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ABSTRACT

We propose a technique for reconstruction from incomplete compressive measurements. Our approach combines
compressive sensing and matrix completion using the consensus equilibrium framework. Consensus equilibrium
breaks the reconstruction problem into subproblems to solve for the high-dimensional tensor. This framework
allows us to apply two constraints on the statistical inversion problem. First, matrix completion enforces a
low rank constraint on the compressed data. Second, the compressed tensor should be consistent with the
uncompressed tensor when it is projected onto the low-dimensional subspace. We validate our method on the
Indian Pines hyperspectral dataset with varying amounts of missing data. This work opens up new possibilities
for data reduction, compression, and reconstruction.

Keywords: Matrix completion, compressive sensing, consensus equilibrium, hyperspectral imaging

1. INTRODUCTION

Cameras are now able to capture data exceeding > 1 gigapixel, > 10,000 frames per second, and > 100 color
channels. Data rates can potentially reach 1 x 1015 pixels per second. Such high data rates make real-time
processing difficult.

Efficient sensing takes advantage of low-dimensional structure in signals. Two areas of research explore prior
structured knowledge: compressive sensing and matrix completion. Compressive sensing permits few linear
measurements of a signal with nearly exact reconstruction. Matrix completion aims to estimate incomplete
observations living in a low rank subspace.

We propose to recover an uncompressed tensor from incomplete compressive measurements by combining
these techniques. Consensus equilibrium breaks the reconstruction problem into subproblems to solve for the
high-dimensional tensor. This framework allows us to apply two constraints on the statistical inversion problem.
First, matrix completion enforces a low rank constraint on the compressed data. Second, the compressed tensor
should be consistent with the uncompressed tensor when it is projected into the lower dimensional space. We
validate our method on the Indian Pines hyperspectral dataset with varying amounts of missing data. This work
opens up new possibilities for data reduction, compression, and reconstruction. This section introduces some
key concepts used in this paper.

Compressive sensing exploits the inherent structure and redundancy within an acquired signal. Image and
video compression algorithms operating on commercial 10 megapixel cameras can achieve compression ratios of
100:1 or higher for visualization or classification tasks, illustrating the redundancy in natural images.

Suppose a vector has N components, and S < N components are non-zero. We wish to take M measurements
using a random sensing strategy. Compressive sensing theory says that if M is approximately greater than S log
N, we can recover the N components with high probability.1 The signal may be S-sparse under a transform,
such as the Discrete Cosine Transform or wavelet transform.2 Applications include digital holography,3 video
coding,4 optical polarimetry,5,6 image processing,7 and communications.

A key notion in compressive sensing is the restricted isometry property (RIP).8 If a matrix A satisfies the
RIP, then A approximately preserves the Euclidean length of S-sparse signals. This implies that all pairwise
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distances between S-sparse signals must be well preserved in measurement space. In other words, the distance
between two low-dimensional subspaces remain almost unchanged after projection by a random matrix with
overwhelming probability. We hypothesize that low-rank matrices remain low-rank after projection. Under this
hypothesis, we can perform matrix completion on the compressive measurements.

Matrix completion finds applications in signal processing, computer vision, and control theory. It aims
to generate a completed matrix from missing entries. Observed entries may be corrupted by erasures and
transmission errors, scene occlusions, deliberate omissions, or bad pixels.9 Candes and Tao provide a theoretical
guarantee for exact matrix retrieval under nuclear norm convex relaxation.19 Other formulations factor a matrix
A = UV with gradient updates for U and V.11 In this work, we are not directly interested in recovering the
missing entries from the compressive measurements. Rather, the end goal is to reconstruct the uncompressed
tensor from incomplete compressive measurements.

Statistical inversion techniques minimize an objective involving data fidelity and regularization terms using
the maximum a posteriori estimate.' Efficient minimization methods such as alternating direction method of
multipliers (ADMM) can apply different proximal maps in sequence.13,14 However, many inverse problems cannot
be framed in terms of a explicit objective.15-18 Consensus equilibrium is an optimization-free generalization
of regularized inversion that can fuse multiple sources of information.19 Applications include tomography and
denoising.' Here we demonstrate a novel problem of reconstruction from incomplete compressive measurements.

2. THEORY

2.1 Notation

Throughout this paper, we follow standard tensor notation from Kolda.21 Let X E RMxNxB denote a three-way
tensor with dimensions M x N x B. The mode-3 unfolding of this tensor is

X := X(3) E r.13x(MxN) (1)

Let A E RRXB denote a matrix that encodes the measurement of X. Here B represents the signal length, while
R is the number of measurements, with R < B. Denote y E RMXNXB as the tensor of measurements. It is a
compressed version of X:

y=X x3 A
where x3 is a tensor 3-mode product. Define Y as the mode-3 unfolding of this tensor:

y y(3) E RRx(MxN).

