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Abstract—This paper discusses a novel moving target de-
fense protocol, Dynamic Addressed Validation Array (DAVA),
to mitigate the common CANbus vulnerability of an unautho-
rized entity misappropriating components in the vehicle either
through sniffing or replay attacks by obscuring ECU IDs. Using
a dynamically allocated array that is updated and validated
frequently, it limits an attacker's visibility when performing
reconnaissance. The protocol strives to be as minimally invasive
and lightweight for application in CANbus while still being
secure. This paper discusses the DAVA protocol, a proof of
concept implementation, and initial performance measurement.
This paper explains how DAVA is able to provide a robust security
framework for CANbus without the need for large amount of
storage or protocol modification.

Index Terms—CANbus, Moving Target Defense, ECU, Device
ID updating, Anti-Reconnaissance.

I. INTRODUCTION

CANbus supports a non-IP based network with many de-
vices and microcontrollers that communicate on the bus. Ever
since its creation in 1986, it grew more widespread, finding use
in vehicles, robotics, and even prosthetics [1]. Unfortunately,
the CAN protocol lacks encryption or authentication methods
[2]. Due to this lack of security, an attacker can obtain control
of the devices connected by a CANbus if they can access
the bus. [3]. Researchers have successfully conducted and
demonstrated such attacks with production vehicles when in
physical contact with the bus [4]. Even wireless attacks are
possible depending on the vehicle, such as the Tesla that was
hacked when its built-in web browser connected to a malicious
hot-spot [3].
The standard security measures such as encryption don't

easily apply to CAN because it uses eight byte packets that are
too small for most standard security mechanisms [2]. Besides,
the packets arrive and decode within a deadline, making the
use of multiple packets for carrying an encrypted payload
difficult [3].
Moving Target Defense (MTD) techniques do not directly

depend on the standard encryption methods, which makes it
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an excellent alternative for securing a CAN-based network [5].
MTD reduces the attack surface by periodically changing the
device IDs of the nodes [6]. As a result, even when a bus
is compromised, the attacker may not know the device ID
(which are constantly changing), effectively preventing them
from communicating with the devices.

This paper proposes the creation of a MTD algorithm that
applies to vehicular CANbus networks. The proposed protocol,
Dynamic Address-Validation Array (DAVA), prevents against
the most costly intrusion attack against a CANbus, Reconnais-
sance and replay attacks [7]. DAVA is a lightweight protocol
that minimally impacts the normal functions of CANbus,
preserves CAN's quick responsiveness, and at the same time,
still mitigates security concerns. Using fully distributed but
identical copies of the same dynamically allocated array,
DAVA allows CAN to make changes to device IDs - however,
these changes does not affect the general usability of the bus
and prevents an sniffing attacker from communicating with the
CAN ECUs.

This paper both presents a novel MTD algorithm for CAN-
bus, one of the very few works in this area, and illustrates
it with a simulator. The simulator tests the protocol for
performance and overhead, and shows that the algorithm does
not pose significant overhead and does not require adoption
of standard encryption algorithms to be secure.

Section two discusses related work in this field. Section
three presents the protocol details of DAVA. Section four
discusses the simulation setup. Section five involves the eval-
uation followed by future work and conclusions.

II. BACKGROUND

Similar to DAVA, a research team at Sandia National Labs
implemented a Moving Target Defense algorithm for MIL-
STD-1553, another non-IP based network [4]. In MIL-STD-
1553, the bus controller sends a message to the desired
remote terminal and instructs it to act. The algorithm starts by
instructing the bus controller and the devices on the network to
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create identical states that stores randomly-generated addresses
ranging from one to thirty. The device sets its address to
the address stored at the first index in the state, and the bus
controller sends its message to that address. Then, the bus
communicates as usual until after a fixed number of iterations
where the device and bus controller now switch to using
the second index. This protocol reduces the attack vector by
continuously changing the attack surface.
DAVA utilizes a similar idea of shifting the attack surface by

making several CAN specific modifications. CANbus requires
each node to act on their own accord. CANbus works slightly
differently where the recipient's ID determines the priority of a
message. In CANbus, each device has a priority ID; messages
addressed to the lowest ID device is serviced first, and the
highest ID last.

