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Abstract

A study was performed to identify a method to minimize the effect of a linear time-invariant
(LTT) system impulse response on an input. Three methods were studied: Wiener filter, the
N4SID algorithm and transfer function estimation, the latter two using functions from MAT-
LAB’s System Identification Toolbox. Although all three methods were able estimate an un-
known forward impulse response given an input/output time series pair, only the Wiener filter
was able to estimate a system inverse which satisfactorily solved the problem using a cosine
similarity measure.
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1 Introduction

All input/output systems have transfer functions which modify the input. For example, wave-based
transducers emit the derivative (high-pass filtered version) of their inputs, at a minimum. A study
was performed to identify a method to minimize the effect of a linear time-invariant (LTI) system
impulse response on an input. That is, given the LTI system,

y = hxu, o))

where x,, is the input time series, y, the output and h,, the forward system impulse response,
determine a preconditioned input time series, ', such that

Yy ~ h*zpe. 2)

In theory, Z,,e = h™! % z. Only the input and output time series are available, the system impulse
response, h, is unknown. Its inverse must be estimated.
Three algorithms were studied,

* The Wiener filter (see Appendix [A);
* The MATLAB numerical algorithm for state-space identification function, n4sid () ;
e The MATLAB transfer function estimation function, t fest ().

The latter two functions are from the System Identification Toolbox. Although determining an
estimate of the impulse response, h, is not required, the algorithms were used to identify it as a
confirmation they functioned as expected on an input/output test set.

All three methods were successful at approximating the forward impulse response in proof-
of-concept test using a 1-12 Hz chirp input and a single cycle 6.5 Hz sinusoid impulse response.
However, only the Wiener filter estimation of the inverse was successful at compensating for the
forward impulse response’s effect on the input. The measure of success is the cosine similarity as
described in Appendix

The next section presents an overview of signal preconditioning. Section [3|develops a proof-of-
concept. Section [ presents the empirical results using data from an electromechanical transducer
system.



2 Signal Preconditioning

As shown in Figure[I] signal preconditioning involves convolving the input time series, z,,, with an
approximation to the inverse impulse response, hl, resulting in a preconditioned time series, Ty,
which minimizes the effect of the forward impulse response, resulting in a close approximation
to the input signal at the output. This is more easily understood in the frequency domain where
convolution transforms into a multiplication by the transfer function,

X =H(H'X)=HXp, 3)

where X .. = H ' X is the preconditioned signal spectrum.
The inverse impulse response is estimated by swapping the input/output time series, as shown
in Figure |2} in the impulse response estimation algorithms.



Forward Problem

rT—» h Y

Preconditioned Time Series

T—> phl > Tpe—> h T

Figure 1: Preconditioned problem. Given an input/output time series,  and y, with unknown
system impulse response, i, estimate the inverse impulse response, h~L. Then precondition the
input so that when presented to the forward system, its output closely matches the original input.
That is, convolve x with an approximation to the inverse impulse response, h~1, such that the
effects of the impulse response, h, are minimized.

Inverse Problem

Y— h- 1o

Figure 2: Inverse problem. The inverse impulse response may be estimated by swapping the
input/output time series in the algorithms.




3 Proof-of-Concept

The proof-of-concept used a 1-12 Hz chirp as input and a 6.5 Hz single cycle sinusoid as forward
impulse response. The time series are presented in Figure (3| The upper left plot presents the input,
2. The upper right shows the output, y, with peak around 6.5 Hz. The middle left plot shows the
true impulse response in red along with the Wiener, state-space (“SS”, n4sid () ) and transfer
function (“TF”, t fest () ) estimates. The true impulse response is 24 samples. In a real situation
where the impulse response length is unknown, a guess must be made of its length. In this example,
73 samples was selected. Similarly with the state-space and transfer function estimates. A value
of 2 states was selected for the former, and 6 poles and 7 zeros for the latter.

The middle right plot presents the estimated inverse impulse response for the three methods
where the number of Wiener taps remains 73 but the states were increased to 6 and the poles and
zeros to 12 and 13, respectively. The state-space and transfer function numbers were selected in
an attempt to maximize the cosine similarity between the chirp input and preconditioned output.
However, given the poor inverse performance of the the n4sid () and tfest () functions, the
task proved futile.

