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2 Diverse space of Al/ML problems driving proliferation of
architectures, programming frameworks, and compilers

Algorithms*

o Conventional
HPC

o Mixed ML-HPC
workloads

o Deep Learning

Even HPC (non-ML
workloads will
either want to
leverage ML

architectures or
accelerate kernels

with ML

Architectures* Programming Compiler Tools, Autotuners*
Frameworks* Representations*

o "More Moore's"
scaling of current
architectures

o Domain-specific
conventional
architecture,
FPGAs

o Deep learning
chips

o Analog neural
networks

o Neuromorphic,
spiking neural
networks

o TensorFlow/JAX,
PyTorch

o TVM, Tensor
Comprehensions

o C++, Kokkos,
Raja

o Julia, R, Python
o Fugu (SNNs)

o Glow
o ONNC
o Chill/Polly
o MLIR
o NNEF IR
o Halide IR

o GPTune
o Ytopt
o OpenTuner
o CLTune
o TVM
o Milepost GCC

*Not an exhaustive list!



3 I Performance auto-tuning (particularly compilers) falls into
category of "most difficult" optimization problems

•Huge search space of compile and runtime parameters

• LLVM has 60+ compiler passes, many of which have parameters (e.g. vectorization, unroll)

• Many scientific kernels have 5 or more runtime parameters

•No closed-form expressions or simplifying assumptions on performance function

•Noisy measurements, "chaotic" dependence on parameters

• No derivative-based or gradient-descent methods
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These traits define a
"Black Box"
optimization



1 Performance tuning as a black-box optimization problem in
fixed search space

•Well-defined set of tuning dimensions
• Categorical parameters (CPU vs GPU)

• Integer parameters (Tile Sizes)

• Continuous parameters (Not common in autotuning)

•Every method driven by exploration/exploitation tradeoffs
• Exploration: Try new possibilities that might be better

• Exploitation: Focus on areas that seem most promising

•"Model-free methods" directly search the space without
attempting to build a performance model

• Genetic algorithms, e.g. prefer "traits" with high "fitness"

•"Model-based" methods guide search with simple
performance models that are easy to optimize
• Bayesian optimization commonly uses Gaussian Processes to

select search points most likely to improve performance

• Any surrogate model (deep neural networks/ensemble
methods) could guide search to most promising candidates

Red = Truth
Green = Surrogate
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Surrogate models used for fast
rollout/lookahead in frameworks

e.g. TVM



5 I Performance tuning as a reinforcement learning problem:
teaching compilers to play Go

*Compiler passes (iterative compilation) for individual kernels, whole graph optimization are a
sequence of actions with varying rewards

•Reinforcement learning of optimal actions is most challenging when:

• The number of possible actions is large (absolutely true of compiler optimizations)

• Need to take many actions until reward is received, i.e. "sparse" rewards (possibly true of optimization)

*Many lessons can be learned from (maybe) most impressive reinforcement learning achievement:
AlphaZero on Go

o •

•

Policy network
chooses move
based on input
board state

wirr

•

•

Success more a matter of brute-
force data collection on TPUs

than clever algorithms?

*Moves selected based on policy/value network over
actions (a), state(s)

• Pi(s,a) -> next move

• V(s) -> value of a given state

*Networks trained over millions of games of self-play
without training on human experts

*A "player" is defined by their policy network and
exploration/exploitation preference



6 ModSim challenge: Develop "grandmaster" compiler that
exceed human performance

Map to some .11
model IR

001_,VM
COMPILER
INFRASTRUCTURE

Challenge #2: Many
possible representations
for building models,
which are constantly

changing. Can we begin
exploring even if IR space

constantly changing?

Input app
"board state"
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Challenge #1: Tons of data
needed to train these

models. Can we harvest all
the performance data
generated daily on DOE

platforms?
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