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2 I Motivation: Mechanistic PV Performance and Degradation Modeling

Mechanistic understanding of photovoltaic

array performance can decrease the Levelized

Cost of Photovoltaic Energy via:

• Decreased Operation/Maintenance Costs

• Increased Energy Production

• Reduced Degradation

in the industrial and R&D sectors.

LCOE =

n (11+10t+Mt+Ft) 
t=0 (1+r)t

vn St(1—d)t 
t=0 (1-

I- initial cost
0 - operational cost
M - maintenance cost
F - interest expenditure
S - energy production
r - inflation and uncertainty

(1-d) - degradation term



Analytic Isc-voc and Power Loss Modes



4 I Field I-V Data

PV systems at all scales produce large amounts of time-series data.

"Smart" inverters or microinverters measure I-V curves on the string or module level.

Parameterizing I-V curves and looking at long-term trends improves understanding of
system performance, but:

• values are not directly comparable
• changes in these quantities are not necessarily proportional to power loss



5 I Laboratory-Based suns-voc
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6 1 Mining Isc-voc from Field Data

Time-series data is divided into analysis

periods

• Sufficiently long to collect enough low

irradiance data to build Isc-voc
• But short enough to ensure pseudo-

stability of the module

• To evaluate trends in power loss modes
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7 I Outdoor Isc-voc Curve Construction

Isc(GpoA) k • GPOA + f (9)
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8 I Outdoor Isc-voc Curve Construction

V„ = V„o + Nc • 6 (Tc)ln(E,) + f3voc(Tc — To) (1)

VOC ( IS C 1 TM)= ao + ai • (Tm + 273.15) • /77,(1-s,)+
8()

a 2 • (Tm + 273.15) + c

King, David L., Jay A. Kratochvil, and Boyson, William E. Photovoltaic
array performance model. Sandia National Laboratories, 2004.
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9 I Outdoor Isc-voc Curve Construction

Ipsd 
IRC T
sc A sc (10)
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10 I Voc temperature correction results
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11 I Quantifying power loss mechanisms from Iscvoc

Detecting loss mechanisms of c-Si PN. modules by /,-Foc and I-T.
measurement

Siyu Guo°, Eric Schneller°, Joe Walters°, Kristopher O. Davie,
Winston V. Schoenfeld°

'Florida Solar Energy Center, University of Central Florida,1679 Clearlake Road. Cocoa. FL 32922,
b c-Si Division, U.S. Photovoltaic Manufacturing Consortiuni, 12354 Research Parkway. Orlando,

FL 32826
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Reliability of Photovoltaic Cells, Modules, Components, and Systems IX, edited by Neelkanth G. Dhere,
John H. Wohlgemuth, Keiichiro Sakurai, Proc. of SPIE Vol. 9938, 99380N • 2016 SPIE

CCC code: 0277-786X/16/$18 - doi: 10.1117/12.2236939

Proc. of SPIE Vol. 9938 99380N-1
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12 isc -Voc Mechanistic Power Loss Calculation

In each analysis period:

• I-V features are modeled

• Isc-voc is constructed
• and parameterized

to create the sub-I-V curves for
mechanistic power loss calculation
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1 3 sc -Voc Mechanistic Power Loss Calculation

Imp =Imp() • { Co • Ee C1 • • {1 + (limp — Toil
(4)
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14 I isc-voc Mechanistic Power Loss Calculation

Vmp =Vmpo C2Nc • 6(Tc)ln(E,)+
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15 I Isc-voc Mechanistic Power Loss Calculation

Rs = Rs()
nkB(TC + 273.15)

Isc q

+ 273.15
Rs(Isc,Tm) = +  + 6

Isc

Wang, Jen-Cheng et al. "A novel method for the determination of dynamic
resistance for photovoltaic modules." Energy 36, no. 10 (2011): 5968-5974.
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16 I Isc-voc Power Loss Calculation
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17 I Analytic Isc-voc Obtained Loss Mechanism Time-series

For outdoor I-V data:

• loss mechanisms as time-

series variables

Power loss
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Results for c-Si module in Gran Canaria



18 Analytic Isc-voc Obtained Loss Mechanism Time-series
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Results for c-Si module in the Negev



1 9 Analytic isc-voc Obtained Loss Mechanism Time-series
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20 Analytic Isc-voc Obtained Loss Mechanism Time-series
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21 Analytic Isc-voc Obtained Loss Mechanism Time-series
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Analytic External Quantum Efficiency



24 I Laboratory External Quantum Efficiency

External Quantum Efficiency (EQE)

• Ratio of collected electrons to

incident photons on device

• Depends on absorption of light

and collection of charge carriers

• Usually measured on cells using

monochromator

EQE

A Blue response is reduced
due to front surface recombination.

sc I q

Oin

The red response is
reduced due to rear
surface recombination,
reduced absorption at
Iong wavelengths and
low diffusion lengths.

Ideal quantum
/efficiency

A reduction of the overall QE is
caused by reflection and a low
diffusion length No light is absorbed

below the band gap
so the QE is zero at
long wavelengths

hc Wavelength= — 
E 9

pveducation.org/pvcdrom/solar-cell-operation/quantum-efficiency



25 I Spectral Response vs EQE
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26 I Mining EQE from Field Data

Relies on natural variations in the
incident solar spectrum

Similar to Analytic Suns-voc, need
sufficiently long and varying time series

Unique challenges for modules
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27 I Time Series Matrix Representation
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28 I Initial Analytic EQE result
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29 I Initial Analytic EQE result
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30 I Temperature-based band gap shift applied to spectral data

Varshni, Y. P. Physica 34
1967 149-154

TEMPERATURE DEPENDENCE OF THE ENERGY
GAP IN SEMICONDUCTORS

by Y. P. VARSHNI >,07-
Departrnent of Physics, University of Ottawa, Ottawa, Canada )

(7)
Synopsis EF06-
A relation for the variation of the energy gap (Eg) with tcmperature (T) in semi-

conductors is proposed :
Eg = E0 ceT2/(T + /3)

where a and /3 are constants. The equation satisfactorily represents the experimental
data for diamond, Si, Ge, 6H-SiC, GaAs, InP and InAs.
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aT2
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31 I Temperature-based band gap shift applied to spectral data

Varshni, Y. P. Physica 34
1967 149-154

TEMPERATURE DEPENDENCE OF THE ENERGY
GAP IN SEMICONDUCTORS
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32 I Conclusions

Mechanistic performance data mined from time-series can be used to:

• Evaluate long-term trends in performance
• Identify dominant or changing degradation mechanisms

Or can be used as a monitoring tool to:

• Alert operators to "abnormal" conditions or data issues

• Indicate need for service e.g., cleaning

Future work:

• Adapt Field Analytic Isc-Voc and EQE measurements for inverter data

• Validation of mined datatypes and analysis with laboratory measurements
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