The bottom left graph shows the preconditioned input using the Wiener approach, the graph to
its right overlays the chirp input and the preconditioned output. The similarity is 0.982 indicating
a good match and the success of the Wiener algorithm.

Table |1|lists the simulation parameters and results. The similarity measures reflect the success
in the forward problem for the three methods and the poor performance with the inverse with the
state-space and transfer function methods.

For completeness, Figure [] presents the state-space and transfer function inverse results. Ev-
idently, for this proof-of-concept problem, the System Identification Toolbox functions perform
well and as expected in the forward but not inverse case. When examining the spectra presented
in the bottom plot of Figure [5] one observes good matches with the chirp input, yet their time
domain equivalents have poor similarity measures. This indicates there is an issue with the phases.
Perhaps, this may be explored at another time.



Table 1: Proof-of-concept parameters.

Simulation Parameters

Input, z, & output, y, size
Forward impulse response, h, size
Forward Wiener filter taps
Inverse Wiener filter taps
Forward state-space (SS) size
Forward transfer function (TF)
Inverse state-space (SS) size
Inverse transfer (TF)

Sample interval
Regularization, alpha

SNR

Noise variance

1441 samples

24 samples

73 samples

73 samples

2

6 poles / 7 zeros
6

12 poles / 13 zeros
6.94e-03 seconds
1.00e-12

40 dB

6.11e-02

Similarity Measure between Input & Preconditioned

Output

Input, x, & output, & \

0.982

Similarity Measures between Forward & Estimated
Impulse Responses

True & Wiener estimate
True & SS estimated
True & TF estimate

0.990
0.899
0.998

Similarity Measures between Inp
Output

ut and Preconditioned

Input & Wiener estimate
Input & SS estimate
Input & TF estimate

0.982
-0.127
0.676
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Figure 3: Proof-of-concept results with the Wiener filter algorithm.




Input & Wiener Preconditioned Output, Yore (Similarity: 0.982)
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Figure 4: Proof-of-concept results with the state-space and transfer function algorithms.
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Figure 5: Proof-of-concept spectral results. The input, original output and impulse response are
represented by x, y and h respectively. 2y, and ;. are the Wiener filter based preconditioned in-
put and resulting output. hes and hyy,, are the Wiener based forward and inverse impulse responses.
hss & hye are the state-space and transfer function estimates. hggn, & hiany are the corresponding
inverse estimates. yss & vy are the state-space and transfer function preconditioned outputs. It is
curious their spectra are good matches with the chirp input, yet their time domain equivalents have
poor similarity measures. This indicates there is an issue with the phases.
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4 Empirical Results

The Wiener filter algorithm was applied to a real transducer system in which an input voltage
signal drives an electromechanical transducer. The goal is to have the input signal match the
output motion. Two data sets were collected. The first, presented in Figure [6] was subjectively
quieter and required no regularization in the Wiener filter. A maximum similarity of 0.97 between
the input and output time series was achieved by iterating over the number of filter taps. The result
was 2500 points.

The second data set, shown in Figure [/}, was noisier. It required a regularization constant of
1073, A maximum similarity of 0.87 was achieved using 8192 filter points.

11
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Figure 6: First input/output time series.
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5 Conclusion

Three methods were evaluated to solve a signal preconditioning problem:
* The Wiener filter (see Appendix [A),
* The MATLAB numerical algorithm for state-space identification function, n4sid (),
e The MATLAB transfer function estimation function, t fest (),

the latter two functions having been taken from the MATLAB System Identification Toolbox.

Although all three algorithms solved the forward problem, only the Wiener filter successfully
solved the inverse and preconditioning problem. Further investigation is required to determine why
the state-space and transfer function methods failed at the inverse problem.
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A  Wiener Filter

There are multiple interpretations of the Wiener filter. A deconvolution interpretation is used here.
Consider a linear time-invariant system, shown in Figure |8} described by

Yn = hn*mn7 (4)

