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2 Connecting processing to performance (Testing paradigm)
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3 Connecting processing to performance (Simulation paradigm)
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4 Connecting processing to performance (Calculation paradigm)
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5 Enabling the calculation paradigm:Yield strength

We define the onset of plastic deformation (yielding) as the point when
the plastic dissipation reaches a critical fraction of the applied power:

DP = CP crW

The applied power is the product of the applied stress and the rate of
deformation:

W = s: D

At a material point, the plastic dissipation is the sum of the products of
resolved shear stresses, Ta and slip rates, 'ffa(Ta) on each slip system:

dP J./a (Ta) . Ta ,
Ta = S: pa

Thus, stress at the onset of yielding satisfies:

.). fa (s237: Fsa) . s237: Fsce = ocrs2y: D

a

The scalar yield strength, sy is the norm of this stress:

sy = ,\X:&

The yield strength is the magnitude of the stress at which plastic
dissipation reaches a critical fraction of the applied power.

Stress and dissipation
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6 Enabling the calculation paradigm:Yield strength

We define the onset of plastic deformation (yielding) as the point when the rate of
energy dissipation due to plastic work reaches a critical fraction of the applied power:

j'fa(Sya: Ea) n: Pa = 01)„n: D, =37 Y=S = S n

a

In limited (but useful) situations, the stress direction n and the rate of deformation D
can be approximately related to the loading conditions, so that sy can be approximated
via a closed-form algebraic equation, as follows.

LO -

0.3 -

The "Schmid Factor" is the ratio of the resolved stress to the applied stress: 7u.zch
Ta Lio 0.4 -

o.

fa = — = n: Pa Ta = fa S.
s = =

The plastic slip rate is commonly approximated via a power law:

J./a J./0 fas
k

sgn Ta

Assuming the stress at each point in the material is equal to the macroscopic applied
stress, the yield strength is calculated:

Sy = g[ 7grainsj./0E 

(P„n: L

ENsupsys f Ik+1a 
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The yield strength can be approximated from properties
of the microstructure and the loading scenario.



7 Replacing simulation with calculation: Single crystal yield strength

• Verification: for various measures of rate sensitivity k, run 319 simulations with orientations
corresponding to discretized locations in the standard triangle

• Each orientation is subjected to 12 loading conditions with varying Lode angle, 0
• Yield surfaces are qualitatively compared between the direct numerical simulation (DNS) and

analytical model
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The 319 discretized orientations of the standard triangle. Each yield
surface is built from 12 loading conditions according to the Lode angle.
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A comparison between the DNS and Generalized Schmid Factor
approximation for k =10 showing good agreement.



8 Replacing simulation with calculation: Single crystal yield strength

DNS - k=100
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The analytical model can approximate the yield strength from
single-crystal material orientation and loading scenario



9 I Ongoing work: Polycrystalline yield strength

Recall the plastic dissipation due to slip:

dP = 1 ka (Ta) • Ta ,

a

Hypothesis: the single grain case can be extended for
the polycrystalline case via volume fractions

N grains

1

Ta = s: Pa

vidli° = cp„s: D
i=1

where vi is a volume fraction
Indv- =

i Inl
Testing Procedure: simulate multiple ensembles of
grain structures and compare yield stress values from
the analytical model to the DNS
• 3, 5, 7, 10, 15, 20, 30, and 40 grain microstructures
• Run 100 unique microstructures generated using

Spparks [1]
• Material parameters reminiscent of

Austenitic stainless steel
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[1] S. Plimpton, et al. SAND2009-6226 (2009). http://spparks.sandia.gov/



10 I Polycrystalline results
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3 Grain Approximations
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11 I Polycrystalline results
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12 I Polycrystalline results
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13 I Polycrystalline results
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40 Grain Approximations
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14 I Systemic bias and preliminary trends
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3 Grain Approximations
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• Results shown are corrected for systemic bias
• Sources of bias are to be investigated

• Analytical model underpredicts heterogeneity
• Regression slope shows decreasing trend as number

of grains increase
• No conclusive trend in R2 values
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15 I Conclusions and ongoing work
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• The analytical model has been shown to:
• Accurately predict yield stress in single crystal simulations
• Capture the general effects of heterogeneity on yield stress for polycrystals

Ongoing Work 
• Test statistical significance of ensembles
• Investigate and characterize sources of bias
• Apply the assumption that the strain (rather than stress) at each point in the material is equal to

the macroscopic applied stress (i.e. "Taylor factor")
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