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2 | Motivation: Mechanistic PV Performance and Degradation Modeling

Mechanistic understanding of photovoltaic

array performance can decrease the Levelized n 140+ MijtFy)
LCOE= —— 1
Cost of Photovoltaic Energy via: N n 1S(1-d)?
(=0 (1+7)!
® Decreased Operation/Maintenance Costs I- initial cost

O - operational cost

e Increased Energy Production M - maintenance cost
F - interest expenditure
. S - energy production
e Reduced DegmdﬂUOﬁ r - inflation and uncertainty

(1-d) - degradation term

in the industrial and R&D sectors.
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4+ | Field |-V Data

PV systems at all scales produce large amounts of time-series data.

Parameterizing I-V curves and looking at long-term trends improves understanding of

“Smart” inverters or microinverters measure I-V curves on the string or module level. |
system performance, but:

e values are not directly comparable
e changes in these quantities are not necessarily proportional to power loss




s | Laboratory-Based Suns-V 5

wsw |sc-Voc curve === |-\ curve at 1 sun irradiance == Pseudo |-V curve
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¢ I Mining ls--Vo from Field Data

Time-series data is divided into analysis

periods

e Sufficiently long to collect enough low
irradiance data to build I~V

® But short enough to ensure pseudo-
stability of the module

® To evaluate trends in power loss modes
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7 | Outdoor |-V Curve Construction
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s I Outdoor l;~-V Curve Construction
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King, David L., Jay A. Kratochvil, and Boyson, William E. Photovoltaic — i_>
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9 I Outdoor l;--V Curve Construction
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10 | Voc temperature correction results
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11 I Quantifying power loss mechanisms from |-V

Detecting loss mechanisms of ¢-Si PV modules by I,-V,. and I-V

measurement
Siyu Guo™®, Eric Schneller*®, Joe Walters™®, Knstopher 0. Davis*®
Winston V. Schoenfeld®
: I-’londa Solar Energy Center, Umiversity of Central Flonida, 1679 Clearlake Road, Cocoa, FL 32922, I
® ¢-Si Division, U.S. Photovoltaic Manufacturing Consortium, 12354 Research Parkway, Orlando,
FL 32826

Reliability of Photovoltaic Cells, Modules, Components, and Systems IX, edited by Neelkanth G. Dhere,
John H. Wohlgemuth, Keiichiro Sakurai, Proc. of SPIE Vol. 9938, 99380N - © 2016 SPIE
CCC code: 0277-786X/16/$18 - doi: 10.1117/12.2236939

Proc. of SPIE Vol. 9938 99380N-1

1 0 £ I id 1 o 1 I
power loss pie chart [W]
8 I i
Z' ® Uniform Isc
:.E 6 7 # Uniform Rsh
9 mJo1
= —— 1_-V,_of Module 2
= 1102
5] 4 | |——1-V of Module 2 .
—— -V, of Module 1 ® non-uniform Rsh
= (C1) initial -V _ corrected with /_loss
~ (C2) initial Isc-Voc corrected with R_(uni)+/_loss W Rs
| & — (C3) initial I_-V,_ corrected with J,+R_, (uni)+/_loss 1 B Isc mismatch
e (C4) initial I -V _ correct with J,+J; +R_ (uni)+/_loss
«~ (C5) measured | -V comected with R,

O 1 1 1 1 1 1 1 1
T T T T T T T

0 5 10 15 20 25 30 35 40
voltage [V]




12 | lsc-Voc Mechanistic Power Loss Calculation

In each analysis period:

® |-V features are modeled
® I~V is con§tructed
® and parameterized

to create the sub-I-V curves for
mechanistic power loss calculation
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13

ls-Voc Mechanistic Power Loss Calculation
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14 | lse-Voc Mechanistic Power Loss Calculation
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15 I lse-Voc Mechanistic Power Loss Calculation
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16 I lsc-Voc Power Loss Calculation
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17 I Analytic ls-V 5 Obtained Loss Mechanism Time-series

Pow&er loss  » |mismatch * Recombinaton 4 Rsloss @ Uniform current
moae

For outdoor I-V data:

® Joss mechanisms as time-

series variables
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Analytic |-~V 5 Obtained Loss Mechanism Time-series

Povzjer loss  » |mismatch * Recombinaton 4 Rsloss @ Uniform current
mode

Results for c-S1t module in the Negev
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Analytic |-~V 5 Obtained Loss Mechanism Time-series
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Analytic |-~V 5 Obtained Loss Mechanism Time-series
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Analytic |-~V 5 Obtained Loss Mechanism Time-series

Povs:jer loss % |mismatch % Recombinaton 4 Rsloss @
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Uniform current
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Results for c-S1t module in the Negev
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24 | Laboratory External Quantum Efficiency

¥
EQE =54
External Quantum Efficiency (EQE) P,
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25 | Spectral Response vs EQE
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Brennan, M.P.; Abrahamse, A.; Andrews, R.; Pearce, J. (2014). Effects
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26 I Mining EQE from Field Data
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27 | Time Series Matrix Representation

Jso = q| EQE(2)p(1)dA
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28 | Initial Analytic EQE result
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3 | Temperature-based band gap shift applied to spectral data

Varshni, Y. P. Physica 34
1967 149-154

TEMPERATURE DEPENDENCE OF THE ENERGY
GAP IN SEMICONDUCTORS

by Y. P. VARSHNI

Department of Physics, University of Ottawa, Ottawa, Canada

Synopsis .
A relation for the variation of the energy gap (£,) with temperature (7) in semi-
conductors is proposed :
Eq = Eo — aT*(T + )
where « and f are constants. The equation satisfactorily represents the experimental
data for diamond, Si, Ge, 6H-SiC, GaAs, InP and InAs.
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31 | Temperature-based band gap shift applied to spectral data

Varshni, Y. P. Physica 34
1967 149-154

TEMPERATURE DEPENDENCE OF THE ENERGY
GAP IN SEMICONDUCTORS

by Y. P. VARSHNI

Department of Physics, University of Ottawa, Ottawa, Canada

Synopsis .
A relation for the variation of the energy gap (£,) with temperature (7) in semi-
conductors is proposed :
Eq = Eo — aT*(T + )
where « and f are constants. The equation satisfactorily represents the experimental
data for diamond, Si, Ge, 6H-SiC, GaAs, InP and InAs.
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32 I Conclusions

Mechanistic performance data mined from time-series can be used to:

e FEvaluate long-term trends in performance
e Identify dominant or changing degradation mechanisms

Or can be used as a monitoring tool to:
e Alert operators to “abnormal” conditions or data issues

e Indicate need for service e.g., cleaning
Future work:
e Adapt Field Analytic Isc-Voc and EQE measurements for inverter data

e Validation of mined datatypes and analysis with laboratory measurements
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