N-1
m=0

where x,, is the input, ¥, is the output and A, is the unknown system impulse response. The Wiener
solution is to find A,, such that

h, = argminE {ei} , (6)
hn
where
N-1
m=0
Expand E {e2 },
N-1 2
E{ei} = E (yn - Z hmxn—m> 5 (8)
m=0
N-1 2 N-1
= E{2}+E (Z hmxn_m> —2E { S hnnm yn} . ©)
m=0 m=0
Minimize with respect to hy,
a ) N-1
P {e2} = 2B {mz:jo [ xn_k} — 2E @0t Yn} (10)
N-1
= 2 Z hon BA{xn—m Tni} — 2E{xp_k yn}, (11)
m=0
N-1
= 2> hpRe(m —k) — 2Ry, (k) = 0, (12)
m=0
where the correlations are defined as
Eqn. (I2) is a matrix equation,
Roz(m —k)-h(m) = Ry (k) (15)



with solution,
h(m) = Ry, (m— k) Ry (k). (16)
When the data are noisy, a regularization may be included with the inverse as,
h(m) = (Rex(m—k)+a)" - Ry(k), (17)

where « is a positive constant.
Given input, x,,, and output, y,, time series, Eqn. (16)) is used to identify the forward impulse
response, h,.

B Similarity Measure

An inner product or cos 6 test is used to determine the similarity between to functions or time series
in particular,
T
- 4T (18)
[yl ||

Using this measure, identical time series yield m = 1, time series which are 180 degrees out of
phase have m = —1 and those which are completely dissimilar result in m = 0.

rT—» h Y

Figure 8: Forward linear time-invariant problem.
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C MATLAB Levinson-Wiggins-Robinson Algorithm, 1wr .m

The Levinson-Wiggins-Robinson (Iwr) algorithm is the core of the Wiener filter. It solves Eqn. (16)
or generally Eqn. when there is a need for a regularization constant.

function [h,varargout] = lwr( x , y , Norder , varargin )

Lk Kk kK ok k& ok ok ok ok ok ok ok ok ok ok k ok ok k ok ok ok ok ok ok ok ok ok k k ok k ok ok k ok ok ok k ke ok k ok ok k ok ok ok k ke ok k ok ok k ok ok ok k kK ok ok ok ok ok ok ok ok ok ok ok

% TITLE: lwr.m

% AUTHOR: Sean K. Lehman

% DATE: April 08, 2021

% FUNCTION: This is the Levinson-Wiggins-Robinson algorithm to compute the
% FIR Wiener solution.

% This is based upon JVC's original lwr.m code.
% y = h ~ x;

% SYNTAX:

% h = 1lwr( x , y , Norder );

% [h,Rxx] = lwr( x , y , Norder );

% [h,Rxx,Ryx] = lwr( x , y , Norder );

% = lwr( x , y , Norder , alpha );

% x 1s the input.

% y 1s the output.

% h is the impulse response to be estimated.
% Norder is the number of FIR taps or fiter order.
% alpha 1s an optional regularization parameter.
% CALLS:

% MODIFICATIONS:

o

Gk Kk kK ok ok ok kok ok ok ok ok ok ok ok ok k ok ok ok ok ok ok ok ok ok ok kK k ok ok k ok ok k ok ok ok sk k ok k ok ok k ok ok ok k ke ok ok ok ok ok k ok ok k kK ok ok ok ok ok ok K ok ok kK |

alpha = 0;
switch nargin

case 4

if —isempty(varargin{l}); alpha = varargin{l}; end

end
555555555555 5555555555555 5555555555 5555555555555 555555%55%5555%5%55%5%5%%%
% JVC's lwr () code returns a result which matches MATLAB's firwiender ()
% code. His code uses FD_Xcorr () which normalizes by,
% N = max( Nx , Ny );
% Nfft = 2 nextpow2 (N);
% if Nfft/2 < N; Nfft = 2«Nfft; end
% Apply the same normalization here
5555555555555 5555555555555 5555555555555 5%5%555555%5%555555%5%55%5%5%55%5%55%5%%%%

17




o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
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45

length (x) length(y) 1);

max ([
= 2 nextpow2( N );

46

Nfft

47

end

Nfft = 2«Nfft;

if Nfft/2 < N;
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51

xcorr(x(:), Norder);

[Rxx, lags]
Ryx

52

:),Norder) ;

1), x(

= Rxx / Nfft;

xcorr (y(
= Ryx / Nfft;

53

Rxx

54

Ryx

55

)i

find( lags==0
(0:Norder) ';
Rxx (n+ndx) ;
Ryx (n+ndx) ;

