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Background and Motivation
• Two ways PV power plants differ from traditional synchronous generation:

1. Grid interconnection is realized via electronic converters.

2. PV power is inherently variable and intermittent.

• Item 1 4 Problem of simulating the interface of a fast dynamic component
(electronic converter) with a slower system (power grid).

• Item 2 4 Need to run simulations spanning longer time frames than those
associated with typical transient stability simulations.

• Combined, items 1 and 2 4 Simultaneous simulation of fast and slow dynamics.

• High penetration of PV 4 Low inertia grid 4 Increased rate of change of
frequency (ROCOF) in response to transient events.
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Background and Motivation

• Numerical integration algorithms currently deployed in
power system dynamic simulation tools were not designed
to study these vastly different dynamic phenomena in a
single simulation scenario.

• What is needed are numerical solvers better suited to
simulate the fast and slow dynamics over extended time
frames associated with a high grid penetration of PV power.
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Dynamics
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Current Practice

10-6 — 10-2
seconds

10-2 — 100
seconds

100 seconds —
hours

hours — years

imu ation oo sets

Three phase simulation,
e.g., EMTP, Spice

Positive sequence
simulation, e.g., PSLF,
PSSE, PowerWorld

Capability gap — methods
such as analysis of set of
power flow cases are used

Positive sequence power
flow, e.g., solving nonlinear
algebraic equations

• Faults
• Voltage spikes
• Harmonics

• Inertia dynamics
• Generator controls
• Induction motor stalls

• Automatic Generation Control
• FIDVR
• Frequency response

• Equipment overloading
• Reactive resource mgmt
• System losses and economics
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Current Practice

Typical topology of
power systems with a high
penetration of inverter-
connected generation
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Current Practice
Power system dynamics consist of a set of differential-
algebraic equations (DAE) of the following form:

= f (x , v) (1)

0 = g (x , v) = i(x , v) - Y v (2)

where
x: vector of state variables
v: vector of bus voltages (real and imaginary parts)
i: vector of current injections (real and imaginary parts)
Y: network admittance matrix
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Current Practice

• Numerical algorithms for solving equations (1) and (2)
compute the state variables and bus voltages at discrete times.

• For the vast majority of transient stability analyses, these times
are equally spaced, that is, the integration time step is fixed.

• Typical time domain simulations for power system planning
studies covering a time frame spanning 15-30 seconds, will use
a fixed integration time step, usually with a value near Y4 cycle
= 4.167 ms in a 60 Hz system.

IEEkS4411,

Energy Society®



Current Practice: Runge-Kutta Method

The second-order Runge-Kutta (RK2) method
is one of the most commonly used numerical
integration schemes in existing commercial
dynamic simulation software tools.
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Stability region of RK2 method _ 1
h = integration time step
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Plot from: S. Kim and T. J. Overbye, "Optimal Subinterval

Selection Approach for Power System Transient S' '

Simulation," Energies, vol. 8, pp. 11871-11882, 2(
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Improving Existing Simulation Capabilities

• Many numerical methods exist for solving sets of ODEs, however the intrinsic
properties of large power systems limit the types of numerical algorithms
that can be effective in power system dynamics simulations.

• Properties are system size, component diversity and sudden switching events.

• Effective algorithms must:

• not impose an excessive computational burden

• provide sufficient accuracy

• include an efficient adjustment of integration step size

• allow the use of longer time steps when system is in quasi-steady stata •
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Improving Existing Simulation Capabilities

• With rapid integration of renewables, simulation time frames need to
be extended to account for variable PV and wind over long time periods.

• One approach is to use a variable time step for integration.

• In this approach, the time step can increase as fast transients subside;
conversely, the time step can be reduced to capture fast transients.

• This permits a reduction in the number of necessary iterations,
supporting the use of more complex integration schemes.

• This is accomplished through time step control, which estimates error at
each iteration and adjusts the time step to meet a tolerance threshold ,
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Regions of stability for four candidate integrators for
a given step size. The poles of a representative power
system are shown for reference.

Improving Existing Simulation Capabilities
16 machine test case - 0-90% PV sweep

induction motor loads
•
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Improving Existing Simulation Capabilities

• Another approach to extended
simulation times is the use of
multi-rate methods.

• In this approach, h is a small time
step for fast changing variables.

• H is a longer time step for slow
changing variables. H is an integer
multiple of h. In the figure, H = 4•h
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Plot from: S. Kim and T. J. Overbye, "Optimal Subinterval

Selection Approach for Power System Transient Stability

Simulation," Energies, vol. 8, pp. 11871-11882, 2015.
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Improving Existing Simulation Capabilities

• Other approaches being investigated:

—Parallelization techniques based on distributed computing to speed
numerical solution of system equations

Improved error analysis of numerical methods to study systems with
noise and modeling uncertainties 4 uncertainty propagation

Improved modeling — AGC, grid forming and grid following inverters

—Adaptive modeling framework — software that switches between
classical transient simulation and long-term time sequenced power
flow simulation
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Conclusions

• Rapidly increasing grid integration of PV power is highlighting the need for
numerical solvers better suited to simulate the fast and slow dynamics
associated with inverter-connected PV systems over extended time frames.

• Existing commercial simulation toolsets were not designed to study these
vastly different dynamic phenomena in a single simulation scenario.

• New numerical methods, improved models, and advanced software
techniques are being developed to address the need for longer simulation
times of systems with dynamics on widely varying time scales.
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Thank you!

Questions?
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