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Abstract—Optimal power flow (OPF) problems, which dispatch
power targets to controllable generating units across a network,
face non-convex constraints that arise from the physics of power
flow. Describing those constraints in a way that allows the OPF
problem to be solved with convex optimization techniques is an
area of much academic and operational interest. It is a difficult
problem, especially when considering unbalanced distribution
systems. In this paper, we adapt an existing linearized power
flow model that can then be used to solve OPF at the distribution
level as a quadratic program with an iterative update technique.
As an important benefit, the linearized model allows for the
explicit inclusion of nodal voltage phasor values in both the OPF
problem’s objective and its constraints, which opens the door
to the idea of phasor-based control (PBC) design. We show in
simulations on the IEEE 13-node test feeder that our method
quickly converges to a set of phasor targets that are sufficiently
precise for use in operations at the distribution level.

NOMENCLATURE

N Set of all nodes on the distribution feeder
E Set of all connecting line segments on the

distribution feeder
Pn,nm;Pk Subset of phases [A,B,C] present on node n or

line nm; set of nodes with k phases present
V φn Complex-valued voltage phasor on phase φ of

node n, magnitude given in per-unit RMS
Eφn Squared per-unit RMS voltage magnitude on

phase φ of node n.
θφn Angle of the voltage phasor at phase φ of node

n
pφn Per-unit active power demanded by the load on

phase φ of node n
qφn Per-unit reactive power demanded by the load

on phase φ of node n
pgφn Per-unit active power generated by DER on

phase φ of node n
qgφn Per-unit reactive power generated by DER on

phase φ of node n
sRφn Per-unit apparent power rating of DER on

phase φ of node n

Iφnm Complex-valued phasor of current flowing
from node n to node m on phase φ of line
nm, magnitude in per-unit RMS

Pφnm Per-unit active power flowing from node n to
node m on phase φ of line nm

Qφnm Per-unit reactive power flowing from node n to
node m on phase φ of line nm

PφLnm Per-unit active power loss on phase φ of line
nm

QφLnm Per-unit reactive power loss on phase φ of line
nm

Rφψnm The resistive part of element φ, ψ of the 3x3
impedance matrix of the line connecting nodes
n and m

Xφψ
nm The reactive part of element φ, ψ of the 3x3

impedance matrix of the line connecting nodes
n and m

Zφψnm The complex-valued impedance Rφψnm + Xφψ
nm

Λn,Λnm If Λφn,nm is a per-phase variable such as volt-
age, current, or power, the bold variable Λn,nm

denotes the 3x1 vector
[
Λan Λbn Λcn

]T
If Λφψn,nm is a cross-phase characteristic such as
resistance, reactance, or impedance, the bold
variable Λn,nm denotes the 3x3 matrix with
elements Λφψnm, where φ, ψ ∈ Pn,nm

cKn K ∈ {Z, I, P}. Coefficients associated with
the ZIP model components of a load at node n

I. INTRODUCTION

Recent advancements in the sensing technologies that can
be deployed on the electric grid have opened up exciting
new possibilities in the control of distributed energy resources
(DERs). Categories of information that were previously only
economically available on very high-voltage transmission net-
works can now be harnessed in the operations of medium-
voltage distribution feeders and microgrids, areas where the
penetration of DERs has increased dramatically over the past
decade and necessitated a reassessment of traditional grid
control schemes [1]. This expansion of sensing capabilities has
enabled the consideration of fundamentally new strategies for
dispatching DERs to achieve objectives that until very recently
have not been possible at the distribution level.This work was supported by U.S. Department of Energy
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A significant development in distribution sensing is the
ability to make phasor measurements at the medium voltage
level. Carrying this out in a scalable and practical way has been
enabled by the recent commercialization of phasor measure-
ment units (PMUs) designed specifically for the distribution
grid [2]. A chief characteristic of these distribution PMUs is
an extremely high measurement precision, which is necessary
to account for the small separation in voltage angle between
adjacent nodes of a distribution grid in normal operation [3].