Applying MTD techniques to CANbus is a relatively new
idea, and there is not a substantial amount of work in this area.
Woo et al. [7] proposed a CAN ID shuffling technique (CIST)
that uses network address shuffling and encryption to defend
against attacks. Everytime an ECU wants to communicate with
another ECU, they encrypt their data messages before sending
them, and when they arrive, that ECU changes its ID [7]. In
terms of overhead, when two ECUs communicate securely in
CIST, they perform an HMAC algorithm twice, and an AES
algorithm is performed once [7]. y [7] also noticed a delay
in group session key distribution in addition to the normal
data transmission delay and CANbus ID changing delay. CIST
obtains confidentiality through encryption where it also incurs
overehead.
On the contrary, DAVA prioritizes integrity over confi-

dentiality and operates without encryption. DAVNs focus is
to create a protocol that is minimally invasive to ordinary
CANbus operations. The automotive industry would be more
likely to adopt a protocol that is easy to apply, which is the
goal of DAVA.

III. DAVA - PROTOCOL DESIGN

CANbus supports several ECUs over a data bus. Each ECU
represents (and often controls) a device in the car, such as the
car's engine or its Air Conditioning Unit.

Three methods form the basis of DAVA protocol. Aspects of
all three, but especially the second and third methods, combine
to create DAVA. -

• The Master CPU method: In this method, a master
MTD ECU broadcasts periodic update messages to all
other ECUs on the bus. Each non-master ECU creates
an identical address matrix at the beginning based on
a seed (e.g., a nonce) received from the master ECU.
The address matrix is a 2D matrix where each row has
all possible IDs for a specific device. All ECUs have
the same device address matrix at the startup. At the
beginning, each device checks the appropriate row in their
address matrix for the device they wish to communicate
with and uses the value in its first index to address
messages to their desired recipient. After some number of
cycles (can be user defined), the master ECU broadcasts

a unique "update' message that instructs all other ECUs
to start using the device IDs at the second index. When
the matrix is exhausted, the process starts over.

MTD ECU —4
ECU 1
ECU 2

ECU Y-1

Ox0021 Ox0073 Ox0047
Ox0880 Ox0671 Ox0592
Ox1068 Ox1012 Ox1089

Ox1694 Ox1805 Ox1622
Where Y is the number of ECUs

0x0055 0x0017
Ox0364 Ox0796
Ox1047 Ox1055

Ox1701 Ox1637

Fig. 1. Every MTD Update, the ECU reassigns its Device ID to what is in
the next index of their respective row.

However, the master ECU method does not fit CANbus
well. An attacker can impersonate a master ECU and send
messages to other ECUs (CANbus is a broadcast bus),
essentially creating a denial of service attack. Second, if
an ECU receives two messages simultaneously, one, an
update message from the MTD ECU, and the other, a
legitimate command with high priority (e.g., apply the
brakes), the high-priority message is ignored in favor of
the update message, which has the highest priority for
an operational reason. Assigning a lower priority to an
update message means the ECUs change their addresses
at differing times, reducing the efficiency of the MTD
algorithm, and potentially putting the priority of the
messages out of sync.

• Standalone Address Generation Method This protocol
is essentially the same as the master method but elim-
inates the necessity to have a master ECU. Initially, a
master ECU is responsible for updating the other ECUs
by sending update messages to all ECUs. If an ECU needs
to communicate, it asks for the Device ID of its desired
recipient from the master ECU. The use of an ECU to be
solely responsible for updates and scheduling potentially
makes the bus fragile.

• Column-Based Address Generation Method The other
protocol describes a system where all ECUs access to
only a "column" of the address matrix rather contain
all the current values for each of the ECUs on the bus,
such as their Device IDs. Each ECU generates the same
address map independently and utilizes that for further
communication and updating values.
Each ECU has the same randomization seed that gener-
ates the starting device IDs of each ECU. Because they
are using the same seed, they independently make iden-
tical device IDs without passing IDs over the bus where
an attacker could see them in transit. The CANbus can
generate the seed using a combination of various variables
(sensor data, time, random numbers, or a combination
of these) so it would unique each time. The addressing
matrix, or the "colume, contains multiple values such as
the lower and upper ID bounds for each of the ECU's, so
when we generate a device ID for an ECU, it maintains
priorities between specific ECUs. The other values are



the number of ECUs on the bus, the starting Device IDs
for all ECUs, and the randomization seed are stored in
the matrix as Figure.2 shows.

File Containg Seed *
Number of ECUs on Bus A
Lower Bound for ECU 1 In
Upper Bound for ECU 1 *

Lower Bound for ECU n
Upper Bound for ECU n

Device ID for ECU 1 _

Device ID for ECU n •

input needed to initialize the protocol. This input contains all
of the values needed for a certain CANbus configuration in a
certain vehicle.

