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Abstract

The shape of optical spectral-temporal signatures extracted from videos of explosions provides
information for identifying characteristics of the explosive devices corresponding to the signatures.
It is of interest to use machine learning algorithms such as neural networks to improve upon
predictions made by the methods currently used in practice. Since this application lends itself to
high consequence national security decisions, it is important to provide explanations for predictions
made by the neural networks to garner confidence in the model. While work has been done to
develop explainability methods for neural networks, not much of the work has focused on situations
with functional data as the input variables. We demonstrate a technique that makes use of functional
principal component analysis (fPCA) and permutation feature importance (PFI). fPCA is used to
transform the signatures to create uncorrelated functional principal components (fPCs). Neural
networks are trained using the fPCs as inputs to predict a characteristic of explosive devices, and
PF1 is applied to identify the fPCs important for the predictions. Visualizations are used to interpret
the variability explained by the fPCs that are found to be important by PFI to determine the
aspects of the signatures that are important for the neural network predictions.

1 Introduction

The predictive ability of neural networks have made them desirable tools in many applications
including national security. However, the predictive ability of neural networks, and many machine
learning algorithms, comes at the cost of interpretability due to the complicated nature of the
underlying algorithms. The ability to interpret a model allows users to understand how the model
makes predictions and assess the trustworthiness of the model. When it is not possible to directly
interpret a model, there is still a need to provide indirect explanations for the predictions, which
especially holds true in areas with high stakes decisions such as national security.

The identification of explosive device characteristics based on optical spectral-temporal signatures
of explosions is an example of an area in national security where machine learning could improve
predictive performance. Currently, the identification of explosive device characteristics is done using
heuristic algorithms or direct subject matter expert (SME) review. While neural networks may
provide a more accurate identification method for this application, it is imperative that a machine
learning based method not only return high accuracy but an explanation for the prediction.

The optical spectral-temporal signatures used to identify the explosive device characteristics are
functional data (Figure 1). That is, an observation corresponding to an explosive device is a function.
While much research has been done relating to the explainability of neural networks [Hohman et al.,
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2018, Montavon et al., 2017], little work has focused on explaining neural network predictions with
inputs of a functional data nature. In this paper, we present an approach for explaining predictions
made by neural networks with the optical spectral-temporal signatures from explosions as the model
input and explosive device characteristics as the model output using functional principal components
analysis (fPCA) and permutation feature importance (PFI).

fPCA is a common technique used in the analysis of functional data to understand the variability
present in the functions [Ramsay and Silverman, 2005, Wang et al., 2015]. Similar to multivariate
data principal components analysis (PCA), fPCA is a dimension reduction technique that transforms
the observed data into functional principal components (fPCs). The fPCs are uncorrelated and
ordered such that the first and last fPCs explain the largest and smallest amounts of variability,
respectively.

PFI was originally developed by Breiman [2001] for random forests, and Fisher et al. [2018]
generalized the method to any predictive model. The concept of PFI is to apply a trained model
to the data (training or testing) with one feature randomly permuted, and if the predictions
worsen significantly when the feature is randomly permuted, the feature is considered important for
prediction. In particular, a loss function is used to compare the predictions from both the permuted
and non-permuted data to the true response values. A difference between the two losses is computed
and summed over all observations in the data. This process is performed for all features to identify
the features with the largest positive loss (i.e. the features that are most important.) Note that a
negative value of PFI indicates that a randomly permuted feature results in better predictions than
the observed feature.

Our interest in using PFI is based on two reasons. First, it is important for the neural network
explanations to be understood by both the data analysts, the scientists, and the government decisions
makers. It is likely that the familiarity with neural networks decreases from the data analysts to
decision makers who may have little understanding of machine learning models, but PFI is an easily
understood explainability method. Second, PFI can be applied to any predictive models, so we
could use it compare the feature importance from various machine learning models. However, in
this paper, we focus on neural networks.

