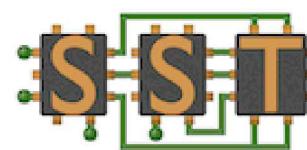
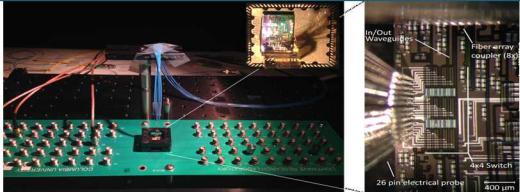
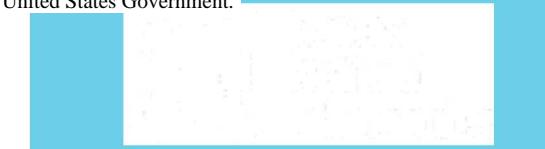


Putting compilers in the simulation co-design loop with surrogate performance models



PRESENTED BY

Jeremiah Wilke, Sandia National Labs, Livermore, CA

Collaborators: Cannada Lewis

Modsim, Virtual Seattle, WA, 2020

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Diverse space of AI/ML problems driving proliferation of architectures, programming frameworks, and compilers

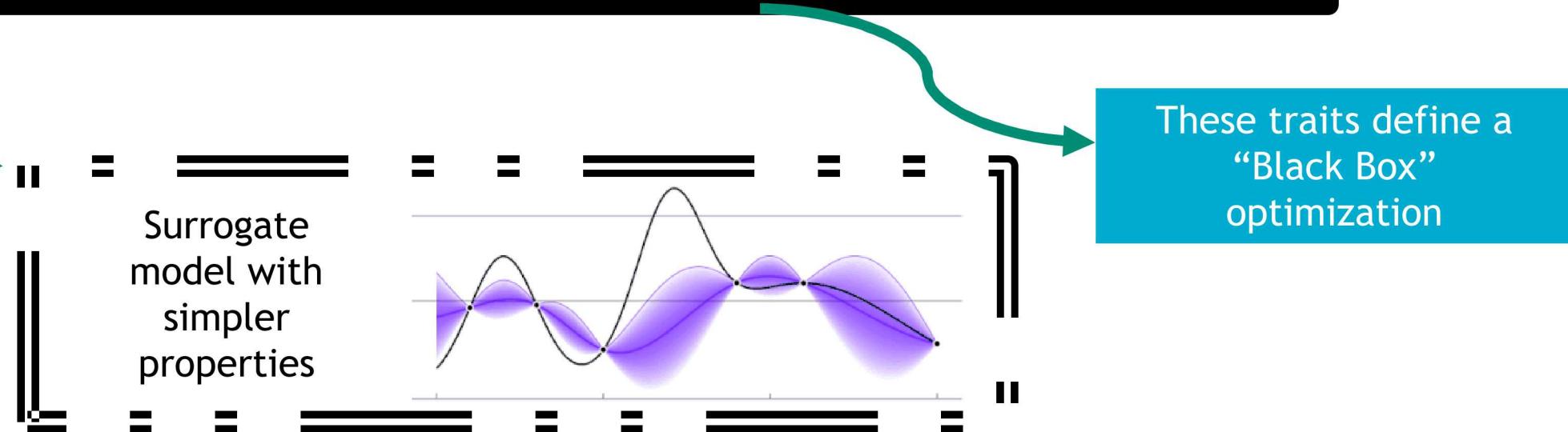
Algorithms*	Architectures*	Programming Frameworks*	Compiler Tools, Representations*	Autotuners*
<ul style="list-style-type: none">○ Conventional HPC○ Mixed ML-HPC workloads○ Deep Learning <p>Even HPC (non-ML) workloads will either want to leverage ML architectures or accelerate kernels with ML</p>	<ul style="list-style-type: none">○ “More Moore’s” scaling of current architectures○ Domain-specific conventional architecture, FPGAs○ Deep learning chips○ Analog neural networks○ Neuromorphic, spiking neural networks	<ul style="list-style-type: none">○ TensorFlow/JAX, PyTorch○ TVM, Tensor Comprehensions○ C++, Kokkos, Raja○ Julia, R, Python○ Fugu (SNNs)	<ul style="list-style-type: none">○ Glow○ ONNC○ Chill/Polly○ MLIR○ NNEF IR○ Halide IR	<ul style="list-style-type: none">○ GPTune○ Ytopt○ OpenTuner○ CLTune○ TVM○ Milepost GCC

*Not an exhaustive list!