Lower
Bound

Upper
Bound

Device
ID

Randomization
Seed

Number
of
ECUs

ECU 1 Ox000l Ox0399 Ox0001 Ox91843 3

ECU 2 Ox0400 Ox0999 Ox0500 Ox91843 3

ECU 3 Ox1000 Ox1999 Ox1500 Ox91843 3

Fig. 4. The MTD Array of MTD Nodes that represent the characteristics of
every ECU on the CANbus.

Fig. 2. An Example ECU on the CANbus. The DAVA input file, in orange,
contains a randomization seed, the number of ECUs on the bus, the lower A • Initialization Phase
and upper bounds for all ECUs, and the Device IDs for all ECUs.

E• ach ECU reads the
file and creates the

MTID Array

V 
Each ECU populates
MTD Array wrth the

file's contents.

• ECUs search the
MTD Array for their

current Device ID and
others and stores the

indices for later
• .1

Ordinary CANBus
communication

V 

ECU A Sends
Message to ECU B

ECU A Sends 'X"
Messages to ECU B

ECU B Broadcasts an
Invalidation Message

to all ECUs.

V 

AN ECUs generate
new Device ID for  
ECU B and update
their MTD Array

Fig. 3. DAVA Protocol Flowchart

The DAVA protocol combines aspects of the Standalone
Address Generation Method and the Sector-Based Address
Generation Method. DAVA has three phases that it executes
in: Initialization, Update, and Operational. Before the protocol
begins, the implemntor inputs every ECU with the same initial

O

MTD ARRAY

ID: Ox0001
Lower: Ox0001
Upper: Ox0399
Original: Ox0001

Ox0500
Lower: Ox0400
Upper: Ox0999
Original: Ox0500

ID: Ox1500
Lower: Ox1000
Upper: Ox1999
Original: Ox1500

Each MTD node contains four values:

—1) The Device ID of the ECU
—2) The Lower Device ID Bound of the ECU
— 3) The Upper Device ID Bound of the ECU
—4) The Original Device ID of the ECU

Fig. 5. The MTD Array of MTD Nodes that represent the characteristics of
every ECU on the CANbus.

At the start of the Initialization Phase, every ECU creates
an "MTD Array", which is an array of the same length as
the "Number of ECUs" value in their input file. Every node
in the created array signifies a certain ECU on the bus, and
each node stores four values: this ECU's device ID, its lower
bound, upper bound, and its original device ID. All ECUs
simultaneously create the MTD Array before going further.
Once all ECUs have created their MTD Array, the ECUs

pair themself and the other ECUs to the nodes in the MTD
Array, so it knows which MTD node refers to what ECU on
the bus.

Before DAVNs execution, ECUs already know their own
Device ID, and the Device IDs of the other ECUs on the bus
through the initial programming of the CANbus. The Original
ID in the MTD Array references the Device ID that a specific
ECU on the CANbus starts with before implementing DAVA.
Using this, each ECU searches their MTD Array looking for
its Device ID in the Original ID field of each node in the MTD



Array. Once the ECU finds its current starting Device ID, that
ECU now knows that node refers to that ECU. The ECU also
searches the MTD Array for the device IDs of the rest of the
ECUs under Original ID of the MTD Array's nodes. When the
ECU finds the ID of a certain ECU in a node of the the MTD
Array, that ECU now knows that node is refering to that ECU.
Through the above method, the ECU pairs its pre-DAVA devce
ID information with the new MTD Array, and now uses the
MTD Array instead to address data messages to other ECUs.
This concludes the initialization phase.

ECU
/—

Dev ID x0001.2\

ID: Ox0001

Lower: Ox0001

Upper:  9

Original 0001

ECU 1

• I 1

Dev 1D: Ox0001

ECU 2 

•
2

Dev ID: Ox0500

ECU 3

•

Dev ID:qx150-15

ECU 3 CI

111 I

Dev ID: Ox1500

Fig. 6. ECUs search through the MTD Array under the "originar value for
the same device ID as their own. Once found, the ECU now knows which
MTD Node it is, and when to update its own device ID.