A disadvantage of PFI is that it is known to produce biased results with neural networks when
there is correlation among the features [Hooker and Mentch, 2019]. As is natural with functional
data, there is high correlation between individual time points in optical spectral-temporal signatures
(Figure 1). To eliminate correlation in our model features, we transform the signatures using fPCA
and use the uncorrelated fPCs as the features for training the neural network. As a result, we are able
to apply PFI to identify the fPCs important for the prediction of an explosive device characteristic
without any concern of bias in the PFI due to correlation of the features. We use visualizations of
the fPCs to understand the variability explained by the important fPCs to connect the aspects of
the signatures to the prediction of an explosive device characteristic. The visualizations of the fPCs
are presented to an SME who is able to confirm that the aspects of the signatures important to the
neural network for prediction are what is expected based on the signature generation mechanisms.

This paper is organized as follows. In Section 2, the simulated signatures used for analysis
are described. Section 3 details the application of fPCA and PFI to explain the neural network
predictions based on the signatures, and Section 4 presents the results. We discuss our conclusion in
Section 5 about the ability to put trust in the neural network based on the explanations produced
by this approach along with limitations and future research directions.
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Figure 1: (Left) Example of optical spectral-temporal signatures from explosions. Each function
represents a signature associated with an explosive device from a subset of 500 observations from
the simulated data. (Right) Pearson correlations between intensity vectors at every 25th time point
in the signatures.

2 Simulated Optical Spectral-Temporal Explosion Signatures

We consider a set of simulated signatures for the application of our explainability method. A subset
of the simulated signatures is shown in Figure 1. A total of 10000 signatures are created with 1000
time points per signature. It is customary to consider the signatures on a log time scale since the
events of interest occur within a short period of time.

The signatures are generated based on the scientific understanding of the relationship between
three explosive device characteristics (Y1, Y2, and Y3) and the corresponding signatures. Characteris-
tics Y7 and Y5 are binary variables, and characteristic Y3 is a continuous variable. The characteristics
affect various aspects of the signatures including the intensity, location of peaks, and number of
peaks. These effects are visible in Figure 2, which shows the point-wise functional means for the
categories of Y7 and Y, and quartile bins for Y3 computed on the training data. In particular, Y;
affects the intensity of the signature early on, the timing of the first peak, and the total number
of peaks (3 or 4). Y3 affects the intensity of the signature over the entire time. Y3 also affects the
intensity of the signature over the entire time, but in addition, Y3 affects the timing of all peaks.
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Figure 2: Pointwise functional means plus/minus pointwise one standard deviations for the two
categories of Y7 and Y> and quartile bins of Y3.

3 Methods

The simulated data are randomly separated into training, testing, and validation sets containing
72.25% (7225), 15% (1500), and 12.75% (1275) of the signatures, respectively. Each of the 1000
time points in the signatures are treated as a feature, and fPCA is applied to convert the 1000
features to 1000 fPCs. The percent of variability explained by each fPC is assessed. The estimated



eigenfunctions from fPCA are used to transform the testing and validation data sets to fPCs. Note
that in fPCA, the eigenfunctions are comparable to the eigenvectors in PCA.

A neural network is trained for each of the three explosive device characteristics. The 1000
training data fPCs are used as the features, and the corresponding vector of characteristics are
used as the outputs. All models are fit using 3 layers with 50, 40, and 30 nodes, respectively. The
transformed testing and validation features are used to assess model performance with the metrics
of accuracy and F; for Y7 and Y3 and mean squared error (MSE) and R? for Ys.

PFI is applied to the trained networks using 10 replications to account for random permutation
variability. The most important fPCs identified by PFI are visualized to interpret the variability in
the signatures explained by the fPCs. We consider three visualizations that convey the variability
explained by the fPCs from different perspectives:

1. Figenfunction: An eigenfunction possesses weights that correspond to the times on the original
scale. The magnitude of a weight indicates the importance that a time plays in the variability
captured by the corresponding fPC. Larger magnitudes indicate more importance. Thus, a
plot of the eigenfunction identifies the modes of variability associated with the fPC. If all
weights are positive (or negative), the eigenfunction represents a weighted average of times. If
there are both positive and negative weights, the eigenfunction identifies that the fPC captures
a contrast between the time intervals with positive and negative values.