3

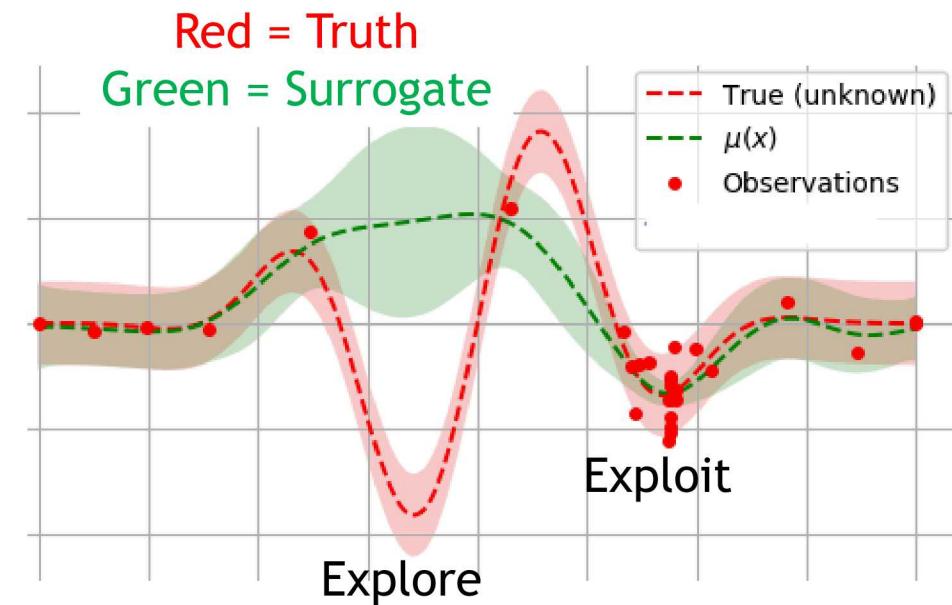
Performance auto-tuning (particularly compilers) falls into category of “most difficult” optimization problems

- Huge search space of compile and runtime parameters
 - LLVM has 60+ compiler passes, many of which have parameters (e.g. vectorization, unroll)
 - Many scientific kernels have 5 or more runtime parameters
- No closed-form expressions or simplifying assumptions on performance function
- Noisy measurements, “chaotic” dependence on parameters
 - No derivative-based or gradient-descent methods



Performance tuning as a black-box optimization problem in fixed search space

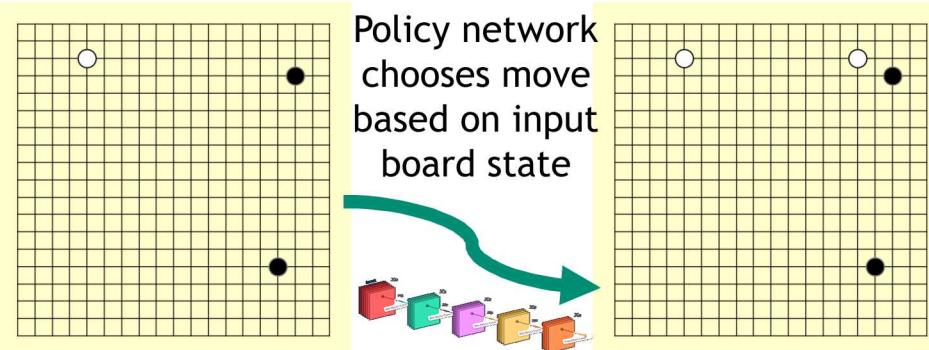
- Well-defined set of tuning dimensions
 - Categorical parameters (CPU vs GPU)
 - Integer parameters (Tile Sizes)
 - Continuous parameters (Not common in autotuning)
- Every method driven by exploration/exploitation tradeoffs
 - Exploration: Try new possibilities that might be better
 - Exploitation: Focus on areas that seem most promising
- “Model-free methods” directly search the space without attempting to build a performance model
 - Genetic algorithms, e.g. prefer “traits” with high “fitness”
- “Model-based” methods guide search with simple performance models that are easy to optimize
 - Bayesian optimization commonly uses Gaussian Processes to select search points most likely to improve performance
 - Any surrogate model (deep neural networks/ensemble methods) could guide search to most promising candidates



Surrogate models used for fast rollout/lookahead in frameworks
e.g. TVM

Performance tuning as a reinforcement learning problem: teaching compilers to play Go

