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Despite vehicle fleet electrification advances, internal combustion
engine vehicles will likely dominate global fleets until at least 2050
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We can extend this analysis a bit further to examine the impact of
various combustion strategies on efficiency

150 T I
Full Acceleration: 4000 rpm, 160 HP I vvork
- Exhaust Loss
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Advanced plasma igniters evaluated in custom
ignition test vessels and optically accessible engines

Third party igniters evaluated

* Advanced Corona Ignition System (ACIS)

* Barrier Discharge Igniter (BDI)

* Nanosecond Repetitively Pulsed Discharge (NRPD) pin-to-pin (P2P)

|
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Pulse width ~ 10 ns
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Fundamental NRPD research is focused on corona,
@ glow, arc, and surface discharge ignition
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Optical Ignition Calorimeter
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plug

Pressure
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Optical access
for schlieren

Through hole
for cathode (pin-
to-pin config.)

GM SG2 single-cylinder optical engine
* 0.55 L displacement

e 13:1 compression ratio

* Piston & pent-roof windows




The lean-burn, mixed mode combustion strategy maximizes efficency
while minimizing pollutant emissions
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Atomic oxygen — a necessary building block for O; — was measured
for a pin-to-pin configuration at engine relevant densities
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Ozone can be generated in-cylinder by early-cycle BDI that use NRPD
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Complementary plasma discharge simulation results agree well
with measurements

* Most O5 forms along insulator surface — minimal streamer contribution
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Results offer a viable path to in-cylinder O, generation
with the igniter
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Ozone addition increases efficiency by 6 — 9% with a roughly 20%
reduction in nitrogen oxide (NOx) emissions
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Ozone improves fuel reactivity by altering low-temperature heat release

(LTHR) pathways

Ozone decomposition @ ~625 K
Masurier et al, Energy & Fuels, 2013
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NRPD discharges likewise extend lean ignition limits for various
igniter configurations

Propane/air, T=343 K, P = 1.3 bar
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Early burn rates are likewise significantly enhanced with NRPD

e Laminar burning phase substantially increases with dilution

 Relative to spark, NRPD severely shortened laminar-to-turbulent

flame kernel transition

o P2P: Initial hydrodynamic induce flame-front corrugation
o BDI: Near elimination of laminar burning phase accelerates burn rates
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Since laminar-to-turbulent kernel
period has the most variability,
shorter periods are expected to

benefit engine combustion stability
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Faster initial burn rates translated into extended lean stability limits
relative to conventional spark ignition

w
(3]

b
T

w
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* No notable lean-limit extension with RF BDI
o No intake pre-strikes

* RF ACIS lean-limits extended from ¢ = 0.73 to ¢ = 0.68
o Peak efficiency increased from 32.5% to 33.8%
o Longer discharges & higher voltages needed for lean mixtures
o ~1.0 point efficiency improvement from shorter initial burn

* NRPD P2P lean-limit never reached (best value: ¢ = 0.65)
o Non-resistor spark plug
o Peak ITE increased from 32.5% to 34.4%
o Increased pulse number needed leaner mixtures
o ~0.5 point efficiency improvement from shorter initial burn
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Faster early burn rates observed with ACIS and P2P NRPD ignition
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Faster early burn rates observed with ACIS and P2P NRPD ignition

40

- Spark, COV = 9.0%, ST =-52°

E;)' - NRPD, COV =1.3%, ST = -40°
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 Static-cell tests indicate multiple pulses with NRPD help kernel

expansion

o Additional pulses can also cause arc due to the lower inter-electrode
gas density, which could lead to electrode wear

40

* Despite later ignition timings relative to spark, ACIS
and P2P NRPD heat release is well-matched by -10°

o End-gas auto-ignition caused by residual charge heating
from valve overlap

o More consistent early burn led to more repeatable end-
gas auto-ignition
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Summary:

&
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A promising path to improved engine efficiency is the use of lean- | ,,.i‘-.: -
burn, mixed-mode combustion provided the igniter:
* Creates early-cycle ozone to increase end-gas reactivity -
* Generates strong deflagrations in lean mixture
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NRPD BDI is effective at generating sufficient O; quantities via
early-cycle discharges
* Optimal O5 generation requires lower combustion residuals
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Larger ignition volumes produce the fastest early kernels,
while continual discharges sustain early kernel flame fronts

e Corona discharges produce large early flame kernel volumes
* NRPD effectively add discharge energy to the kernel volume
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o) NRPD BDI appears to be the most viable igniter
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uture work:

Project with Transient Plasma Evaluate lean mixed mode
Systems Inc. with NRPD BDI
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