The ”phasor” reported by a PMU expresses information
about a voltage of the form v(t) = Vmax cos(ωt+ θ) in
terms of a pair of values Vmax 6 θ or Vrms 6 θ. Implied in
the definition of a phasor is that the frequency ω is a known
constant, and the angle θ is referenced to a common clock.
A great deal of information about the present operating state
and stability of an electric network can be conveniently
expressed in terms of phasors, and the ability to report and
act on phasor information raises the possibility of re-casting
some distribution-level control objectives in phasor terms. This
idea is called phasor-based control (PBC); it was developed
more fully in [4]. The PBC approach can be contrasted with
more market-driven strategies for dispatching DERs, in which
pricing and operational constraints combine to influence DER
power contributions in ways that recall ISO strategies for
managing generating resources on the transmission grid [5].

Phasor quantities are not commonly taken into explicit
account when designing optimal power flow (OPF) objectives,
particularly at the distribution level. As a family of problems,
OPF is focused on minimizing a network-wide objective func-
tion given control over some set of loads and power generation
resources. OPF problems are difficult, because faithful models
of the power grid are generally nonlinear and non-convex.
Over the years, proposed solutions to OPF problems have
explored a number of approximations, decompositions, and
other means of incorporating power flow models into more
tractable convex optimization problems [6].

In designing a methodology that can be applied to phasor-
based control of distribution systems, we propose incorporat-
ing an adaptation of a linearized power flow model into an
iterative quadratic programming scheme, similar to the strategy
described in [7], that makes additional use of a nonlinear
power flow solver to refine the linear model that defines our
QP’s constraints. The quick convergence of this method to
very precise values in simulation indicates that it will be worth
further exploration in other environments.

For this work, ”precision” is defined by the agreement of
voltages generated by the solutions to the linearized OPF with
values confirmed by the nonlinear solver to be feasible on
the network. This is a necessary quality for any PBC strategy
meant to function on distribution grids because of the very low
impedances and small phase angle differences characteristic of
those networks. As a motivating example: the IEEE 13-node
test feeder has a voltage base of 2.4kV line-to-ground and
contains a single-phase line with an impedance of magnitude
|Z| ≈ 0.1Ω [8]. If a set of phasor references generated by
an OPF contains an error of magnitude ∆ in the expected

difference between the voltage phasors on either side of that
line, that would translate into the attempted recruitment of
24∆ kiloAmps of erroneous actuation from DERs throughout
the network. Even small ∆ values would likely cause those
DERs to saturate in an attempt to meet their targets and result
in an extremely sub-optimal operating state for the feeder. The
precision requirement of distribution-level, phasor-based OPF
solvers will be a consistent theme in this work, and we will be
returning to it numerically in the simulation results presented
in Section IV.

This paper’s contribution is the adaptation of a phasor-
based, linear model for use in an iterative method of solving
OPF and the demonstration of that method’s applicability to
a PBC scheme with extreme sensitivity to the OPF solution’s
precision. The paper will begin by presenting the structure
of our OPF problem, which draws its constraints from the
linear unbalanced power flow model (LUPFM) developed by
[9], in Section II. In Section III, we will discuss our iterative
solution methodology. Section IV will describe our simulation
environment, objectives, and the modifications that were made
to the IEEE 13-node test feeder. Section V will cover the
results of those simulations, and Section VI will conclude the
paper.

II. THE OPF FORMULATION

For our OPF formulation, we choose an approximate lin-
earized model of the power flow relations that can be used as
constraints in a standard quadratic program (QP) to be solved
at each iterative step of our method. The model is based on
the ”DistFlow” equations, originally introduced in 1989 [10]
and then generalized to unbalanced, multiphase networks [11].
A later work introduced an additional relationship between
voltage phasor angles and power flows that allows for the
treatment of a phasor in its entirety within the structure of
the model [9]. We present this latest form of the model, the
linear, unbalanced power flow model (LUPFM), with minimal
derivation in this section, but readers are encouraged to refer to
[9] for further information. Several of the LUPFM’s equations
were adapted to allow for the use of the iterative method
discussed in Section III and the inclusion of standard models
of electric loads. We identify any equations which have been
modified from the original forms of [9].

The LUPFM equations are linear with respect to the vari-
ables En, θn, pgn, qgn, Pnm, and Qnm. In order to maintain
that linearity, other quantities such as current magnitudes and
line power losses are replaced with estimated values. Those
estimated values will be denoted by the superscript NL, as
they will be generated by a nonlinear power flow solver for
every OPF iteration.

