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Background and motivation for aerosol jet printing

Aerosol jet printing (AJP) uses focused deposition of micron-scale ink

droplets suspended in a carrier gas flow
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Insight from aerosol physics

Analytical models of the five physical processes can provide insight when coupled
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6 | Limitations of aerosol physics perspective

Models identify factors limiting

print quality and resolution

f =10 sccm
a

pressure

5

10

flow

15 20

Sheath:Aerosol Flow

Resolution (zm)

250

* 160 um

12 T '
e T05 . .
w0l e TI0 ‘drier’ inks
* T20 3 = % }
200 E gl °® T40 ¢ ?
[2]
@ 6 } ® *lﬁ
c s z’
= g , 4 —
— /7 "4
Mg S A
8 ,:,i ;1 T,§’
e - e
= 2 _ e L2 -2
S /. ’ ’ ’,
100 2 glals ot e GRS
x 0 5 10 15
.§ Aerosol Flow (sccm)
3
©
i}

More volatile inks deviate
from expected behavior

2 3 150
Error g°

€

=100

c (’) .

2 | X

3 |.E

7]

& 50
(O}
=
o

T05 1
T10
T20
T40

o

0

2 4 6

8 10 12

Sheath:Aerosol Flow

Focusing Ratio

Film Thickness (xm)
N

e Control
e Sheath Sat.
® Aero. Sat.

4

8 12 16

Aerosol Flow (sccm)

Transport effects within the printhead can
strongly affect process outcomes

N
{_
()
. % 1
¢! ]
; 5} ;fg{ |



7 | Outline

&

Aerosol jet printing background/motivation

/

Aerosol physics

General principles
Baseline understanding
Limitations

\

J

3. Collimation

(
Mass transfer effects

»  Conceptual framework
* Ink formulation
O Printhead design

)

J

aerosol gas

® o ®

[ ] [ ]

—..
[]

o q O

e sre @, vapor profile
o\ o] s,
~ i e dry particle

e 04
e e e @ ink droplet
PS b "4 diffusion
@@ ®s o —— "\, evaporation

impaction

sheath gas
drying

PI—— 1T

\

radial position

o
o
he
=
=
&
o
x
=

ultrasonic |

Process drift

* Understanding drift
» Passive strategies

Closed-loop control

15 2 25 3
Cartridge Loading (g)

gas flow

sheath gas

xR
SN USSR

/

\.

Multimaterial printing

\

Proof-of-concept
Graded functionality
Application potential ~ /




s I Describing mass transfer effects during printing

A dry sheath gas can induce spatially nonuniform drying within the

printhead on timescales of relevance Experimental results
12 T T T
. . 3 . . . . . . s T05
Qualitative description Model illustration Simulated line profile wr ® T ! o]
aerosol gas sheath gas 5 E st © ™ : !
® o °® drying Liquid Concentration Norm. Time: 1t Cosolvent g 6 } " ? ]
- ®e S 25F 0.0 a.u. — 5% ¥ %
5 [e% o 1% sav | gosf —son X A :
o%se @ [~ veporprofie| = 02au 5 — 10% .| £ 4
1 2 1'03'“' & 06 — 20% | ¥ M 1-t
0% Ol T g™ time sa g — 40% N S s
5 e dry particle g 1 o] g 0.4r 0 5 10 15
o e [ e @ ink droplet S Vapor Concentration Aerosol Flow (sccm)
=40 " diffusion Z05) e 2l 2 Model lt
@@ ®s o] —— "\, evaporation 5 'me " " IO e rgsu S |
- — 1 . - . : 0.1 . o
® 0 0 - impaction 5 —sum ° . T03 x
E —wet "é ’515- . ;gg " R
2 6 é) - ° 'I|-'.2(].t . ] . o]
Z Qo s Hmg s, : o’ ®
L = ,f.
radial position 0 0.2 0.4 0.6 0.8 1 -80 -40 0 40 80 3 sl L il
Radial Position (a.u.) Position (zm) ',,:«:; o ,,-::»" ot i )
0 _,«;f:'_ P T
° 1 1 3 1 1 3 5 0 5 10 15 20
Radial drying within the printhead is induced by the sheath gas . A

» Peripheral droplets can be completely dried before vapor saturates
* Models guide ink formulation, printer design, and process optimization

Secor, E.B. Flex. Print. Electron. (2018) 3, 035007.



9 | Implications for ink formulation and printhead design
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Leveraging understanding to mitigate process drift

Fundamental mechanisms support understanding of process drift,

a major limitation of aerosol jet printing
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12 | Working towards closed loop process control

Closed-loop control is highly sought across additive manufacturing processes
Custom system developed to assess aerosol density within the printhead

Standard Printing

1000

i | i |
1 ] 1 !
I 1 I ] 1 | ]
Atomization >| Printing o Float | Lock .  Float | Lock |
& | | : |
Susceptible to drift in atomization yield due to temperature > 500 - X . , : i
changes, electronic drift, atomizer aging, ink composition 8 1 1 1 I
change, and ink volume change : : ) :
0 | 1 I | g N
0 50 | 100 | 150 200, 250 ‘ 300
] ] ] ]
Closed-Loop Control 0.04 — ] L — ; :
o I I ] I
- 1 ] ] ] -
§ 0.03 § ; :
Measurement Q& 902l X A ”‘”IH" % “E -
[F] 1 “ 'r I it I‘I . I‘ 1 1
o 1 1 1 1
P E G 0.01 1 1 1 1 B
Atomization > Printing 1 1 ' i
0 1 1 | 1 | 1 1 | 1 ]
l 0 50 | 100 . 150 200, 250 X 300
I I ] I
[ Closed-Loop ] . s v : — — ;
Control | £ : ) ' _ !
= T e !
w 4T P . T L 1 05 edng0uesttige’ e ]
% .il.i.ilii...il ..§§!‘§§!!!§§S.§§-fql % -iié....i..;§§< :
= =z
Changes in atomization are detected in real time and ¥ 2r* ¢ : : ' : g
compensated for if possible; if not possible, aliows automatic = ®o ' : : :
shutdown or alert to indicate potential problems 0 L 1 1 - |1 L 1 |
0 50 100 150 200 250 300

Time (min.)



3 | Qutline

Aerosol jet printing background/motivation

Aerosol physics

*  General principles
«  Baseline understanding
Limitations

\

J

Mass transfer effects

»  Conceptual framework
* Ink formulation

O Printhead design

J

aerosol gas

® o ®

[ ] [ ]

—..
[]

o q O

e sre @, vapor profile
o\ o] s,
~ i e dry particle

e 04
e e e @ ink droplet
PS b "4 diffusion
@@ ®s o —— "\, evaporation

impaction

sheath gas
drying

PA——— 1T

\

radial position

o
o
he
=
=
&
o
x
=

ultrasonic |

Process drift

* Understanding drift
» Passive strategies

Closed-loop control

15 2 25 3
Cartridge Loading (g)

gas flow

sheath gas

xR
SN USSR

/
Multimaterial printing

*  Proof-of-concept
* Graded functionality

\

\\ *  Application potential

>,




14 | Extending versatility to graded multimaterial patterning

In-line mixing of aerosols upstream of the printhead for
simultaneous codeposition of distinct inks
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Validation of multimaterial printing concept
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16 | Promise for functionally-graded patterning

Widespread opportunities for functionally graded materials based on broad compatibility of aerosol jet printing
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Platform for fabricating arbitrary gradients offers extensive design flexibility for
widespread applications in mechanical, electronic, magnetic, and thermal systems
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Normal Membrane-Bubbler
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