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Connecting processing to performance (Testing paradigm)
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Connecting processing to performance (Simulation
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4+ | Connecting processing to performance (Calculation paradigm)
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Enabling the calculation paradigm:Yield strength

We define the onset of plastic deformation (yielding) as the point when
the plastic dissipation reaches a critical fraction of the applied power:

DP = qbcrI4/

The applied power is the product of the applied stress and the rate of
deformation:

W =s:D
At a material point, the plastic dissipation is the sum of the products of
resolved shear stresses, t* and slip rates, y*(t%) on each slip system:
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Thus, stress at the onset of yielding satisfies:
Zwu PY) - 5,:P% = bersy: D

The scalar yield strength, s,, is the norm of this stress:

sy = {55y

The yield strength is the magnitude of the stress at which plastic
dissipation reaches a critical fraction of the applied power.
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Enabling the calculation paradigm:Yield strength

We define the onset of plastic deformation (yielding) as the point when the rate of Power Law
energy dissipation due to plastic work reaches a critical fraction of the applied power: ]|

1=

EV'“(SyQ: P¥) m:P% = ¢m:D, s, =S,
a

0.8 1
In limited (but useful) situations, the stress direction n and the rate of deformation D

can be approximately related to the loading conditions, so that s, can be approximated

via a closed-form algebraic equation, as follows.
0.6 4

The “Schmid Factor” is the ratio of the resolved stress to the applied stress:

a

Plastic Slip Rate, y.

T 0.4 1

f“z?zg:ga = 1% = f%s
The plastic slip rate is commonly approximated via a power law:
0.2
k
a
S
Y* =7%o f_ sgn T

Assuming the stress at each point in the material is equal to the macroscopic applied

stress, the yield strength is calculated: 0.0 02 0.4 0.6 0.8 1.0
1 Resolved Shear Stress/Hardness, T9g
Gern: L k
Sy =g . _ ) ) .
g [yo g aTains gy, 3 slipsys | pa|lett The yield strength can be approximated from properties

of the microstructure and the loading scenario.




7 | Replacing simulation with calculation: Single crystal yield strength

» Verification: for various measures of rate sensitivity k, run 319 simulations with orientations
corresponding to discretized locations in the standard triangle

« Each orientation is subjected to 12 loading conditions with varying Lode angle, 6

 Yield surfaces are qualitatively compared between the direct numerical simulation (DNS) and
analytical model

DNS - k=10 Schmid - k=10

O3

The 319 discretized orientations of the standard triangle. Each yield

surface is built from 12 loading conditions according to the Lode angle. A comparison between the DNS and Generalized Schmid Factor
approximation for k =10 showing good agreement.



Replacing simulation with calculation: Single crystal yield strength
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The analytical model can approximate the yield strength from
single-crystal material orientation and loading scenario




9 | Ongoing work: Polycrystalline yield strength

Yield Stress Approximations

Recall the plastic dissipation due to slip:
dP zz)-/a(l.a)_,[a’ Ta=§:£a
a

Hypothesis: the single grain case can be extended for
the polycrystalline case via volume fractions

N grains

2 vidf = QPcrs: D

i=1
where v; is a volume fraction
= |
Coql
Testing Procedure: simulate multiple ensembles of
grain structures and compare yield stress values from
the analytical model to the DNS
« 3,5,7,10, 15, 20, 30, and 40 grain microstructures
* Run 100 unique microstructures generated using
Spparks [1] 80 -
* Material parameters reminiscent of
Austenitic stainless steel

3 grains
5 grains
7 grains
10 grains
15 grains
20 grains @

30 grains @ ®
40 grains

180

160 -
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Analytical Yield Stress Approximations

T T T T T T
80 100 120 140 160 180
DNS Yield Stress

[1] S. Plimpton, et al. SAND2009-6226 (2009). http://spparks.sandia.gov/
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2 | Polycrystalline results
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13 | Polycrystalline results



. o o o Raw Regression Slope
14 | Systemic bias and preliminary trends
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» Results shown are corrected for systemic bias
» Sources of bias are to be investigated % 05
» Analytical model underpredicts heterogeneity
» Regression slope shows decreasing trend as number =
of grains increase 03
« No conclusive trend in R? values
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15 | Conclusions and ongoing work

» The analytical model has been shown to:
» Accurately predict yield stress in single crystal simulations
« Capture the general effects of heterogeneity on yield stress for polycrystals

Ongoing Work
» Test statistical significance of ensembles
» Investigate and characterize sources of bias
« Apply the assumption that the strain (rather than stress) at each point in the material is equal to
the macroscopic applied stress (i.e. “Taylor factor”)
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