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Despite vehicle fleet electrification advances, internal combustion
engine vehicles will likely dominate alobal fleets until at least 2050
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We assume:

notto = 1 CRY-1

CR: Compression Ratio
y: specific heat ratio

1

But we actually get:

f pdV
11th = n

f uel

Q fuel: Fuel energy
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We also must account for:

- Real y (unburned and burned)

- Long burn durations

— Wall heat transfer

- Pumping losses

- Delayed exhaust valve closure

— Also: friction, gas exchange,
blow-by, incomplete combustion
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We can extend this analysis a bit further to examine the impact of
various combustion strategies on efficiency
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Pollutant emissions are perhaps even more important,
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Advanced plasma igniters evaluated in custom
ignition test vessels and optically accessible engines

Third party igniters evaluated
Advanced Corona Ignition System (ACIS)

Barrier Discharge Igniter (BDI)
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Fundamental NRPD research is focused on corona,
glow, arc, and surface discharge  ignition
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The lean-burn, mixed mode combustion strategy maximizes efficency
while minimizing pollutant emissions

Reference -Target
- -•AHRR w/o additive - - -•AHRR w/ additive

900
Profile difference

-25 71—..
•

a)
- 20 to. 7

6

- 15 60
4:7) 5(-0_• o

10 • 0_ 4
• LL.1

3

800

700 -
a)

ti 600 -
a)
ra. -
Ea) 500 -

400 -

300

Additive addition

AT

Deflagration
starts

u ,SAC I

1 
TU, ref

// 

♦ i • %* ,

•%

•
• •

Onset of
LTH R

-50 -25 '0
Crank Angles [ °

251

Compression Ignition

500 1000 1500

Speed [rpm]

 po.

2000

,/,;)
The additive we are interested in is ozone (07,0)
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Atomic oxygen — a necessary building block for 03 — was measured
for a pin-to-pin configuration at engine relevant densities

le+23 77;

5e+22 .?)

— 2e+22 §

VizGlow Simulations

Riccardo Scarcelli (ANL)

0.05

c 0.02
O

0.01

a)
O
E 0.005

O

0.002

0.001 1

Tmoae = 420 K

._.—.—.—.—.—._._.

10

•

OV-T heating
03->0+02

Tirrhia

Recombination
again

dominates

—0— Expt 0
Model O

---- Model 03
—•—•- Model 02

100

0.2

0.1
1000

0
2 
m
o
l
e
 f
ra

ct
io

n 

Low global 0 formation and potential 03 destruction from
V-T heating makes this pathway unviable
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Ozone can be generated in-cylinder by early-cycle BDI that use NRPD
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Highest 03 yields with lowest pressures &
highest pulse energies

• 30 ppm created with 0.3 to 0.7 J (-30 pulses)

• 30% N when T increased from 22 to 85° C

• 40% N when EGR increased from 0 to 30%

Complementary plasma discharge simulation results agree well
with measurements

• Most 03 forms along insulator surface — minimal streamer contribution

Results offer a viable path to in-cylinder 03 generation
with the igniter
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Ozone addition increases efficiency by 6 — 9% with a roughly 20%

reduction in nitrogen oxide (NOx) emissions
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A further order reduction of NOx is possible if mixture
stratification is eliminated
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Ozone improves fuel reactivity by altering low-temperature heat release
(LTHR) pathways ,, 10.0

Ozone decomposition @ "1625 K ,t 8.0
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NRPD discharges likewise extend lean ignition limits for various
igniter configurations
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Early burn rates are likewise significantly enhanced with NRPD

• Laminar burning phase substantially increases with dilution
12

iii
E 10

• Relative to spark, NRPD severely shortened laminar-to-turbulent -=)-
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Since laminar-to-turbulent kernel

period has the most variability,
shorter periods are expected to

benefit engine combustion stability
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Faster initial burn rates translated into extended lean stability limits
relative to conventional spark ignition

• No notable lean-limit extension with RF BDI

o No intake pre-strikes

• RF ACIS lean-limits extended from 41) = 0.73 toil) = 0.68

o Peak efficiency increased from 32.5% to 33.8%
o Longer discharges & higher voltages needed for lean mixtures

o —1.0 point efficiency improvement from shorter initial burn

• NRPD P2P lean-limit never reached (best value:41) = 0.65)

o Non-resistor spark plug
o Peak ITE increased from 32.5% to 34.4%

o Increased pulse number needed leaner mixtures

o —0.5 point efficiency improvement from shorter initial burn
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Faster early burn rates observed with ACIS and P2P NRPD ignition
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from valve overlap
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• RF corona (ACIS) pulse duration and voltage was

limited by arc transition for lean mixtures

o Lower charge densities due to earlier ignition timing
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Faster early burn rates observed with ACIS and P2P NRPD ignition
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• Despite later ignition timings relative to spark, ACIS
and P2P NRPD heat release is well-matched by -10°

o End-gas auto-ignition caused by residual charge heating
from valve overlap

o More consistent early burn led to more repeatable end-
gas auto-ignition

• Static-cell tests indicate multiple pulses with NRPD help kernel

expansion

o Additional pulses can also cause arc due to the lower inter-electrode
gas density, which could lead to electrode wear
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Sum ma ry:

A promising path to improved engine efficiency is the use of lean-
burn, mixed-mode combustion provided the igniter:
• Creates early-cycle ozone to increase end-gas reactivity
• Generates strong deflagrations in lean mixture
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NRPD BDI is effective at generating sufficient 03 quantities via
early-cycle discharges
• Optimal 03 generation requires lower combustion residuals

and charge temperatures

Larger ignition volumes produce the fastest early kernels,
while continual discharges sustain early kernel flame fronts
• Corona discharges produce large early flame kernel volumes
• NRPD effectively add discharge energy to the kernel volume

NRPD BDI appears to be the most viable igniter

Motivation l Relevance l Igniters & Test Facilities l Engine Combustion Strategy l Results (9/9 Summary

40

ce. 20

ce 10

0

25

20

15 2

ce
10 r,

5 t

0

• 

—Spark, COV = 9.0%. ST = -52°
—NRPD, GOV = 1.3%, ST =
—ACIS, GOV = 1.7%, ST = -30°

-60 -40 - 0 0 2n

Crank Angles [.]
,74



Ell
Future work:
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