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Stellar evolution and the age of the universe can be
constrained using WD stars

* Applying WD to astrophysical problems requires accurate stellar
masses

atmosphere

stellar
* The main mass determination methods have deficiencies

core

e Z-machine experiments enable scrutiny of constituent atomic
physics in WD mass determination methods




WDs are the endpoint of stellar evolution
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—WDs are the endpoint of stellar evo\utm[a
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Several different ‘flavors” of WDs can develop
from the previous evolutionary scenarios

DA: hydrogen atmosphetre DB/DQ: helium atmosphere = Hot DQ: carbon atmosphere

inert H

z“
A

inert C/O
inert He
Q: Age of the Galaxy? Q: Stellar evolution? Q: Failed supernovae?

Accurate WD masses are needed to answer these questions!
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WDs are earth-sized objects with masses
comparable to the sun

Typical WD parameters:

Surtace temperature (1 ): 10,000 K (~1 eV)
Surface gravity (log 9): 10° cm/s* (n, ~10'" cm™)
Radius: r_ .

Mass: ~2/3 M__,



Initial-Final Mass Relation
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Determining Parameters with Parallax +
Broad-band photometry

le-28 J1615+4543 (Teff = 20847 K, Dist = 599 pc)
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Determining Parameters with Parallax +
Broad-band photometry

Constrained by
absolute flux level

Depends on =
- :

angular size ot the -
star on the sky "
=
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Determining Parameters with Parallax +

Broad-band photometry

le-28 J1615+4543 (Teff = 20847 K, Dist = 599 pc)

Constrained by
absolute flux level

Depends on = |
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star on the sky
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SOAR ZZ Cet| Su rvey Spectroscopy of 129 DAs in and

around the DAV instability strip
(Fuchs, Dunlap et al. in prep)
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Solutions for individual Balmer lines (L19-2)
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n, = 15.0 e/cc

15.5 e/cc

ne

n, = 16.0 e/cc

New WD Model Atmospheres

Xenomorph VCS TB09: H 3, all features off

T = 0.861eV T — 1.723eV Xenomorph VCS TB09: H ~, all features off

T = 0.861eV T = 1.723eV
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The White Dwart Photosphere Experiment on the
/-machine

— Continuum LOS
— Emission LOS §
— Absorption LOS
-+ Z-pinch extent N

* The White Dwart Photosphere
Experiment platform is ~324 mm
away from the Z-pinch

gas cell

gold wall ~poqy * We observe the resulting

spectrum using the absorption
(red), emission (blue) and
continuum line-of-sight (green).
This experimental setup allows us
e / to re-create WD absorption

observations.

backlighter

Schaeuble et al. (2019)
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Schaeuble et al. (2019)

Analysis of the WDPE absorption spectra reveal
trends similar to those observed in stellar spectra
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Line fits to absorption spectra. HB and Hy 7 values differ by ~30%.
These are used to extract 7, values.



Analysis of the WDPE absorption spectra reveal
trends similar to those observed in stellar spectra

72553 z2787 22788
®  iff)—331+73% @ (diff.)=349+68% @ (diff.) =353 +7.7%
Hf and Hy 7, values differ by 60 ’

~30%.
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This difference is consistent across
multiple shots.

1

combined mean: combined o :

HpS — Hy difference [%]
w
o
Difference value if HS and Hvy n, agreed

[
O
T

34 % 73 % /
N S P,
0.5 1.0 L5 2.0 2.5
HS ne [cm_s] x 1017

Schaeuble et al. (2019) 18



s this a result of plasma gradients?

== absorption LOS

== continuum LOS

Mylar window

heated gold wall

& hypothetical
o /— gradient

distance, x [mm]



s this a result of plasma gradients?

x 1017
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Better constraints on gradients experimentally

Continuum
LOS

B

Buffer Buffers

Gas cell

Emission
LOS
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Plans to better-constrain gradients
experimentally

Use Hf to probe
gradients along the

absorption/emission
LOS.

New lower buffer allows
us to avoid scattered light
from gas cell tloor.
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Plans to better-constrain gradients
experimentally

/

Use Hf to probe
gradients along the

absorption/emission
LOS.

New lower buffer allows
us to avoid scattered light
from gas cell tloor.
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Proof of concept (z3460)
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Problems with helium model atmospheres

At low temperatures, where
neutral broadening becomes
important, the surface gravities of
He-atmosphere white dwarfs
dertved from spectral line fits
show large scatter.
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Problems with helium model atmospheres

At low temperatures, where
neutral broadening becomes

important, the surface gravities of 1o
He-atmosphere white dwarts g | e g
derived from spectral line fits = e RN, 5
show large scatter. 2

v e .Ti:.cl(lof"K)l o
And they diverge from the masses Genest-Beaulieu & Bergeron 2019

inferred by parallax+photometry
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Helium line widths from Z
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A detailed analysis of all these data will follow soon!



