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21 Geomechanical failure mechanisms
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41 Geomechanical failure mechanisms

Tectonics + Fluid

A(In-situ stress) + A(p, T, c)



5 1 Geomechanical failure mechanisms

Tectonics + Fluid + Dynamics
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• Fault permeability
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• Frictional properties
Rate and state friction

A(In-situ stress) + A(p, T, c) + A(Material characteristics)



6 1 Geomechanical failure mechanisms

Tectonics + Fluid + Dynamics + Architecture
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71 Geomechanical failure mechanisms

Tectonics + Fluid + Dynamics + Architecture
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8 1 Geomechanical failure mechanisms

Tectonics + Fluid + Dynamics + Architecture
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91 Multiphysics in rock-fluid interaction
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101 Subsurface energy activities
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„I Potential risk I. Induced Earthquake
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121 Case study: 2016-2017 Pohang EQs
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1,1 Coupled vs. uncoupled models
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„ I Potential risk 2. Leakage
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161 Nuclear waste disposal

Field-scale modeling of entire
nuclear waste repository
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• Field-scale simulations aims for safe disposal more than 106 years

• Near-field physical and chemical behaviors of local flows and
transports driven by multiphysics coupling processes



171 Field-scale THC model
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• Multiphysics-driven rock-fluid
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I Near-field THMC mechanism
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• As DRZ heated, precipitation occurs (decrease in SO at early time.

• During re-saturation, swelling buffer exerts normal stresses to compact
fractures in DRZ which reduces DRZ permeability

Aaswelling = 3KAS1f3sw = Ao-eff K f(Aaeff)

• To see how THM process affects geochemical transport of radio-nucleoids
and ultimately support site selection as well as construction plans
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