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Stellar evolution and the age of the universe can be
constrained using WD stars
• Applying WD to astrophysical problems requires accurate stellar
masses

• The main mass determination methods have deficiencies

atmo sphere

4000 4500

• Z-machine experiments enable scrutiny of constituent atomic
physics in WD mass determination methods

Z-machine data have highlighted deficiencies in the

atomic data used for WD mass determination methods.
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Several different 'flavors' of WDs can develop
from the previous evolutionary scenarios
DA: hydrogen atmosphere 

inert k-1

Q: Age of the Galaxy?

DB/DQ: helium atmosphere 

inert He
Q: Stellar evolution?

Hot DQ: carbon atmosphere

C/O core?

/
inert C/O

Q: Failed supernovae?

Accurate WD masses are needed to answer these questions!



WDs are earth-sized objects with masses
comparable to the sun

Typical WD parameters:

Surface temperature (Teff): 10,000 K (ri1 eV)

Surface gravity (log g) : 1 08 cm/ s2 (n e r i 1 01 7 cm-3)

Radius: rearth

Mass: ri2/3 M.



Initial-Final Mass Relation
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Determining Parameters with Parallax +
Broad-band photometry
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Determining Parameters with Parallax +
Broad-band photometry
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SOAR ZZ Ceti Survey
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Solutions for individual Balmer lines (1_19 2)
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Work led by Patty Cho to
incorporate state of the art
Balmer line profiles into
TLUSTY.
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The White Dwarf Photosphere Experiment on the
Z-machine
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Absorption LOS

Z-pinch extent

buffer

gas cell
gold wall body

120 mrn

buffer

backlighter

Z-pinch

• The White Dwarf Photosphere
Experiment platform is —324 mm
away from the Z-pinch

• We observe the resulting
spectrum using the absorption
(red), emission (blue) and
continuum line-of-sight (green).
This experimental setup allows us
to re-create WD absorption
observations.
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Analysis of the WDPE absorption spectra reveal
trends similar to those observed in stellar spectra
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Analysis of the WDPE absorption spectra reveal
trends similar to those observed in stellar spectra

H3 and Hy ne values differ by

—30%.

This difference is consistent across

multiple shots.

z2553 z2787 z2788
• (diff.) = 33.1 ± 7.3Y(' • (diff.)= 34.9 ± 6.8% • (diff.)= 35.3 ± 7.7%

60 -

50

10 combined mean:
34 %

f 
0.5 1.0 1.5

HO ne [cm-3]
2.0 2.5

x 1017

OZ

Schaeuble et al. (2019)



Is this a result of plasma gradients?

absorption LOS

continuum LOS

Mylar window

heated gold wall

absorption
buffer

hypothetical
gradient

distance, x [mm]
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Better constraints on gradients experimentally
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Plans to better constrain gradients
experimentally

Use H3 to probe
gradients along the

absorption/emission

LOS.

New lower buffer allows
us to avoid scattered light

from gas cell floor.



Plans to better constrain gradients
experimentally

Use H3 to probe
gradients along the

absorption/emission

LOS.

New lower buffer allows
us to avoid scattered light

from gas cell floor.



Proof of concept (z3460)
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Problems with helium model atmospheres
At low temperatures, where
neutral broadening becomes
important, the surface gravities of

He-atmosphere white dwarfs
derived from spectral line fits

show large scatter.
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Problems with helium model atmospheres
At low temperatures, where
neutral broadening becomes

important, the surface gravities of

He-atmosphere white dwarfs
derived from spectral line fits

show large scatter.

And they diverge from the masses

inferred by parallax+photometry
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27 Helium line widths from Z
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A detailed analysis of all these data will follow soon!



Helium line widths from Z
The width of the measured
profile (red) is a combination

of Stark and neutral

broadening.
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Helium line widths from Z
The width of the measured
profile (red) is a combination

of Stark and neutral

broadening.

3462 svs4 — Stark + neutral line profile
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Helium line widths from Z
Comparison of line widths
from Z (3 shots) with

experimental & theoretical

Stark widths.
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White Dwarfs with Carbon Lines
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Carbon: Hot DQ White Dwarfs
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The hot DQ white dwarfs (-18,000 —

25,000 K) have C-dominated atmospheres.

Little experimental data exists on the Stark

broadening of the CII lines (Dufour et al.

2011) seen in the spectra.

Our Gaia/SDSS fits show they are all

massive WDs, and we find evidence that

they are WD-WD mergers.

The mass distribution may tell us the lower

limit for mergers resulting in type Ia

supernovae. But we need a more precise

mass distribution.
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The value of precise spectroscopic logg
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Achieving hot DQ conditions on Z
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Z3404 Carbon Data
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2.0
Hot DQ/Lab Plasma Comparison
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Astrophysical Feedback
For our work to have quantitative

implications for astrophysics, we have to

take what we learn about single Te, ne

plasmas on Z and incorporate this into a

model white dwarf atmosphere.

Patty Cho is leading an effort to insert

new H Lyman and Balmer line profiles

(from Xenomorph) into the model

atmosphere code TLUSTY (I. Hubeny),

and we're starting to explore the impact

of these new model atmospheres on our

inferences about white dwarf stars.
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First Series to Field Gated Camera
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Z2553 Hydrogen vs Synspec model

p = 1.10e-06 g/cm3, Lemke tables
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PrismSpect vs. Synspect Hydrogen
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Lingering concern: what is the FWHM of
the emission data?
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• The emission data has a higher
FWHM than the absorption data.

• This is reminiscent of the
hydrogen data.

• Further, this probably makes the
results from the self-emission
correction test even more
conservative.



The He 1 5015 line in z3462 svs4 — FWHM measurements
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Measured FWHM vs experiment time

F
W
H
M
 o
f 
H
e
 I
 5
0
1
5
 [
Å]
 

10

8

6

4

2

0

—2

z3462 svs4

- Gigosos He I 5015 ne trends

0.5 0.6 0.7 0.8 0.9 1.0
Electron density [cm-3]

1.1 1 2
1e17

Measured FWHM vs electron density

Tlie measured widths are lower than the

predicted widths.



51 Summary of tests performed thus far

NI•
Data calibration

Data distortion correction

CCD background subtraction

Scattered light background subtraction

Self-emission correction

Using 5015/5875 population ratios to constrain plasma
conditions

Analysis of pure He shots

Incorrect accounting for instrumental broadening

Incorrect measurement for instrumental broadening

Analyze emission data

Analyze spectra for potential He II signature

Effects/Results

None on line width

None on line width

Makes lines wider

None on line width

None on line width

He I 5875/5015 seem to be formed in the same plasma — no
evidence for HP being formed in a different plasma region

Analysis inconclusive

No significant effects on line width

No significant effects on line widths

Emission data shows similar FWHM trends as absorption

Very limited evidence for presence of He 11
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