Rxx (1)

56

ndx

57

Rxx

58

Ryx

59

= + alpha;

Rxx (1)

60

—
IS
O O
T T
N
O O
zZ 2
n 0
O O
N
O O -
N N M
[
O
@®©
B
%)
T A A

61
62
63

zeros ( [Norder+1l 1]);

1;
Rxx(2);

66

Rxx (1) ;

a/p;
= —-kstar(l);

67

kstar (1)

68

Ryx (1) /p;

h(l) *Rxx (2);

del

71

p — kstar(l) xa;
(del-Ryx(2))/p;

3
3:Norder+1l

>

if Norder+1l

76

for n

71

= a(l:n-1) "*Rxx(n:-1:2);

78

kstar (n-1) = a/p;

at

79

01;

[a(l:n-1);
= at-kstar (n-1)+flipud(at);

80

81

h(l:n-1)'"*Rxx(n:-1:2);

= p-kstar(n-1) *xa;

del

82

83

(del-Ryx(n))/p;

k (n-1) =

84

h(l:n)

85

end

86

end

87

88

switch nargout

89

case 2

90

Rxx;

varargout{l} =

case 3

91

92

= RxX;
= Ryx;

varargout{1l}

93

varargout{2}

94

end

95
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D MATLAB Wiener-Based Signal Preconditioner Algorithm

Precondition.m

function [xpre,varargout] = Precondition (x,y,varargin)

Lk Kk kK ok ok ok ok ok ok ok ok ok ok ok ok ok k ok Kk ok ok ok ok ok ok ok ok ok k ok ok k ok ko k ok ok k ke ok k ok ok k ok ok ok k ke ok k ok ko k ok ok k kK ok ok ok ok ok ok ok ok ok kK

$ TITLE: Precondition.m

% AUTHOR: Sean K. Lehman

% DATE: April 19, 2021

% FUNCTION: Use a Wiener filter to attempt to precondition an input to
% minimize the effects of a transfer function

% SYNTAX: xpre = Precondition (x,V)

% xpre = Precondition (x,vy,N)

% xpre = Precondition(x,y,N,alpha)

% xpre = Precondition (x,v,N,alpha,method)

% [xpre,hinv] = Precondition(...)

% [xpre,hinv,h] = Precondition(...)

% method is either 'lwr' or 'firwiener'

% CALLS:

% MODIFICATIONS:
%*********‘k*******‘k**‘k*********‘k**********‘k*******‘k**‘k*********************

X = reshape( x , [1 , 1 );
% = reshape(y , [1 , 1);
Nx = length( x );

alpha = 0;

Method = 'lwr';

if Nx # length (y)

error ('
end

Inputs must have the same lengths');

Nh = fix( Nx/2 );

switch nargin

case 3
if
case 4
if
if
case 5
if
if

—isempty (varargin{l}); Nh varargin{l}; end

—isempty (varargin{l}); Nh varargin{l}; end
—isempty (varargin{2}); alpha = varargin{2}; end

—isempty (varargin{l}); Nh = varargin{l}; end
—isempty (varargin{2}); alpha = varargin{2}; end

Method = varargin{3};

end

switch Method

20




46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

case 'lwr'
hinv = lwr( vy , x , Nh , alpha );
case 'firwiener'
hinv = firwiener( Nh , v , x )';
otherwise
error ('%s: Method is either ''lwr''
end
xpre = conv( hinv , x ) ;
xpre = xpre (l:Nx);
% [xpre,hinv] = Precondition(...
% [xpre,hinv,h] = Precondition(...

switch nargout

case 2
varargout{l} = hinv;
case 3
varargout{l} = hinv;
switch Method
case 'lwr'
varargout{2} = lwr( x , vy
case 'firwiener'

varargout {2} firwiener (
end

end

or

'"firwiener''',Method);
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E MATLAB M-File Which Demonstrates the Preconditioner

tst Precondition.m

function tst_Precondition(varargin)

Lk Kk kK ok ok ok ok ok ok ok ok ok ok ok ok ok k ok Kk ok ok ok ok ok ok ok ok ok k ok ok k ok ko k ok ok k ke ok k ok ok k ok ok ok k ke ok k ok ko k ok ok k kK ok ok ok ok ok ok ok ok ok kK

TITLE: tst_Precondition.m
AUTHOR: Sean K. Lehman
DATE : June 14, 2021
FUNCTION: Test the Precondition.m function
SYNTAX:
CALLS: Precondition ()
fetchrigure ()
Similarity ()
QUESTION:

Given an LTI of the form,
y = conv( h , x )

Seerk a preconditioned input, x_{pre}, to minimize the difference
between y_{pre} and x based upon a cosine similarity measure.