B. Operational Phase

The operational phase starts after the initialization phase
ends. DAVA performs no actions during the operational phase.
ECUs perform their standard operations like non-DAVA CAN-
bus, except they use the Device IDs stored in the nodes of their
MTD Arrays to address other ECUs.
DAVA offers two ways of ending the Operational Phase

and starting the Update phase with the choice up to the
implementor. One way, the bus updates every time any ECU
receives a message. Updating the bus every time an ECU
receives a message provides maximum security and defense
against Replay Attacks because all device IDs are one-time
use. One-time use device IDs mean the attacker never has
the chance to use a device ID to send his own data message
over the bus. Another way, the bus updates after some user-
defined number of times a specific ECU has received a
message. The second option is slightly quicker at the expense
of slightly less resilience against Replay Attacks, because the
attacker could theoretically use a device ID to address a data
message inbetween the user-defined updates. Either of the
above options chosen, the Operational Phase ends.

C. Update Phase

The Update Phase begins with the ECU who received the
last message sending a message out to all ECUs on the bus
telling them that its device ID is now invalid.

ECU 1 I

Dev ID:00001_A_
Dev ID: Ox0500

i
Dev ID: OxI500
_A_

(: mDevice ID:0xe.g.05.00 is INVALID"

Fig. 7. Diagram of an example CANbus and invalidation broadcast messages

Every ECU on the bus, including itself, receives this mes-
sage. When an ECU receives this message, it finds the position
of the invalid ID in the MTD array. When the ECU finds the
position, it considers the lower and upper bounds for the node
ID, and randomly generates a new Device ID between those
bounds. The randomization uses the seed provided in the initial
input so that all ECUs create the same device ID. The nodes
then overwrite the existing ID with the newly generated ID
and the Update phase ends.

MTD ARRAY

ID: Ox0001
Lower: 050001
Upper: Ox0399
Original: Ox0001

ID: Ox0500
Lower: Ox0400 -
Upper Ox0999
Original: Ox0500

ID: Ox1500
Lower: Ox1000
Upper: Ox1999
Original= Ox1500

L;Device ID:m0xeOssa5008eis INVALID7
ID: Ox0716
Lower: Ox0400
Upper: Ox0999
Origiml:Ox0500

ra 0x1500
Lower: Ox1000
Upper: Ox1999
Origiml:Ox1500

Fig. 8. The MTD Arrays of an ECU using the lower and upper bounds of
an ECU to randomly generate a new device ID.

In the Update Phase, Device IDs update without an attacker
being able to view it by reconnaissance of the bus 8). When
the Update Phase ends, the Operational Phase starts again and
continues until the next time the Update phase is triggered.
This process of alternating between the Update Phase and the
Operational Phase continues until the CANbus is no longer in
use.

IV. SIMULATOR DESIGN AND IMPLEMENTATION

This paper uses a basic CANBus simulator written in C
to test the effectiveness of DAVA. The simulator has basic
message exchange functionality, as well as the ability to
change the "Device IDs" of ECU objects. The simulator
follows the CAN specification, enforcing message priority by
device ID.
The simulator runs on a linux virtual machine running

Ubuntu 18.04 with a single 2.6 Ghz processor. The simulator



walks through the CANbus operations via user input so the
operator can view each message and update. The simulator
prints to the screen the average time for an update, which
is one to two microseconds. While this does not accurately
represent the performance of a true CANbus environment, the
simulator demonstrates the utility of DAVA.
The simulator supports an environment with ECUs with

their device IDs starting at their lower bounds. For example,
ECU one's lower bound and current device ID is one and
ECU two's lower bound and current ID is five hundred. ECU
one and ECU two know where they are via the position in
their respective MTD Arrays. Messages are sent between the
ECUs while they check their control update variable which is
the user-defined number of messages an ECU can take before
they send their invalid message which prompts updates. The
update is performed just as described in the protocol and the
bus continues on cycling from the update to the operational
phase. Future work involves porting this protocol to accurate
CANbus emulator and eventually, a hardware-based testbed.

V. EVALUATION

This paper considers several factors in evaluating DAVA
such as the space and time complexity, a worst case, attacks
it mitigates, and its place in the library of CANbus security
algorithms.