Here the third dimension of X is compressed from size B to size R. The compression ratio is

R

= B*

We index the complete set of measurements as

S2={1,2,...,MxNxR}.

Define w as the set of observations, which may not include all of the possible measurements:

wcS2={1,2,...,MxNxR}.

If entry (i, j, k) is unobserved, we use the shorthand that (i, j, k) w. The fraction of missing entries is

= 1 lw
MxNxR

Notice that the original tensor X is reduced in the number of entries through two steps:

1. Compression by A to yield y, and

(2)

(3)

(4)

(5)

(6)

(7)

2. Projection onto a set of observations to yield 73.,,,(y) E where the sampling operator P„,(•)
returns the original tensor but with the (i, j, k) entry denoted as missing if (i, j, k) w.

After these steps, the total number of measurements T becomes

T = 141 - (8)



2.2 Compressive sensing

The goal is to recover X from Pw(y). We consider the subproblems of reconstructing the mode-3 fibers xi E RB
for i = 1, 2, ... , M x N. Let W E RBX/3 denote the inverse of a transform which represents a signal in terms
of sparse coefficients. It may represent wavelet or Fourier transforms, for example. Write the coefficients as
Xi E RB for i = 1, 2, ... ,M x N. The corresponding measurements are the mode-3 fibers of y: yi E rrt for
i = 1, 2, ... ,M x N. A solution to this problem is provided by basis pursuit with denoising parameter a:

minimize

subject to

Ilxilll

Q.
(9)

We adapt the spectral projected gradient algorithm presented by van den Berg and Friedlander.22 Algorithm 1
formalizes the optimization problem to recover X.

Algorithm 1 Basis pursuit with denoising

1: procedure BP(Y, A, W, a)
2: for i = 1, ,M x N do
3: Solve for according to

minimize

subject to

4: xi

5: end for
6: return X
7: end procedure

2.3 Matrix completion

The problem of matrix completion is to recover a matrix of rank k with missing entries. This rank k constraint
allows a matrix Y E RRx (Mx N) to be factored into two matrices, U E RR" and S E Rkx(MxN). Here U
represents a rank k subspace, and S are the k features for each pixel. We can solve the following optimization
problem:

minimize minimize
1 E (kij-Y)2+-11s112=1 u R

(ia)E0
(10)

subject to Y = us.
Various solutions to the matrix completion problem have been proposed. We will utilize the projected gradient
descent implementation presented by Bertsimas and Li.23 Algorithm 2 formalizes the optimization problem to
recover Y.

The measurements P„,(y) contain missing entries. We can define the following constraints on the full mea-
surement tensor y:

1. Consistency constraint using projections. Suppose the uncompressed tensor X0 is given. Then y should
satisfy

or equivalently,

We set the missing entries as

ÿproj = Xo X3 A

Yproj = AX().

PO\W(Y) = PO\w(17Proj) (12)



Algorithm 2 Matrix completion

1: procedure MC(y, k, ry, C2, w)
2: Solve for Ý according to

minimize minimize
11s112=1 u R

( E 1
(i,DEO

subject to Y = us

3: return Y
4: end procedure

Algorithm 3 Consistency constraint using projections

1: procedure BP-PROJ(Xo; Y, A, W, SZ, w)
2: Yproj AX0
3: PO\,(Y) Po\,(Yproj)
4: X <— BP(y, A, W, cr)
5: return X
6: end procedure

where SZ \ w is the set of missing entries. Basis pursuit provides an estimate X from the projected measure-
ment tensor. The two tensors X and X0 should be consistent. Algorithm 3 describes an implementation
of this consistency constraint using projections.

2. Low rank constraint using matrix completion. We impose a constraint on the measurement tensor y to be
low rank. The matrix completion algorithm produces Ymc. We set the missing entries as

PO Vo(Y) = POVAYMC). (13)

Basis pursuit produces the uncompressed tensor X from the matrix completion estimate. Algorithm 4
implements this low rank constraint based on matrix completion. The procedure BP-MC takes X0 as a
dummy argument. It will become a mathematical convenience for later use.

Algorithm 4 Low rank constraint using matrix completion

1: procedure BP-MC(Xo; Y, A, W, w, C2)
2: Ymc MC(ÿ, k, Y, w, 52)

3: PO \co (IT) PO \ w (YMC)
4: X <— BP(y, A, W, cr)
5: return X
6: end procedure

2.4 Consensus equilibrium

Consensus equilibrium is a framework to break a reconstruction problem into subproblems that can be solved
separately. We define the tensor valued maps, F1, F2 IRMXN><B IRMXN><B:

and

F1 (V1 ) := BP-proj (Vi ; Y, A, W, S2, w) (14)

F2 (V2) := BP-MC(V2; Y, A, W, C2, w) (15)



where V1, V2 E RM)<NxB and Y, A, W, k, -y, St, w are given. Further, let us concatenate the tensors and maps
using the following notation:

V=

and

[ Vv21

E RM)<ArxBx2 (16)

F (V) =
[

F1(V1) RMxNxBx2.

