
Unclassified Unlimited Release

Using Machine Learning to Predict
Self-Diffusion in Lennard Jones Fluids

ACS National Meeting
San Francisco, CA
August 17, 2020

Division/Committee: Chemical Information

*Due to the COVID-19 pandemic this presentation was pre-
recorded and will be broadcast

PRESENTED BY

Joshua P. Allers

Organic Materials Science Department
Sandia National Laboratories
Albuquerque, NM 87185

Lennard-Jones Poterrtial

r9
WRD
LABORATORY DIRECTED
RESEARCH & DEVELOPMENT

GAM& 111,
Sandia NationaL Laboratoricw w . .-...Itmion4Laboratory rnanaged and oi ,,,,,,,i)1 naL
TechnoLogy and Engineering ; ,,00.1) dia
LLC, a whoLly owned subs — bLL
InternationaL Inc. for the 4a7a) of

Energy's NationaL NucLear Se'Tha, ,,,,,,,,, ion
under contract DE NA0003525 ‘,‘,

'')

SAND2020-xxxx

SAND2020-8122C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.



Diffusion of Mixtures Absorbed into Materials:
2 Interest at Sandia National Laboratories
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Understanding the diffusion of chemical species in porous materials critical for the
design and performance optimization for different materials.
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Current Methods for Calculating Diffusion •

Calculating diffusion experimentally

NMR diffusometry, absorption, CT, etc.

expensive and time-consuming

Calculating diffusion computationally

Molecular dynamics and DFT

Accurate, but time-consuming

Require large amounts of computation

Consider studying 10 different compounds

Forming all possible binary mixtures

Testing 10 different compositions

450 experiments or simulations
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4 Challenge - Universal Model for Diffusion

Maxwell Stephen (MS) Model
(dominant diffusion model)

1

Di,self,s

1 X.

D
ii

X

Du
surface self exchange

Darken Relationship
(semi-empirical - linear)

X
= DiD1

x-1
 k

k=1 Dk

Vignes Model
(semi-empirical- power law)

x i=N
(Dijx.j—>1 I (,x,,,1\xk

k,k=i,j

DU

=(0)::1->1)

2.8

7,-). 2.6

"E
me 2.4

2 1.8 -
u)

1.6

•

Hexane/Dodecane Ethanol/Benzene
3.5

• Experimental
Vignes
Darken

/ •

csii).. 3.0

E •

Di
ff

us
io

n 
Co
ef
fi
ci
en
t*
 2.5

2.0

1.5

1.0

•

• Experimental
Vignes
Darken

• •
•

•

1.4   0.5  

0 0 0.2 0.4 0.6 0.8 1 0 0 0 0.2 0.4 0.6 0.8 1 0

Mole Fraction Hexane Mole Fraction Ethanol

Goal: Develop a generalized model that can accurately predict
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5 Potential of Machine Learning

Rapidly growing field in materials science

Powerful tools for prediction

Random Forests

Artificial Neural Networks (ANN)

Symbolic Regression

Genetic Engineering

Already showing promise in literature
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Lennard Jones Molecular Dynamics (MD)

• Many MD simulations have been performed for LJ systems

• Zhu's empirical equation is one of the better models

• Has 8 adjustable parameters

• Will act as the "gold standard" for comparison
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8 Expanded Diffusion Dataset
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9 Random Forest Architecture •
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Va ue 2

Average  

e 3
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Final Prediction (D*)

Software: Python Scikit-Learn

Optimal number of trees: 235

Joshua P. Alters, Jacob A. Harvey, Fernando H. Garzon, Todd M. Alam. "Machine learning prediction of self-
diffusion in Lennard Jones fluids." J Chem. Phys. 153, 034102 (2020).
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10 Performance Assessed with Cross Validation (CV)

Splits dataset in even train/validate/test sets

ML models train on the 70%

Validation set used to adjust hyperparameters (model parameters)

Test set gave final predictive power

5 different splits of the data

Randomly divided

Performance metrics:

Mean Square Error (MSE)

Correlation Coefficient (R)
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1, Performance of Random Forest •
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1 2 Feature Engineering Process •
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1 3 Random Forest with Feature Engineering •
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Binary Feature Set

Non-linear, complex relationship
between T*, p*, and D*
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14 Most Important Features — Binary Feature Set •
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15 Most Important Features Binary Feature Set
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16 Artificial Neural Network (ANN) Architecture •

nput Hidden Layer Output Layer Output

Output Node

[2 - x - x - 1]

Software: MATLAB Deep Learning Toolbox



17 Neural Network Performance •
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18 Conclusions

Machine learning improved upon existing empirical relationships in LJ system

Random Forest with T* and p* performed worse than Zhu's equation

Employed feature engineering, which improved predictions
On par with Zhu's equation
Pointed to non-linear, complex relationships

Artificial Neural Networks provide the best predictions
Will be used going forward with real systems

Ongoing Work

Machine Learning extended to sets of binary LJ fluids

Artificial Neural Networks assessed on a dataset of pure solutions
Shows excellent performance over multiple compounds and phases
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21 Current Work — Pure Solutions Diffusion
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22 Current Work — Pure Solution Diffusion
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• Models are robust and generalized over a 5-fold
cross-validation

Shows good predictions over multiple phases
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