I Dimiiml imiim e SEE il W Wi V'8 imii S il T N i e
This paper describes objective technical results and analysi sLAny subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020-8122C

\ Lennard-Jones Potential

-

v

Using Machine Learning to Predict

o

(Potertiel Energy)

Intermolecular Potential

Self-Diffusion in Lennard Jones Fluids

ACS National Meeting
San Francisco, CA
August 17, 2020

Division/ Committee: Chemical Information

*Due to the COVID-19 pandemic this presentation was pre-
recorded and will be broadcast

€‘.

LABORATORY DIRECTED
J 0OS h ua P All ers RESEARCH & DEVELOPMENT
= s — g A e
Organic Materials Science Department taboratory managed and o1 ”_,;"l
. . . Technology and Engineerin; 3| By dia
Sandia National Laboratories ety omed sl el
Alb Sandia National Laboratories is amultimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned e vagiom: Nf,j’c'le:,‘ie\“ ;,s,gi:rf
Uquerque, I subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. under contract DE-NAG003525 j N

SAND2020-xxxx



Diffusion of Mixtures Absorbed into Materials:

Interest at Sandia National Laboratories
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Robert Service, Science 2006 LLNL, Carbon Nanotubes

= Understanding the diffusion of chemical species in porous materials critical for the
design and performance optimization for different materials.
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Current Methods for Calculating Diffusion

Calculating diffusion experimentally
= NMR diffusometry, absorption, CT, etc.
= expensive and time-consuming

Calculating diffusion computationally

= Molecular dynamics and DFT

= Accurate, but time-consuming

= Require large amounts of computation

Consider studying 10 different compounds
= Forming all possible binary mixtures

= Testing 10 different compositions

= 450 experiments or simulations
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Todd Alam and Janelle Jenkins. Advanced Aspects of Spectroscopy. 2012.




Challenge - Universal Model for Diffusion

Maxwell Stephen (MS) Model

(dominant diffusion model)
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Goal: Develop a generalized model that can accurately predict
diffusion in multi-component mixtures




;| Potential of Machine Learning

= Rapidly growing field in materials science

= Powerful tools for prediction
= Random Forests
= Artificial Neural Networks (ANN)
= Symbolic Regression
= Genetic Engineering

= Already showing promise in literature

diffusion coefficients, 10°D(m?s™*)

acetone-chloroform mixture
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Beigzadeh et al. Fluid Phase Equilibria. 2012

20

>
T

coefficients in water at infinite dilution at 298.15 K (Cal/Pred )
=

I
T

0.2 0.4 0.6 0.8
Mole fraction of Acetone

organic compounds in water

e

1 L 1 1 L 1 1 L 1
2 4 6 8 10 12 14 16 18

Diffusion coefficients in water at infinite dilution at 288.15 K (Exp.)

20

Gharagheizi et al. Journal of Chemical Engineering Data. 2011




¢\ Start Simple — Lennard Jones (L))

o = Explained by two parameters

rio)
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L
>

= o - Distance where potential becomes zero
. = ¢ - Well depth and measure of attractive force
= Allows model development over multiple phases

General Model Architecture
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Lennard Jones Molecular Dynamics (MD)

= Many MD simulations have been performed for LJ systems
= Zhu’s empirical equation is one of the better models

= Has 8 adjustable parameters
= Will act as the “gold standard” for comparison
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Yu Zhu, Xiaohua Lu, Jian Zhou, Yanru Wang, Jun Shi, “Prediction of diffusion coefficients for gas, liquid and supercritical fluid: application to
pure real fluids and infinite binary solutions based on the simulation of Lennard-Jones fluid”. Fluid Phase Equilibria. 2002.
https://doi.org/10.1016/50378-3812(01)00669-0
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Expanded Diffusion

Phase Diagram - Zhu
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Predicted Diffusion (D*)
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Joshua P. Allers, Jacob A. Harvey, Fernando H. Garzon, Todd M.
“Machine learning prediction of self-diffusion in Lennard Jones fl

Chem. Phys. 153, 034102 (2020).
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Random Forest Architecture

Features (T*, p*)

Tree 1 Treen

Value 1 Value n

Average

l

Final Prediction (D*)

= Software: Python Scikit-Learn
= Optimal number of trees: 235

Joshua P. Allers, Jacob A. Harvey, Fernando H. Garzon, Todd M. Alam. “Machine learning prediction of self-
diffusion in Lennard Jones fluids.” J Chem. Phys. 153, 034102 (2020).




| Performance Assessed with Cross Validation (CV) B

= Splits dataset in even train/validate/test sets
= ML models train on the 70%
= Validation set used to adjust hyperparameters (model parameters)
= Test set gave final predictive power
= 5 different splits of the data
= Randomly divided

= Performance metrics: T s .
{ O
= Mean Square Error (MSE) i [
= Correlation Coefficient (R) e
{
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towardsdatascience.com/train-validation-and-test-sets-72cb40cba%e7 \ \ \ \ l
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Performance of Random Forest
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Joshua P. Allers, Jacob A. Harvey, Fernando H. Garzon, Todd M. Alam. “Machine learning
prediction of self-diffusion in Lennard Jones fluids.” J Chem. Phys. 153, 034102 (2020).
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» | Feature Engineering Process
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» 1 Random Forest with Feature Engineering

Zhu’s Empirical Model Binary Feature Set
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Model Zhu RF Solo Binary Self-Binary
Mean MSE 0.067 0.18 0.15 0.052 0.047
Std. Dev. + 0.077 + 0.21 +0.18 + 0.047 +0.072
Mean R 0.99685 0.99624 0.99642 0.99913 0.99912

Joshua P. Allers, Jacob A. Harvey, Fernando H. Garzon, Todd M. Alam. “Machine learning

prediction of self-diffusion in Lennard Jones fluids.” J Chem. Phys. 153, 034102 (2020).




4. Most Important Features — Binary Feature Set L
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Observed trend: non-linear functions of T* and p*
consistently show up as the most important features




5. Most Important Features — Binary Feature Set L
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3rd and 5% ranked features become the top 2




« | Artificial Neural Network (ANN) Architecture
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= Software: MATLAB Deep Learning Toolbox
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71 Neural Network Performance

Zhu’s Empirical Model Single-Layer NN
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Joshua P. Allers, Jacob A. Harvey, Fernando H. Garzon, Todd M. Alam. “Machine learning
prediction of self-diffusion in Lennard Jones fluids.” J Chem. Phys. 153, 034102 (2020).
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Conclusions

Random Forest with T* and p* performed worse than Zhu’s equation

Employed feature engineering, which improved predictions
= On par with Zhu’s equation
= Pointed to non-linear, complex relationships

Artificial Neural Networks provide the best predictions
= Will be used going forward with real systems

Ongoing Work

= Machine Learning extended to sets of binary LJ fluids

= Artificial Neural Networks assessed on a dataset of pure solutions
= Shows excellent performance over multiple compounds and phases

Machine learning improved upon existing empirical relationships in LJ system
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Current Work — Pure Solutions Diffusion
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6252 points from a wide range of compounds
= Multiple phases present
24 features were collected including:
= Critical properties
= Experimental properties
= Phase information
= Structural information

Principal Component Analysis (PCA) used to
reduce the dimensionality
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Joshua P. Allers, Fernando H. Garzon, Todd M. Alam. In Progress.

Models are robust and generalized over a 5-fold
cross-validation

Shows good predictions over multiple phases