2. Point-wise functional mean plus/minus the eigenfunction: Adding the eigenfunction weights
(times the fPC standard deviation(s)) to the point-wise functional mean allows for a visualiza-
tion of the principal component directions. That is, the point-wise functional mean plus/minus
the eigenfunctions depicts the shapes of the functions with high/low fPC values.

3. Signatures with extreme fPCs: The observed signatures corresponding to the 50 highest and
50 lowest fPC values are identified and visualized along with the point-wise functional mean.
The contrast in shapes of functions with high and low fPC values helps to identify the type of
functional variability captured by the fPC.

fPCA and visualizations of the fPCs are performed using R 3.6.1 [R Core Team, 2019]. All
visualizations are created using the R package ggplot2 (3.3.0) version [Wickham, 2016]. The neural
networks and PFI are applied using Python 3.8.2 [Van Rossum and Drake, 2009] and the scikit-learn
(0.22.1) package [Pedregosa et al., 2011].

4 Results

The first fPC explains 94% of the variability, and the first three fPCs combined explain 99% of the
variability (Figure 3). All neural networks perform well (Figure 3). The fPCs identified as important
by PFI are within the first 4 fPCs for all models (3). For Y7, fPCs 1 and 2 are the most important,
for Y5, fPCs 1 and 3 are the most important, and for Y3, fPC 2 is the most important with some
importance for fPCs 1, 3, and 4. The fPCs greater than 10 had negligible feature importance. Since
the first four fPCs are found to be the most important based on PFI, these will be the only fPCs
considered for interpretation.

Figure 4 includes scatter plots of the relationships between the explosive device characteristics
and the corresponding top one or two most important fPCs identified by PFI. In all three plots,
there are clear separations between Y7 and Y, categories. For example, fPC 2 versus fPC 1 provides
a clear separation between the categories of Y7 and a distinction of the categories of Y5 within the Y;
categories. The plot of Y3 versus fPC 2 shows a weak negative relationship between Y3 and fPC 2.
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Figure 3: (Left) Percent of variation explained by the first 10 fPCs. (Middle) Performance metrics for
the neural networks computed on the training, testing, and validation datasets. (Right) Mean (circle)
and maximum/minimum (bars) PFI values for the first 10 fPCs computed from 10 replications.
The other fPCs had negligable PFI values.
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Figure 4: Scatter plots depicting relationships between key fPCs and response variables.

Visualizations for interpreting fPCs 1 to 4 are included in Figure 5. The interpretation of fPCs
3 and 4 are not as clear as fPCs 1 and 2 since fPCs 3 and 4 explain a smaller amount of variability.
However, the variability explained by all fPCs that PFI identifies as important for prediction can be
connected to the effects caused by the explosive device characteristics. The fPCs are interpreted as
follows:

e fPC 1: The eigenfunction for fPC 1 makes it clear that fPC 1 is a weighted average over all
times. The visualizations of the point-wise mean function plus/minus the eigenfunctions and
the signatures corresponding to the 50 highest and lowest fPC 1 values indicate that fPC 1
captures a contrast between signatures with high intensity starting values, a large decrease
in intensity over time, and four peaks and signatures with low starting values, a relatively
contrast value over all times, and three peaks.

o fPC 2: The eigenfunction for fPC 2 makes it clear that fPC 2 explains a contrast between time
points before and after -3.75. The visualizations of the point-wise mean function plus/minus
the eigenfunctions and the signatures corresponding to the 50 highest and lowest fPC 2 values
indicate that fPC 2 captures a contrast between signatures with high starting values and 3
peaks that occur after the mean function and signatures with lower starting values and four
peaks before the mean function.

o fPC 3: The eigenfunction of fPC 3 indicates that the fPC explains a contrast in variability
between the times of (-3.75, -1.75) and (-1.75, 0). The mean plus/minus eigenfunctions and
signatures with extreme fPC 3 values suggest that fPC 3 captures the variability between
signatures with lower values between the first time interval and a large fourth peak during the



second time interval and signatures with higher values during the first time interval and a
small fourth peak during the second time interval.

e fPC 4: The eigenfunction for fPC 4 depicts that fPC 4 explains a contrast between the two
time intervals of (-4,-2.5) and (-0.5,0) and the time interval of (-2.5,-0.5). The other two
visualizations for fPC 4 indicate that fPC 4 captures the variability between signatures with a
steep decrease during the time interval of (-4,-2.5) and dramatic third and fourth peaks during
the time intervals of (-2.5,-0.5) and (-0.5,0), respectively and signatures with less intense peaks
throughout the entire time interval of (-4,0).
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Figure 5: Visualizations of the first four fPCs.