E
(17)

F2 (V2)

Define another tensor valued map G RMxNx./3><2 RM><N><Bx2 as

G (V) =[ —V (18)
V

Here
1

V = 2(Vi ± V2) (19)

where addition and multiplication are pointwise. Let

T = (2G — I)(2F — I). (20)

We are looking for a solution V* e R/1//xNxBx2 that satisfies

.T (V*) = V. (21)

This fixed point yields the uncompressed tensor:

x* = (22)

Mann iterations can help to evaluate the fixed point:

Vk+l = (1 — p)Vk + (Vk) (23)

for a fixed parameter p E (0, 1). Addition and multiplication are defined pointwise. Algorithm 5 outlines this
procedure to apply consensus equilibrium for compressive matrix completion.

Algorithm 5 Consensus equilibrium for compressive matrix completion

1: Initialize V° c rmxNxBxz to any value.
2: k 0
3: while not converged do
4: Vk+l <— (1 — p)Vk + (Vk)
5: k k + 1
6: end while
7: X <— 

—
V
k

To compare two tensors U and V of the same size M x N x B, we define the mean squared error as

MSE(U, V) =
MxNx.B1

1

where 14,3,k denotes the (i, j, k) entry of U.

M,N,B

E(14i,j,k Vi,j,k)2

i,j,k

(24)



3. EXPERIMENT

The Indian Pines dataset is a hyperspectral image over the Purdue University agronomy farm in West Lafayette,
Indiana.24 It consists of a 145 x 145 image with B = 220 bands, as measured by the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS). The uncompressed tensor X is reduced to a size of 5 x 5 x 220 by uniformly
downsampling the original dataset by a factor of 32 along the spatial dimensions. This smaller size enables faster
computations while still illustrating the concept.

We take R = 110 measurements to encode B = 220 bands for a compression ratio of ic = 50%. The sampling
matrix A E RR B has uniformly distributed entries:

A U(0, 1). (25)

According to compressive sensing theory, random matrices satisfy the restricted isometry property with high
probability. This enables a solution to be recovered with convex optimization. Other matrices may be substituted
for A depending on the measurement system.
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Figure 1: Reconstruction of compressive measurements with missing data. The plots show the spectra from one
pixel of the Indian Pines hyperspectral data. p denotes the fraction of missing data. In all simulations, the
compression ratio lc = 50%. Radiance is in units of [W cm-2 nm-1 sr-1].

For basis pursuit, the spectra are compressed in Daubechies 8 (db8) wavelet coefficients. We set the denoising
parameter a = 0.01.

For matrix completion of the compressive measurements, we fix the rank k = 6. The regularization parameter
-y = 1 x 106, and the consensus equilibrium parameter p = 0.5. All parameters are fixed in the simulations.

The amount of missing data in the compressive measurements varies from p, = 10% to p, = 90% in increments
of 10%. Missing entries in y are selected randomly with probability p. In real systems, missing data may result
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Figure 2: Error increases with the amount of missing data in the compressive space. In all simulations, the
compression ratio K = 50%.

from transmission errors or deliberate subsampling of data. Figure 1 shows spectral reconstructions of one pixel
from the Indian Pines hyperspectral data. Each plot varies the amount of missing data, including it = 10%
through it = 71%. The compression ratio is fixed at ic = 50%. We use the metric for mean squared error defined
in Eq. (24). This metric measures the difference between the ground truth for the uncompressed tensor and the
reconstruction. Error increases with the amount of missing data in the compressive space, as plotted in Figure
2. The reconstructions show reasonable agreement with ground truth even though a majority of the data has
been compressed or removed.

4. CONCLUSION

We have proposed a technique for reconstruction from incomplete compressive measurements. Our approach
combines compressive sensing and matrix completion using the consensus equilibrium framework. The algorithm
imposes two constraints on the solution. First, the compressed tensor should be consistent with the uncompressed
tensor X when it is projected onto the low-dimensional subspace. Second, the measurements should live in a low
rank subspace when the missing entries are completed. These constraints allow us to solve for the uncompressed
tensor when data is missing in the compressive space. We validate our approach on the Indian Pines hyperspectral
dataset. The spectra are first compressed by 50%, and then tensor elements are randomly removed. The
reconstructions show reasonable agreement with ground truth even though a majority of the data has been
compressed or removed. This work opens up new possibilities for data reduction, compression, and reconstruction.
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