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,| Multiphysics in rock-fluid interaction
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.| Subsurface energy activities
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‘ Potential risk |.Induced Earthquake
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‘ Case study: 2016-2017 Pohang EQs
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| Potential risk 2. Leakage
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+1 Nuclear waste disposal

Field-scale modeling of entire Near-field rock-fluid
nuclear waste repository interaction around a single
waste package
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« Field-scale simulations aims for safe disposal more than 10° years

* Near-field physical and chemical behaviors of local flows and
transports driven by multiphysics coupling processes




Field-scale THC
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«| Near-field THMC mechanism
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« As DRZ heated, precipitation occurs (decrease in §,) at early time.

» During re-saturation, swelling buffer exerts normal stresses to compact
fractures in DRZ which reduces DRZ permeability

Adsweliing = 3KAS | Bsw = Aoesr —- K~ f(AO-eff)

* To see how THM process affects geochemical transport of radio-nucleoids
and ultimately support site selection as well as construction plans




‘ Question & Answer
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