That is, seek an input such that
m = y_{pre}' x x / (norm(y_{pre}) * norm(x))
is maximized, where
y_{pre} = conv( h , x_{pre} )
and
x_{pre} = conv( h™{-1} , x )
and h"{-1} is an estimate of the inverse of h.

As demonstrated in this M-file, a Wiener approach using MATLAB's
firwiener () function yielded the best results.

However, an approach using the System Identification Toolbox functions,
n4sid() and tfest() is also tried.

Although they estimate the forward impulse response well, they failed
miserably at estimating the inverses for preconditioning.

o o° o° o O° A A A° A A A AN AN N N N N O O O A A A AN AN N N AN N N O A A A o o o°

%**************************************************************************
Print = 'no';
switch nargin
case 1
Print = varargin{ 1 };
end
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Use the ID Toolbox.
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For the forward estimate
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Estimate the forward SS & TF models using the ID toolbox.
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Get the estimated impulse response time series.

o
o

150

o\°
o\°
o\
o\
o\
o\

o\
o\
o\©
o\°
o\°
o\
o\
o\
o\

o\
o\
o\
o\°
o\
o\°
o\
o\°
o\
o\
o\
o\

o\©
o\°
o\
o\°
o\
o\
o\
o\
o\

o\
o\
o\°
o\
o\°
o\
o\
o\
o\

o\
o\
o\°
o\°
o\
o\°
o\
o\
o\

o\
o\
o\
o\°
o\°
o\°
o\°
o\
o\
o\
o\
o\

o°
o\

151

get (ipssforward, 'y'");
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Compute the predistored input signals.
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Compute the output using the predistored signals.

This should be a close match to the input.
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Determine the similarity between the Wiener predistored output and the

desired output.
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Determine the similarity of the forward impulse response estimates.
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Save the figure handles.
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Fetch the figure.

%

196

o
o
o
o
o\
o\

o\
o\
o
o
o
o
o
o
o\

o\
o\
o\°
o
o
o
o
o\
o\
o\
o\
o\

o
o
o
o
o
o
o\
o\
o\

o\
o
o
o
o
o
o
o\
o\

o\
o\
o
o
o
o
o
o
o\

o\
o\
o
o
o
o
o
o
o\
o\
o\
o\

o
o

197

);clf

AspectRatio

4

'Signal Preconditioning I'

figureList (1) = fetchfigure (
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Plot the input.
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201

subplot (321)

plot ( t

202

14

203

(s)'

'Time
'Input,

xlabel (
title(

204

)i

XV

205

set (gca, 'fontsize',14);
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Plot the output.
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subplot (322)

210

'Time
'Output,

xlabel (
title(

212

)i

yl

213

axis tight

214

set (gca, '"fontsize',14);
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Plot the forward impulse responses.
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218

subplot (323)
hp

219

plot (

t(1l
t(l
t(l
t (1l

220

size (h))
Nid+1)
Nid)

221

4

hest

4

222

223

Nid)
'linewidth'

224

1);
'linewidth'

4

225

2

4

4

set ( hp(l:2)
axis tight

grid on

226

227

228

(s)");

xlabel ('Time

229

4

ylabel ("Impulse Response')

230

4

title('Forward Impulse Response & Estimated Impulse Responses')

legend (

231

232

4

d',Nhimp)

o
o

h

sprintf ('Truth,

233

4

($.3f) '",Nid+1l,hsimilarity (1))

.3f) ",Nss,hsimilarity (2))

sprintf ('Wiener %d

sprintf ('SS %d

234

4

(%

235

)i

($.3f) ", Ntf+[0 1],hsimilarity(3))

sprintf ('TF %d/%d

set (gca, "fontsize',14);
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238

Plot the inverse impulse responses.
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240

subplot (324)