A. Space Complexity

The space complexity of DAVA is the necessity for all
ECUs on the CANbus to be able to store the small input file
internally, the dynamic MTD Array of nodes, and for each
ECU to store the device IDs of all other ECUs. This storage
space scales linearly to the number of ECUs. Currently, the
space complexity is not a serious issue as the average car
contains only around twenty ECUs, but some high-end cars
have been designed with up to 100 ECUs or more [8]. ECUs
store a series of number values like, ECU ids, the number of
ECUs on the bus, seeds, etc. Thus, by counting the amount of
bytes taken up by a file containing nothing but those values, the
file size reveals the storage space taken up by the information
needed for DAVA to execute. Through the above method, a
car with twenty-two ECUs, each ECU holds approximately
eight-hundred-seventeen bytes of information which includes
the file, registers and the MTD Array. In a car with a hundred
ECUs, approximately three-and-a-half Kilobytes of storage is
used in every ECU.

In regards to the combined total of storage taken up by every
ECU on the bus, the space scales exponentially by the number
of ECUs. However, a car of twenty-two ECUs implementing
DAVA needs roughly eighteen Kilobytes of additional space
spread across all ECUs. In a car with 100 ECUs, approxi-
mately 350 Kilobytes of storage is used cumulatively across
the entire bus.

B. Time Complexity

Remember that DAVA prtocol allows Device IDs to change
at a rate based on the user's needs. In the extreme case, Device
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IDs change after every message is sent. The other option
supports address changes after every N messages, where N
is selected by the use case. Therefore, the time complexity
is more variable due to the user's decision of determining
how many messages can be sent before each update. The
most amount of computation time happens in the Initialization
Phase where the MTD Array is being created and populated
in. Thus, the initialization phase happens once, when the car
is first started. Time Complexity throughout the protocol is the
time it takes for all ECUs to update and randomly generate
new device IDs and the time it takes to index into the MTD
array and access device IDs during message composition. Time
spent on the actual update does not scale by number of ECUs
like it does with Space Complexity because updates all happen
in parallel. The slowest device determines the Update Delay.
Ultimately, DAVAs normal time complexity is O(n) which is
also the time complexity of the initialization, operation, and
update phases.

A corner case that can increase the worst case time complex-
ity of the DAVA protocol is as follows - when a new device ID
is randomly generated between its lower and upper bounds, it



is possible the ECU may randomly generate a device ID equal
to its invalidated one. In this case, the ECU randomly generate
another device ID which will double the update delay of the
slowest device. The average update time of the simulator is
1.5 microseconds which would result in 3 microseconds lost
due to the Worst Case.
DAVA's primary goal is defending against reconnaissance

attacks. DAVA achieves this, in theory, by constant changing
of the devices IDs leading to the attacker scanning the CANbus
to see messages with almost always different device IDs. The
attacker can't easily associate a device ID to a device and
can't easily compose a message for a device because the
device ID it wants to invoke is constantly changing. DAVA
can be implemented to update after every ordinary message
preventing an attacker from performing a replay attack as well
as it essentially makes device IDs only usable once before
being replaced. This protocol currently has no protection
against a Denial of Service Attack, and is ineffective if the
attacker accesses the memory stored in an ECU. DAVA puts
the above security concerns aside in favor of focusing on being
as lightweight as possible and mitigating the most common
attacks the bus may face which this protocol, through initial
testing, performs effectively.

In comparison to pre existing protocols, DAVA stands apart
through the use of an identical data structure and syncrhoniza-
tion of ECU operations. DAVA does not need to conceal
messages over the bus as ECUs are seeded in such a way
that their initialization and update phases always result in the
same values. DAVA does not use encryption so that it can
remain lightweight with its relatively small number of simple
operations. These characteristics of DAVA set it apart as a
protocol meant primarily to interest the Automotive Industry to
adopt security measures for its CANbus and prevent avoidable
security breaches in the fast approaching future.

Security Properties

Update After
Every Message

Update After
"X" Messages

Origin Integrity YES YES
Confidentiality NO NO

Prevents Replay Attacks YES NO

Protocol Properties

Update After
Every Message

Update After
"X" Messages

Standard Modifications NO NO
Time Complexity O(n) O(n)
Space Complexity O(n2) 0(n2)

Fig. 11. DAVNs protocol and security properties. The effectiveness of DAVA
differs depending on what the update condition is.

VI. CONCLUSIONS

This paper suggests a MTD technique for preventing recon-
naissance attacks on CANbus. DAVA allows CANbus ECUs

to generate random IDs in standalone mode while preserving
device priority necessary for correct operations. This paper
shows that DAVA can make CANbus secure against recon-
naissance attacks while imposing little overhead. Looking
into the future, DAVA requires more testing on true-to-life
emulators to derive the necessary metrics to analyze its real
world effectiveness and cost.
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