A. The Linear Unbalanced Power Flow Model (LUPFM)

1) Real and reactive power balance: This constraint en-
forces the balance between power incoming over lines ln,
power outgoing on lines nm, and the balance of load and
generation at node n. Formally:



∀n ∈ N
pn − pgn =

∑
ln∈E

Pln −
∑
nm∈E

Pnm −
∑
nm∈E

PNL
Lnm

qn − qgn =
∑
ln∈E

Qln −
∑
nm∈E

Qnm −
∑
nm∈E

QNL
Lnm

(1)

The powers demanded by the loads pn and qn are 3x1
vectors of constants if all loads on the network are modeled as
constant-P. To accommodate the classic ZIP model of electric
loads [12], we alter the original LUPFM to replace them
element-wise with (2):

pφn = Pφ`n + Iφ`Pn(
1

2
|V φNLn |+ 1

2|V φNLn |
Eφn) + cφZn

RLdn
|ZLdn |2

Eφn

qφn = Qφ`n + Iφ`Qn(
1

2
|V φNLn |+ 1

2|V φNLn |
Eφn) + cφZn

XLd
n

|ZLdn |2
Eφn

(2)
where, in terms of per-unit nominal power demand pφnomn ,
qφnomn :

Pφ`n = cPnp
φnom
n Qφ`n = cPnq

φnom
n

Iφ`Pn = cInp
φnom
n Iφ`Qn = cInq

φnom
n

and RLdn , XLd
n , ZLdn are the resistance, reactance, and

impedance of the load at nominal voltage and rated power.
The expression for the constant-I component of the load was
derived from a Taylor series in the variable Eφn .

2) Relation between voltage magnitudes and power flows:
∀n,m ∈ N ;nm ∈ E
Let

Mnm = Re(ΓNLm ◦ Z∗nm)

Nnm = Im(ΓNLm ◦ Z∗nm)

Hnm = (ZnmINLnm) ◦ (ZnmINLnm)∗

be the matrix equivalents of binomial coefficients of the
multiplication (Vm + ZnmINLnm) ◦ (Vm + ZnmINLnm)∗. In the
above, we define

ΓNLn =

 1 γabn γacn
γban 1 γbcn
γcan γcbn 1


where γφψn = V φn /V

ψ
n is the complex-valued ratio of voltages

on the phases φ and ψ of node n. Every element of the
ΓNLn matrix is fixed, with the estimated voltage phasors being
provided by the nonlinear solver at each iteration of the OPF,
but we have dropped the NL superscript on the elements
themselves for clarity of representation. The relation between
the three-phase voltage magnitude at nodes n,m and power
flows through each line nm can then be expressed as (3)

En = Em + 2MnmPnm − 2NnmQnm + Hnm (3)

3) Relation between voltage angles and power flows:
∀n,m ∈ N ;nm ∈ E

|VNL
m | ◦ |VNL

n | ◦ (θn−θm) = −NnmPnm−MnmQnm (4)

where Mnm and Nnm are defined as above.

B. Other Constraints

1) Slack bus enforcement: Eslack ∈ N

Eslack =
[
1 1 1

]T
θslack =

[
0 − 2π

3
2π
3

]T (5)

2) Voltage magnitude constraints: ∀n ∈ N , φ ∈ Pn

V2
RMS ≤ Eφn ≤ V

2

RMS (6)

where VRMS and V RMS are the lower and upper limits of
the allowable RMS voltage magnitudes, respectively.

3) DER actuation constraints:
Limits on controllable DER follow the half-space approxi-
mation method in which a constraint on apparent power is
transformed into an arbitrary number K of linear constraints
on active and reactive power that can be used in our QP. These
constraints are of the form
∀n ∈ {sφn > 0, φ ∈ Pn}

Ψcos ◦ pgn + Ψsin ◦ qgn = sRn (7)

where
Ψcos =

[
cos(ψ) cos(ψ) cos(ψ)

]T
Ψsin =

[
sin(ψ) sin(ψ) sin(ψ)

]T
ψ =

2πk

K
for k = 0, 1, ...,K − 1.