241

l4

hinv

4

£ (1:Nid+1)
t (1:Nid)
t (1

243

'k'

hssinv ,

14

o\

244

g'

htfinv ,
1);

14

Nid)
'linewidth'

hp = plot(

o\

245

14

246

247

14

hinv

14

Nid+1)
length (hssinv)-1) xdt

t(l

248

hssinv ,

14

(0

249
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htfinv ,

4

length (htfinv)-1) xdt

(0
'linewidth'

250

1);

14

251

2

, 'linewidth' ,

set ( hp (1)
axis tight

grid on

252

253

254

(s)");

xlabel ('Time

255

ylabel ('Impulse Response');

256

title('Inverse Impulse Response & Estimated Inverses');

legend (

257

258

sprintf ('Wiener %d',Nid+1),
sprintf ('SS %d',Nssinv),

259

260

4

sprintf ('TF %d/%d',Ntfinv+[0 171))

set (gca, 'fontsize',14);
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263

Plot the Wiener predistorted input.
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265

subplot (325)

plot (

266

267

xpre , 'b',

4

t

268

1);

4

'linewidth'

axis tight

269

270

(s)");

xlabel ('Time

271

x_{pre}');

title('Weiner Preconditioned Input,

set (gca, 'fontsize',14);
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273

Plot the Wiener predistorted output.
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276

subplot (326)

plot (

277

278

279

s YPre

t

280

1);

4

'linewidth'

axis tight

281

282

(s)");

xlabel ('Time

283

title( sprintf ('Input & Wiener Preconditioned Output, y_{pre}

284

)

%.3f) ",similarity)

(Similarity
legend('Input', 'Output', 'Location', '"NorthEast"')

set (gca, "fontsize',14);

285

286

Fetch the figure.
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AspectRatio

4

'Signal Preconditioning II'

figurelList (2) = fetchfigure(
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Re-plot the Wiener predistorted output.
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293

subplot (311)

plot (

294

295

296

4

r Ypre

t

297

4

'linewidth'

298
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axis tight
300 Xlabel ('Time

299

(s)");

sprintf ('Input & Wiener Preconditioned Output,

v_{pre}

title(

301

)

.3f) ", similarity)

o
o

(Similarity
legend('Input', "Output', "Location', '"NorthEast"')

set (gca, "fontsize',14);
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Plot the SS & TF predistorted inputs.
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subplot (312)

plot (

307

xpre

308

Vb',

4

t
t
t

309

lkll

xpress ,

4

310

'g',

xpretf ,
'linewidth'

axis tight

14

311

1);

4

312

313

(s)");

xlabel ('Time

314

x_{pre}');

title('Preconditioned Input SS & TF Inputs,

legend (...

315

316

4

d', length (xpre))

o
°

sprintf ('Wiener

317

4

.3f) ", length (xpress),Similarity (xpre, xpress))
.3f) ", length (xpretf),Similarity (xpre, xpretf))

o\

(
(

sprintf ('SS %d

318

)i

o)
°

sprintf ('TEF %d
set (gca, "fontsize',14);
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Plot the SS & TF predistorted outputs.
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subplot (313)

plot (

324

325

326

4

ypress

14

t
t

327

4

328

1);

4

'linewidth'

axis tight

329

330

(s)");

'Input & Preconditioned SS & TF Outputs,

xlabel ('Time

title(

331

)i

v_{pre}’

332

legend (...

333

'Input’', ...
sprintf ('SS

334

.3f) ", Similarity (xpress,x)), ...
($.3f)"'",Similarity (xpretf,x)));

)
<

(

335

sprintf ('TF
set (gca, 'fontsize',14);

336
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338

Compute spectra
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o
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341

Nwindow = 128;
Nwindow / 2
= 2 nextpow2 ( Nt

342

14

Noverlap =
Nfft

343

)i

344

4

)

1/dt
1/dt

Nwindow

4

Nfft

, Noverlap ,

Nwindow

Nwindow
[h; zeros ([Nt-Nhimp 1])]

pwelch( x ,
= pwelch( vy ,
= pwelch(

1/dt

[X, freq]