To connect the interpretations of the first four fPCs to the explosive device characteristics,
consider the functional means for the Y7, Y5, and Y3 in Figure 2. PFI identified fPCs 1 and 2 as being
important for predicting Y;. This is reasonable since both fPCs capture a variability in functions
with intensity during early times, different timings for peak 1, and the number of peaks (3 and 4).
PFI found that fPCs 1 and 3 are important for predicting Y2, which is reasonable since both fPCs
capture a variability between signatures with high and low intensities across the entire time interval.
PFI identified fPC 2 as being the most important for predicting Y3, which is reasonable since fPC 2
captures the variability between signatures with high intensity values and peaks occurring after
the mean function and signatures with low intensity values and peaks occurring before the mean
function. PFI also identified fPCs 1, 3, and 4 as having some importance for predicting Y3, and
these fPCs pick up on smaller amounts of variability affected by Y3 such as the intensity in certain
regions and the intensity of the fourth peak. By sharing these findings with an SME, we are able
to confirm that the fPCs PFI identifies capture the type of variability in the signatures that is
important to the corresponding explosive device characteristics.

5 Discussion

The use of machine learning models could provide improved prediction of explosive device char-
acteristics based on the optical spectral-temporal signatures from explosions in practice. While



high predictive accuracy is important for this application, it is also imperative that it is possible to
explain how the model makes predictions. In this paper, we demonstrate a method for explaining
predictions made by neural networks with functional data inputs. In particular, the transformation
of the optical spectral-temporal signatures using fPCA permits the identification of fPCs important
to prediction in a neural network for an explosive device characteristic using PFI, and visualizations
for interpreting the variability captured by the important fPCs allows for the determination of the
aspects of the signatures that are important for prediction. The validation from the SME of the
meaningfulness of the fPCs identified by PFI allows us to be confident that the neural networks are
using trustworthy aspects of the signatures to make predictions.

A limitation of this method is that the ability to explain a prediction made by the neural network
is dependent on the ability to interpret the fPCs. In our example, PFI identifies the first four
fPCs as important for predicting at least one of the characteristics, and it is possible to determine
meaningful variation captured by these fPCs. However, if PFI identifies fPCs that are not able to
be interpreted, it would not be possible to explain the aspects of a function that are important to
the neural network for prediction. The data in this paper are simulated and possess less variability
than is likely to be observed with real data. With noisier data, it is likely that more fPCs would be
needed to explain a large amount of the variability in the data, which could lead to higher numbered
fPCs being identified as important by PFI. These higher numbered fPCs may be more difficult to
interpret.

Another aspect not considered in this paper is that fPCA accounts for amplitude variability
(vertical variability) but does not account for phase variability (horizontal variability) in the functions.
Joint functional principal component analysis (joint fPCA) is a method that can be applied after
smoothing and aligning functional data that accounts for both amplitude and phase variability [Lee
and Jung, 2016, Tucker et al., 2013]. It would be possible to adjust the procedure in this paper by
substituting fPCA with smoothing, aligning, and applying joint fPCA to the signatures (Figure 6).
With noisier signatures, accounting for phase variability will be important to capture the signals in
the data.

Intensity
Intensity

0.0 5.0

Log Time Log Time

Figure 6: (Left) Examples of simulated optical spectral-temporal signatures from explosions with
more variability. (Right) The signatures from the plot on the left after applying smoothing and
alignment (using box filtering and time warping, repsetively, from the fdasrvf (1.9.3) R package
[Tucker, 2020]).
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