Helium line widths from Z

The Wldth Of the measured = | —— 3409 —— Stark + neutral line profile
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Helium line widths from Z
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Helium line widths from Z

Comparison of line widths
from Z (3 shots) with
experimental & theoretical

Stark widthes.

He I 5875 A FWHM [A]
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White Dwarfs with Carbon Lines
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Carbon: Hot DQ White Dwarfs
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The hot DQ white dwarfs (~18,000 —
25,000 K) have C-dominated atmospheres.
Little experimental data exists on the Stark
broadening of the CII lines (Dufour et al.
2011) seen 1n the spectra.

Our Gaia/SDSS fits show they are all
massive WDs, and we find evidence that
they are WD-WD mergers.

The mass distribution may tell us the lower
limit for mergers resulting in type Ia
supernovae. But we need a more precise
mass distribution,



J1615+4543
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The value of precise spectroscopic logg
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How narrow 1s the hot DQ
mass distribution?
Constraint on formation
channels

Is there a cutoff mass? This
could be the lower mass of

WD+WD mergers that

produce type Ia supernovae.

Is there evidence for Fe-cores?
Radius from parallax;
logg from spectroscopy



Achieving hot DQ conditions on Z

= Continuum LOS E )
continuum

== Emission LOS buffer

— Absorption LOS 8

=== /-pinch extent o
emission

buffer
backlighter
absorption \ O Z-pinch
butfer gas cell body /
. Modified window frame with thin
Standard Design

polyimide window from Luxel



Wavelength

Z3404 Carbon Data

Time =—— ~ 300 ns of data
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Normalized Intensity
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Hot DQ/Lab Plasma Comparison

SDSS J1153+0056

«_Hot DQ Spectrum
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(Dufour et al.)
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Normalized Intensity
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Astrophysical Feedback

For our work to have quantitative
implications for astrophysics, we have to
take what we learn about single Te, ne
plasmas on Z and incorporate this into a
model white dwarf atmosphere.

Patty Cho is leading an effort to insert
new H Lyman and Balmer line profiles
(from Xenomorph) into the model
atmosphere code TLUSTY (I. Hubeny),
and we’re starting to explore the impact
of these new model atmospheres on our
inferences about white dwarf stars.

82 F 7

: ?Vidal et al. (1973) profiles

SO

== Continuum LOS §
= Emission LOS
— Absorption LOS
=== Z-pinch extent

continuum
buffer

emission
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backlighter

absorption
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Extra Slides



First Series to Field Gated Camera

Gated Camera z3459
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Gated Camera z3460
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Gated Camera z3462
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/2553 Hydrogen vs Synspec model

p=1.10e-06 g/cm3, Lemke tables

e 72553:ind=27
Synspec: 1.42 eV
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28 29 30 3.1




PrismSpect vs. Synspect Hydrogen

p=1.26e-06 g/cm3, Lemke tables

0.0005 - M —— PrismSpect: 1.30 eV

Synspec: 1.30 eV

0.0004 1
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15.0 e/cc

n,

15.5 e/cc

n,

n, = 16.0 e/cc

Xenomorph VCS TB09: H «, all features off

T = 0.861eV

T = 1.723eV
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.| Lingering concern: what is the FWHM of
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Corrected FWHM of He I 5875 [A]
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the emission data?
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:_ === 73194 em === 73195 em 73402 em
73194 abs

73195 abs 73402 abs

Experimental time [ns]

* The emission data has a higher

FWHM than the absorption data.

* This is reminiscent of the
hydrogen data.

* Further, this probably makes the
results from the self-emission
correction test even more
conservative.



The He | 5015 line in z3462 svs4 — FWHM measurements

10

23462 svs4
- === Gigosos He I 5015 n, trends

10 YTy rrr[rr T rrrr [T rrrrrrr | rrrr T
| = 23462 svsd
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Measured FWHM vs experiment time Measured FWHM vs electron density

The measured widths are Jower than the

predicted widths.



. | Summary of tests performed thus far

Data calibration

Data distortion correction

CCD background subtraction

Scattered light background subtraction
Self-emission correction

Using 5015/5875 population ratios to constrain plasma
conditions

Analysis of pure He shots

Incorrect accounting for instrumental broadening
Incorrect measurement for instrumental broadening
Analyze emission data

Analyze spectra for potential He Il signature

None on line width
None on line width
Makes lines wider

None on line width
None on line width

He | 5875/5015 seem to be formed in the same plasma — no
evidence for HB being formed in a different plasma region

Analysis inconclusive

No significant effects on line width

No significant effects on line widths

Emission data shows similar FWHM trends as absorption

Very limited evidence for presence of He Il