345

)i

Noverlap ,

4

Nfft

Noverlap ,

4
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Nfft

4

4

347

)i

4
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HEST = pwelch( [hest;zeros([Nt-length(hest) 1])] , Nwindow ,
Noverlap , Nfft , 1/dt );

XPRE = pwelch( xpre , Nwindow , Noverlap , Nfft , 1/dt );

YPRE = pwelch( ypre , Nwindow , Noverlap , Nfft , 1/dt );

YPRESS = pwelch( ypress , Nwindow , Noverlap , Nfft , 1/dt );

YPRETF = pwelch( ypretf , Nwindow , Noverlap , Nfft , 1/dt );

HSS = pwelch( [hss;zeros([Nt-length(hss) 1]1)] , Nwindow , Noverlap
, Nfft , 1/dt );

HTF = pwelch( [htf;zeros([Nt-length(hss) 1])] , Nwindow , Noverlap
, Nfft , 1/dt );

HINV = pwelch( [hinv;zeros ([Nt-length(hinv) 1])] , Nwindow ,
Noverlap , Nfft , 1/dt );

HSSINV = pwelch( [hssinv;zeros ([Nt-length(hssinv) 1])] , Nwindow ,
Noverlap , Nfft , 1/dt );

HTFINV = pwelch( [htfinv;zeros ([Nt-length (htfinv) 1])] , Nwindow ,
Noverlap , Nfft , 1/dt );

$ S = [ XY H HEST XPRE YPRE YPRESS YPRETF HSS HTF HINV HSSINV HTFINV ];

t
[
O

figurelList (3) = fetchfigure( 'Signal Preconditioning III' , AspectRa
);clf
subplot (311)
semilogy (
freq , [ X Y H XPRE YPRE HEST HINV ],
'linewidth' , 1 );
xlabel ( '"Frequency (Hz)' );
title( 'Spectra' );
legend ('x','y', 'h', 'x_{pre}','y_{pre}', 'h_{est}', 'h_{inv}");
axis tight
set( gca , 'fontsize' , 14 );

subplot (312)
hp = semilogy (
freq , [ H HEST HSS HTF HINV HSSINV HTFINV ] , 'linewidth' , 1 );
set ( hp([2 4]) , 'linestyle' , '"—=' );
xlabel ( '"Frequency (Hz)' );
title( 'Spectra' );
legend('h', 'h_{est}','h_{ss}','h_{tf}','h_{inv}', 'h_{ssinv}','h_{tfinv}");
axis tight
set ( gca , 'fontsize' , 14 );

subplot (313)
hp = semilogy( ...
freq , [ X YPRE YPRESS YPRETF ] , 'linewidth' , 1 );
set ( hp(4) , 'linestyle' , '"—="' );
xlabel ( '"Frequency (Hz)' );
title( 'Spectra' );
legend ('x','y_{pre}','y_{ss}',"'y_{tf}");
axis tight
set ( gca , 'fontsize' , 14 );
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fprintf (1, '$25s $6d\n', 'x & y size, Nt',6Nt);

fprintf (1, '$25s %$6d\n', 'h size, Nhimp',Nhimp) ;

fprintf (1, '$25s %$6d\n', '"Wiener size, Nid',6Nid);

fprintf (1, '$25s $6d\n', '"hest size, Nid+1',6Nid+1);

fprintf (1, '$25s $6d\n', 'hinv size, Nid+1', length (hinv));

fprintf (1, '%$25s $6d\n', 'Forward SS size',Nss);

fprintf (1, '$25s $6d/%d\n', '"Forward TF size',Ntf+[0 1]);

fprintf (1, '$25s %$6d\n"' 'Inverse SS size',Nssinv);

fprintf (1, '$25s $6d/% d\n , '"Inverse TF size',Ntfinv+[0 11]);

fprintf (1, '$25s % .3f\n', 'x, Wiener similarity',similarity);
fprintf (1, '$25s % .3f\n','x, SS similarity',Similarity (xpress,x));
fprintf (1, '%$25s % .3f\n','x, TF similarity',Similarity (xpretf,x));
fprintf (1, '$25s % .3f\n','h, Wiener similarity',hsimilarity(1));
fprintf (1, '%$25s % .3f\n','h, SS similarity',hsimilarity(2));
fprintf (1, '%25s % .3f\n','h, TF similarity',hsimilarity(3));
fprintf (1, '$25s %.2e seconds\n', 'Sample interval, dt',dt);