The generation capacity sacrificed by this approximation can
be made arbitrarily small at the expense of added constraints
and increased computation time. When drawn in the space of
active vs. reactive power, the difference in area between the
set of linearized constraints and the original circular restriction
on apparent power is less than 1% for K ≈ 20 and 0.1% for
K ≈ 60 [9].

Ampacity constraints on distribution lines were not taken
into account in this model, but could be included in future
work with a similar half-space approximate treatment.

III. THE ITERATIVE TARGET GENERATION
METHODOLOGY

The LUPFM has proved to be an effective tool for optimiz-
ing DER control over a network with respect to an arbitrary
objective that can include both the magnitude and angle
of nodal voltage phasors. However, because of the extreme
sensitivity of power flows on a distribution network to minor
changes in voltage, solving an OPF with linearized constraints
can introduce an approximation error beyond what can be
tolerated in control schemes with strict precision requirements.
As mentioned in Section I, PBC in particular suffers from
a danger of erroneous actuation being requested from DERs
due to mismatch between linearized voltage phasors and
voltage values that are achievable for those DERs on the
physical network. Also, model approximations translate to
a loss of ability to guarantee that any operating constraints
included in the original OPF model are respected when DER
action is taken on the physical feeder. The iterative solution



methodology described in this section addresses both these
issues in generating PBC phasor targets, while generalizing to
other use cases where high precision power flow solutions are
desired.

For the first iteration of the method, the OPF problem is
solved with constraints provided by the LUPFM as specified
in Equations (2)-(7). We assume that no external sensor data
is available at the process start, so the LUPFM is initialized
with the values VNL

n =
[
16 0 16 − 120◦ 1 6 120◦

]T
and

INLnm = PNL
Lnm = QNL

Lnm =
[
0 0 0

]T
The DER power dispatch pgn, qgn generated by the solution

of the QP OPF is then passed to a nonlinear power flow solver,
which can be of any type so long as its model agrees with the
line impedances and ZIP load modeling of the LUPFM. pgn
and qgn are then included as negative, constant-P loads in the
network model of the nonlinear solver, which uses them to
generate magnitude and phase angle values for each of the
network’s nodal voltages and line currents.

At this point, the first iteration of the solution process is
complete and the voltage phasors generated by the nonlinear
solver can be compared to those of the QP OPF solution. If
the difference between those two sets of voltage phasors is
larger than a predetermined convergence threshold, the next
iteration of the process begins. Each successive iteration re-
initializes the LUPFM using the nodal voltage and line current
values from the nonlinear solution of the previous iteration,
i.e. VNL

n and INLnm . These updates allow the successive linear
approximations to approach a set of values Vn, pgn, and qgn
that constitute an exact solution to the nonlinear power flow
equations.

For all iterations following the first, an update is also made
to the angular equation of the original LUPFM: the small-angle
approximation is replaced with a more general Taylor series
about the phase angle values returned by the nonlinear solver.
Formally, Equation (4) of the original LUPFM is replaced by
Equation (8):

|VNL
m | ◦ |VNL

n | ◦∆NL
sin θ+

|VNL
m | ◦ |VNL

n | ◦∆NL
cos θ ◦ [(θn − θm)− (θNLn − θNLm )] =

−NnmPnm −MnmQnm (8)

∆NL
cos θ =

[
cos(θan − θam) cos(θbn − θbn) cos(θcn − θcn)

]T
,

∆NL
sin θ =

[
sin(θan − θam) sin(θbn − θbn) sin(θcn − θcn)

]T
.

The superscript NL has been dropped from the individual
angular elements of ∆NL

cos θ and ∆NL
sin θ to avoid clutter.

IV. THE SIMULATION ENVIRONMENT

A. The 13-Node Feeder Model

The iterative method described in Section III was tested in
simulation on a simplified version of the IEEE 13-node test
feeder. While we expect that the technique would work equally
well for the 13-node feeder as originally presented in [8], this
simplified version has several modifications made to facilitate
early programming efforts:

Begin

Initialize LUPFM

Solve linear OPF

Solve nonlinear power flow

Linear and nonlinear nodal voltages within convergence bound?