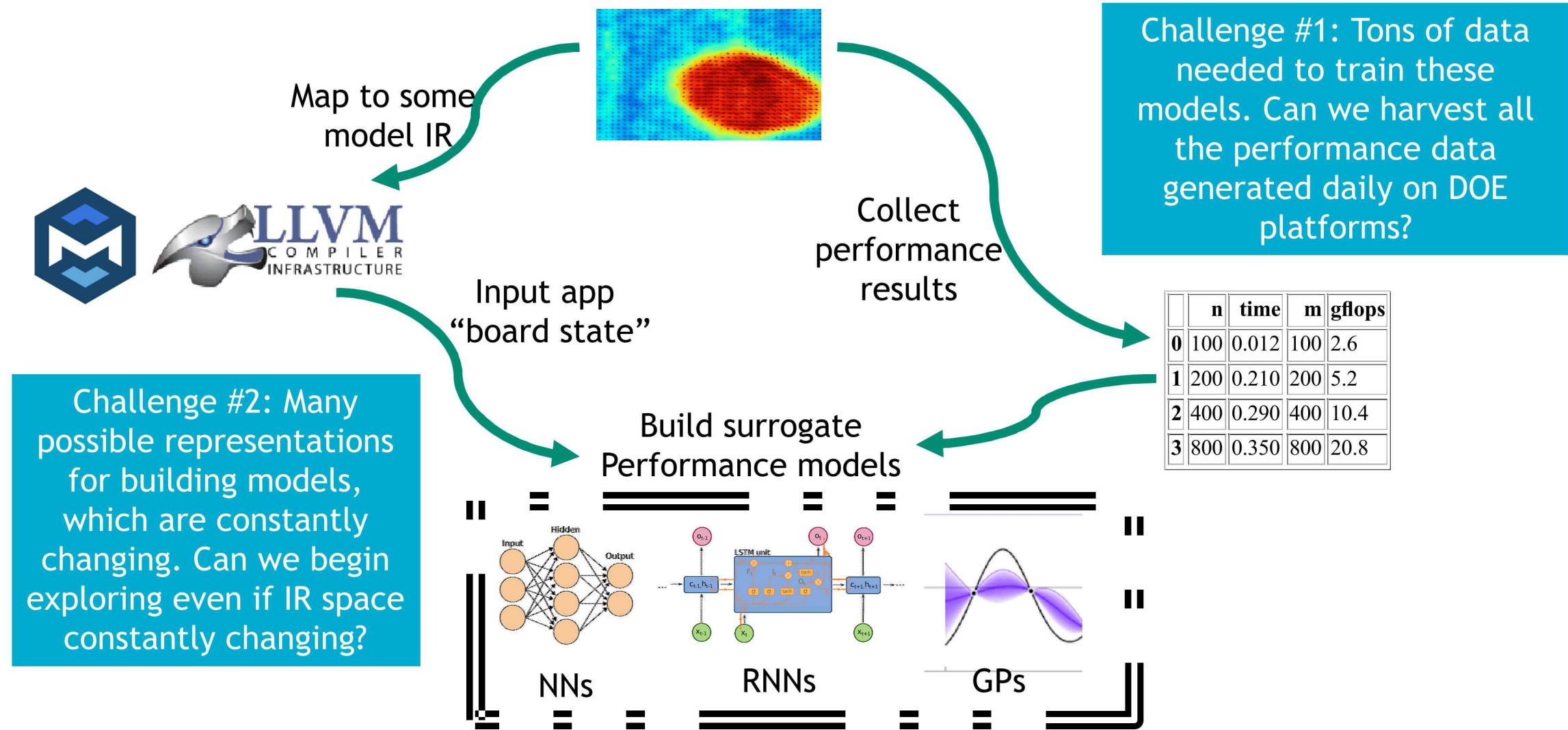
- Compiler passes (iterative compilation) for individual kernels, whole graph optimization are a sequence of actions with varying rewards
- Reinforcement learning of optimal actions is most challenging when:
 - The number of possible actions is large (absolutely true of compiler optimizations)
 - Need to take many actions until reward is received, i.e. “sparse” rewards (possibly true of optimization)
- Many lessons can be learned from (maybe) most impressive reinforcement learning achievement: AlphaZero on Go



Success more a matter of brute-force data collection on TPUs than clever algorithms?

- Moves selected based on policy/value network over actions (a), state(s)
 - $\Pi(s,a) \rightarrow$ next move
 - $V(s) \rightarrow$ value of a given state
- Networks trained over millions of games of self-play *without* training on human experts
- A “player” is defined by their policy network and exploration/exploitation preference

ModSim challenge: Develop “grandmaster” compiler that exceed human performance



Acknowledgments

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