fprintf (1, '$25s %.2e\n', 'Regularization, alpha',alpha);

fprintf (1, '%$25s %g dB\n', 'SNR', SNR) ;

fprintf (1, '$25s %.2e\n', 'Noise variance', SigmaNoise) ;
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1, Printing figures ... ');
for n = l:length(figurelist)
EPSFile = sprintf('Signal_ Precondition-%d.eps',n);
fprintf (1, '$s ... ',EPSFile);
figure ( figurelList (n) );
orient landscape;
print ( EPSFile , '-depsc2' );
end
fprintf (1, 'done.\n'");
end

end % function tst_Precondition ()

function s = Similarity(x,y,varargin)

Lk Kk kK ok k& ok ok ok k ok ok ok ok ok ok k ok ok k ok ok ok ok ok ok ok ok ok k ok ok k ok ok k ok ok ok ok ok ok k ok ok k ok ok k ok ok k ok ok k ok ok ok k kK ok ok ok ok ok ok ok ok ok kK

TITLE: Similarity.m
AUTHOR: Sean K. Lehman
DATE: April 19, 2021

FUNCTION: Measure the similarity between two time series
SYNTAX:

Similarity(x,vy)

Similarity(x,y,Measure)

o0 o° o° o° o° o o° o
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Measure is 'cosine' (default)
'numsim’'
where the similarity between two numbers, 'numsim' is
numsim(a,b) = 1 - abs( a - b ) / (abs(a)+abs (b))
CALLS:

MODIFICATIONS:

o® o° o0 o° o° o° o° o° o° o

%**************************************************************************
Measure = 'cosine';
switch nargin

case 3, Measure

varargin{ 1 };
end

x = reshape( x , []1 , 1 );
y = reshape(y , [1, 1);

if length(x) # length(y)
error ('Inputs must have the same lengths');
end

switch Measure
case 'numsim'
s =mean( 1 - abs( x-y ) ./ (abs(x) + abs(y)) );

Q

otherwise % cosine measure

s =y' x x / (norm(y) * norm(x));
end
end % s = Similarity(x,y,varargin)
function fig = fetchfigure( FigureName , varargin )

%**************************************************************************

TITLE: fetchfigure.m
AUTHOR: Sean K. Lehman
DATE: July 08, 2004

FUNCTION: Fetch a figure by name

SYNTAX: fig fetchfigure ( FigureName )
fig = fetchfigure( FigureName , scale )

MODIFICATIONS: Philip Top 11/24/09 modified function to use findobj
method, should be slightly faster than previous methodology

o0 o° 0 o O° A A A° A° A O o o° o

*************************************************************************/

fig = findobj(get (0, 'Children'), 'Name',FigureName) ;

[

if isempty(fig) % Create new window
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4

'screenSize' )

4

0
figure ('Name',FigureName, 'visible', 'off"');

get (

scrnsize
fig

494

495

)i

'position’

fig ,

pos = get (

496

497

switch length(varargin)

498

case 1

499

varargin{l};

scale

500

end

scalex[1 1];

scale =

14

==1

if length(scale)

otherwise

501

502

= [1 11;

scale

503

end
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Center on screen
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(scrnsize (3)-scale(l)*pos(3))/2;

pos (1)

509

o
o
o
oe
o\
o\

o
oe
oe
oe
oe
o
o
oe
oe

o\
oe
o
oe
oe
oe
o
oe
o
o\
o\
o\

oe
oe
oe
o
oe
oe
oe
o\
o\

oe
oe
oe
oe
o
o
o
oe
o\

o
o
oe
oe
o
o
o
o
o\

o\
oe
oe
oe
oe
o
o
o
oe
o\
o\°

510

one must correct for the

Because the Windows OS is a cluster fxxk,

vertical mis-position.
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if ispc

514

(scrnsize (4)-scale (2)*pos(4))/2;

pos (2)

515

end
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517

Set the figure position
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519

scale (1) xpos (3)

pos (2)

[pos (1)

4

'position'

fig ,

set (

520

)i

scale (2) xpos (4) 1]

end

521

figure (fiqg);

522

varargin )

fig = fetchfigure( FigureName ,

end %

523
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