Finish

Pass LUPFM as constraints 

Pass  for all nodespg
n, qg

n

Pass  for all nodes,  for all linesVNL
n INL

n

Yes
No

Fig. 1. The iterative update procedure for the LUPFM OPF and the nonlinear
solver.

• The voltage regulator between Bus 632 and Bus 650 was
replaced with a connecting line segment with impedance
Zφφ650,632 = .01+.08j and Zφψ650,632 = 2.5·10−3+5·10−3j
where φ 6= ψ.

• The transformer XFM-1 connecting Bus 633 and Bus 634
was replaced with a line segment of configuration 601 and
length 0.01mi. The switch connecting Bus 671 and Bus
692 was replaced with an identical segment.

• All delta-connected spot loads were replaced with wye-
connected loads of the same magnitude. The ZIP model
coefficients for each bus were kept consistent with [8].

• The distributed load on the line connecting Bus 632 and
Bus 671 was replaced with a spot load of the same total
value at Bus 632.

• All capacitor banks were removed from the system.
• DERs with capacity values of 0.025 per unit were added

to each phase of nodes 675, 680, and 684, as in [9]. A
large DER of capacity 0.2 per unit was added to Bus 632
to ensure available generation was sufficient to achieve
operational objectives in the absence of approximation
error.

B. OPF Objective I: Phasor Matching

For our first simulation, we chose a ”phasor matching”
objective for the OPF QP. In this use case, DER are dispatched
so as to drive the voltage at a selected node Vi to a specific,
externally provided phasor value Vext. The goal of the OPF
solver in a phasor matching use case is to generate a feasible
set of voltage phasor targets that can be sent to controllers at
each node in the network. That target set will include a value
for Vi that is as near as possible to Vext.

This ability to match voltage at a given node to a
specified phasor value would be useful in distribution
grid reconfiguration. If a grid contingency or maintenance
requirement creates the need for connecting a distribution
feeder to an adjacent network, this OPF formulation would



allow for the nodal voltage at the open tie switch to be
matched to the value on the opposite side. PBC and the
LUPFM are uniquely suited to this application because of the
ability to match not only voltage magnitude but phase angle
as well. With the phasors on either side of the open switch
equalized immediately prior to closure, an out-of-phase
closing is prevented and the potential for arcing reduced. The
phasor matching objective is defined by Equation (9):

∀n ∈ N ;∀nm ∈ E :

min
Enθn,p

g
n,q

g
n,Pnm,Qnm

(E632 −Eext)
2 + (θ632 − θext)

2

(9)

C. OPF Objective II: Three-phase Balancing

For our second simulation, we chose an objective that
attempts to balance voltages across phases A, B, and C of
the feeder. The IEEE 13-node feeder has heavily unbalanced
loading, and this is reflected in its unbalanced voltage profile
even with the mitigating actions of transformer tap changes.
Recruiting DER throughout the feeder to serve more load
locally and to drive node voltages back toward balanced
conditions can reduce losses, simplify feeder analysis, and
improve the performance of three-phase loads. It is another
application for which PBC is very well suited because of its
ability to recruit both real and reactive power as needed.

We define perfectly balanced conditions at a 2- or 3-phase
node as the state in which all voltage phasors have equal
magnitude and there is 120◦ of angular separation between
all phases φ ∈ Pn Balanced feeder operation does not imply
any restrictions on single-phase nodes.

The three-phase balancing objective is defined by Equation
(10).

∀n ∈ N ;∀nm ∈ E ;∀φ, ψ ∈ Pn:

min
En,θn,p

g
n,q

g
n,Pnm,Qnm

∑
∀n∈P3∪P2,φ 6=ψ

(Eφn − Eψn )2+

∑
∀n∈P3∪P2,φ 6=ψ

(θφn − θψn ±
2π

3
)2

(10)

V. RESULTS

This section presents the results of the simulations discussed
in Section III, all of which were carried out in Python. The
cvxpy library and its default Operator Splitting QP Solver were
used for the OPF stage of each iteration, and the nonlinear
solver was implemented with the OpenDSSDirect library.

