RANDOM SURFER (PAGERANK) MODEL
IMPLEMENTATION

Lets = [so,...,Sm], with s; € {1,...,n}, indicating the application
(of n applications) observed at each time interval for m + 1 consec-
utive time intervals. From each users we will have ideally multiple
() observation sequences, and use superscript k, sf to denote the
kth sequence of observations from that user.

We follow the PageRank [3] diffusion process to model the user’s
trace of applications with a mixture model, although our end goal
is different—we are not interested in using the stationary vector to
rank nodes (nodes represent applications in our case), but instead
leverage the mixture model between a markov transition matrix and
non-markov “starting” distribution for modeling the application
sequence per user. Notationally, let

e 7 € [0,1] be a mixing parameter or dampening factor, sim-
ply a binomial probability for the mixture model (coin flip)
between p and T;

o p:{l,...,n} — [0,1]", be the starting distribution (3 p(j) =
1), a multinomial over all n applications representing the like-
lihood of starting a new task with that application;

CSET’21, August 09, 2021, Virtual

Figure 5: Plate diagram for mixture model. Each s* is a sequence
of observed state changes (applications used) and are assumed inde-
pendent. We have priors as follows: mixing parameter 7 ~ Beta(a),
transition matrix rows (multinomials) T(i,-) ~ Dirichlet(f;) and

multinomial p ~ Dirichlet(5). While initial state sé‘ ~ p, subsequent
k

states are sampled with a mixture from T (s;_,, -) with probability =
(case z = 1) or sampled from p with probability 1 — 7 (case z = 0).

e T € [0,1]™" be a row-stochastic transition matrix, Vi 5 TG 7)

=1, so that T(i, j) = P[s; = j|s;—1 = i], i.e., the probability
the user transitions from application i to j.

We interpret T as giving the likelihood of application transitions
from the natural workflow, as opposed to starting a new task, as
modeled by p.

As depicted in the plate diagram in Figure 5, our generative model
uses p as the starting distribution (for sampling sg), then for each
subsequent t, a binomial with mixing parameter r is used to decide
between sampling from T'(+, s;) or independently drawing s; from p.
We use the “starting distribution”, p, both for the initial application
choice (sampling sg) and as the second distribution in the mixture
model, as users will choose an applications sometimes as the start
of a new task, while other times based on an inclination from
their current application (e.g., clicking a link in an email) modeled
by transition matrix T. Finally, multiple sequence observations
{sf } will be considered i.i.d. samples from this generative model.
Formally,

P Velm T, p) = [| PlstIx T. pl
k
=[]pGEIp) [[PGelmPGsEIsE 2 T p) (1)
k t
=[JpG5) [[xT(sFps6) + (1= m) x p(s)].
k t

We seek the parameters optimizing the posterior distribution
(Maximum A Posteriori or MAP estimate) using conjugate priors
as follows: mixing parameter 7 ~ Beta(a), transition matrix rows

(multinomials) T'(i, -) ~ Dirichlet(f) and multinomial p ~Dirichlet(5),

ie.,

#,T,p == argmax P(m, T, p|{s*}, a, B, 5) . ()
., T,p

subject to constraints
DTG =1 0<TGj) <1

¢ ®)
ZP(])=1, 0<p(j) <1
j

Anon.

Hence this is an optimization over 1+ n X (n - 1)+ (n - 1) =
(n+1)(n—1)+1parameters: 7, {T(i,j) :i=1,...,n,j=1,...,n—1},
and {p(j) : j=1,...,n—1},since T(i,n) =1 - X, T(i, j), and
p(n) =1-3 <, p(j). We use gradient ascent to optimize this. We
note that this is not a sufficient method in general for finding the
global maximum—our function to be maximized is not in general
concave (or more intuitively, concaved down). Yet, we plot the
function for our data to find it at least appears concave in our case.
Informed by this analysis, we simply walk up hill using gradient
ascent until convergence, and confirm convergence at the visualized
maximum.

	Abstract
	1 Introduction
	2 Modeling App Usage Sequences
	2.1 Data Collection & Preprocessing
	2.2 Sequential Concepts and Modeling
	2.3 Modeling
	2.4 Qualitative Modeling Results

	3 D2U Deployment
	4 Related Work
	4.1 Existing User Emulation Technologies
	4.2 Relation to D2U

	5 Conclusion
	References
	A Random Surfer (PageRank) Model Implementation

