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2 | Diverse space of AI/ML problems driving proliferation of
architectures, programming frameworks, and compilers

Algorithms* Architectures® Programming Compiler Tools, Autotuners®
Frameworks* Representations®
o Conventional o “More Moore’s”
HPC scaling of current
. architectures
° &l(;(rekcliol\;\I&;HPC o Domain-specific o TensorFlow/JAX, | o Glow o GPTune
o Deeb Learnin conventional PyTorch o ONNC o Ytopt
g : architecture, o TVM, Tensor o Chill/Polly o OpenTuner
FPGAS Comprehensions o MLIR o ClTune
AN IS EENEE | o Deep learning o C++, Kokkos, o NNEF IR o TVM
workloads will chips Raja o Halide IR o Milepost GCC
either want to o Analog neural @) JUl]a, R, Python
leverage ML networks o Fugu (SNNs)

architectures or o Neuromorphic,
accelerate kernels spiking neural

with ML networks

*Not an exhaustive list!



3 | Performance auto-tuning (particularly compilers) falls into
category of “most difficult” optimization problems

*Huge search space of compile and runtime parameters

* LLVM has 60+ compiler passes, many of which have parameters (e.g. vectorization, unroll)

* Many scientific kernels have 5 or more runtime parameters

*No closed-form expressions or simplifying assumptions on performance function

*Noisy measurements, “‘chaotic”’ dependence on parameters
y !

* No derivative-based or gradient-descent methods

These traits define a
“Black Box”

Surrogate optimization
model with Q .

simpler /A / ‘ _
properties / E | v




Performance tuning as a black-box optimization problem in
+ fixed search space

Red = Truth
| Green = Surrogate === True (unknown)
*Well-defined set of tuning dimensions N T E
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*Every method driven by exploration/exploitation tradeoffs L |
: A e o : Yot i
* Exploration: Try new possibilities that might be better et Exploit
* Exploitation: Focus on areas that seem most promising Explore
*“Model-free methods” directly search the space without
attempting to build a performance model Surrogate models used for fast
* Genetic algorithms, e.g. prefer traits” with high “fitness” "=—————- {leIV|FAlele] | CEIR IR {EINETEIL S
e.g. TVM

*“Model-based” methods guide search with simple
performance models that are easy to optimize

* Bayesian optimization commonly uses Gaussian Processes to
select search points most likely to improve performance

* Any surrogate model (deep neural networks/ensemble
methods) could guide search to most promising candidates




s | Performance tuning as a reinforcement learning problem:
teaching compilers to play Go

*Compiler passes (iterative compilation) for individual kernels, whole graph optimization are a
sequence of actions with varying rewards

*Reinforcement learning of optimal actions is most challenging when:
* The number of possible actions is large (absolutely true of compiler optimizations)

* Need to take many actions until reward is received, i.e. “sparse” rewards (possibly true of optimization)

*Many lessons can be learned from (maybe) most impressive reinforcement learning achievement:

AlphaZero on Go

*Moves selected based on policy/value network over

I 71 Policy network | T .

= 1 P | actions (a), state(s

T & chooses move F Tiel . ( ) 2 ( )
based on input * Pi(s,a) -> next move

board state * V(s) -> value of a given state

* -.\> o Networks trained over millions of games of self-play

ﬁﬁﬁﬁ without training on human experts

Success more a matter of brute- *A “player” is defined by their policy network and
force data collection on TPUs exploration/exploitation preference
than clever algorithms?




6 | ModSim challenge: Develop “grandmaster” compiler that
exceed human performance

Challenge #1: Tons of data
needed to train these
models. Can we harvest all
the performance data
generated daily on DOE

LLVM platforms?
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Challenge #2: Many
possible representations
for building models,

which are constantly
changing. Can we begin
exploring even if IR space
constantly changing?




Acknowledgments

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a
wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’'s National Nuclear Security Administration under
contract DE-NA-0003525.

Sandia
National
Laboratories




