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3  Background and motivation for aerosol jet printing

Aerosol jet printing (AJP) uses focused deposition of micron-scale ink
droplets suspended in a carrier gas flow

&It

AJP is a versatile technology for
prototyping functional devices
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Benefits: Limitations:
• Digital • Process drift
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Saleh, H., et al. Sci. Adv.
(2017) 3, e1601986.
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5  Insight from aerosol physics

Analytical models of the five physical processes can provide insight when coupled
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Secor, E.B. Flex. Print. Electron. (2018) 3, 035002.
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6 I Limitations of aerosol physics perspective

Models identify factors limiting
print quality and resolution
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8  Describing mass transfer effects during printing

A dry sheath gas can induce spatially nonuniform drying within the
printhead on timescales of relevance

Qualitative description
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• Radial drying within the printhead is induced by the sheath gas

• Peripheral droplets can be completely dried before vapor saturates

• Models guide ink formulation, printer design, and process optimization
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9 I Implications for ink formulation and printhead design
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11 Leveraging understanding to mitigate process drift
Fundamental mechanisms support understanding of process drift,
a major limitation of aerosol jet printing

Smith, M., et al. F(ex. Print.
Electron. (2017) 2, 015004.
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1 2 I Working towards closed loop process control

Closed-loop control is highly sought across additive manufacturing processes

Custom system developed to assess aerosol density within the printhead
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14 I Extending versatility to graded multimaterial patterning

In-line mixing of aerosols upstream of the printhead for
simultaneous codeposition of distinct inks

gas flow
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15 I Validation of multimaterial printing concept

Initial demonstration with optical materials for
straightforward characterization

Ink 1: Norland optical adhesive NOA 61

Ink 2: Norland optical adhesive NOA 61
with fluorescein and Zr02

• Fluorescence microscopy to measure
amount of fluorescein-containing ink

• Thickness measurement for overall
deposition rate

• Calibration required to deconvolute
thickness and composition
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16  Promise for functionally-graded patterning

Widespread opportunities for functionally graded materials based on broad compatibility of aerosol jet printing

Magnetite composite

5mm

Broad scope of
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Potential application areas
• Mechanical interfaces
• Gradient index optics/RF
• Electronic devices
• Electrochemical systems

Platform for fabricating arbitrary gradients offers extensive design flexibility for
widespread applications in mechanical, electronic, magnetic, and thermal systems
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19 I Support Slide I:Aerosol Physics
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20 I Support Slide 2: Mass Transfer

Drying induced by the sheath
gas affects deposition rate
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21 I Support Slide 3: Process Drift
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