The LUPFM constraints on the QP were given as specified
by Equations (2) through (8). The constraints were identical
for both the phasor matching and three-phase balancing ob-
jectives. Because of the removal of voltage regulators on the
network, the allowable range of feeder voltages was set wider
than would be found on standard distribution feeders, with the
lower bound VRMS = 0.9 and upper bound V RMS = 1.1 per
unit.

The objectives for the use cases were given by Equation (9)
for phasor matching and (10) for three-phase balancing.

A. Phasor Matching Results

For this test case, we select Bus 632 as our target node
and Vext =

[
0.975 6 0◦ 0.975 6 − 120◦ 0.975 6 120◦

]T
as

the phasor target. Results are shown in Tables I and II.

TABLE I
VOLTAGE PHASORS AT BUS 632, FIRST ITERATION

Phase A Phase B Phase C

V lin
RMS 0.9749999 .9750000 0.9750000

θlin 0.0000009 -120.0000050 120.0000120

V NL
RMS 0.9691850 0.9753536 0.9761409

θNL
RMS 0.0502126 -120.1401553 120.1712758

TABLE II
VOLTAGE PHASORS AT BUS 632, FIFTH ITERATION

Phase A Phase B Phase C

V lin
RMS 0.9750000 0.9750000 0.9750000

θlin 0.0000024 -120.0000036 120.0000049

V NL
RMS 0.9749997 0.9750002 0.9750003

θNL
RMS 0.0000186 -120.0000077 120.0000039

From Table I, we can see that applying the optimal DER
dispatch of the first iteration’s OPF to the OpenDSS model
results in a voltage phasor mismatch on the order of 10−3 per
unit in magnitude and 0.1◦ in angle. These may seem like
small errors, but when translated to PBC real and reactive
power injections throughout the network they would result
in significant discrepancies. In Table II, we see that five
refinements to the LUPFM decrease the mismatch value to
the order of 10−7 per unit in magnitude and 10−5 degrees
in angle, which is within the acceptable error range of any
reasonable OPF use case.

We see a similar error reduction at the system nodes whose
voltage values were not included in the objective function.
Figure 2 shows the decrease in error magnitude across the
network over five iterations of the generation process. At
each iterative step, we plot the maximum of the magnitude
and angle differences between cvxpy- and OpenDSS-generated
phasors at all nodes in the system. The sharp decrease in error
over just a few iterations of the method speaks to its potential
as a fast and accurate means of solving distribution-level OPF.
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Fig. 2. Maximum difference between LUPFM OPF and OpenDSS phasor
values with a phasor matching objective.

B. Three-Phase Balancing Results

Figure 3 shows that the maximum discrepancy between the
LUPFM and OpenDSS phasors across the network decreases
in a similar way for the three-phase voltage balancing objective
as was seen in the previous subsection.
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Fig. 3. Maximum difference between LUPFM OPF and OpenDSS phasor
values with a voltage balancing objective.

Because the three-phase balancing objective involves many
nodes, we take as our performance metric the agreement
between the value of the objective function minimized by the
LUPFM OPF and the value of that same objective calculated
from the phasors generated by OpenDSS. The difference
between the two decreases from 6.75 · 10−3 for the first
iteration to 6.31 ·10−8 for the fifth. That progression is shown
in Figure 4.

VI. CONCLUSION

The characteristics of distribution networks introduce com-
plications for OPF solvers, particularly when they are expected
to inform highly sensitive control strategies such as PBC.

This paper focused on achieving a level of precision suf-
ficient for distribution operations when solving for optimal
phasor targets with a QP. This was accomplished through
the adaptation of a linearized power flow model to allow
for its use in an iterative refinement scheme, where the
selected model allows for the explicit treatment of voltage
phasors on unbalanced distribution feeders. We demonstrated
in simulation that our QP’s set of optimal phasor values were
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Fig. 4. Convergence of the three-phase balancing objective values achieved
by the linear and nonlinear voltage profiles.

feasible based on their close agreement with a nonlinear power
flow solution provided by OpenDSS.

Potential future work on this method includes demonstrating
its application on more complicated feeder models, particularly
those that include transformers and delta-connected loads.
Another worthwhile area of exploration will be the use of this
method in microgrid-specific cases and the consideration of
the nonlinear solver’s treatment of a slack bus in the absence
of connection to a larger transmission grid.
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