
LLNL-TR-824190

Signal Preconditioning to
Minimize Impulse Response
Contribution

S. K. Lehman

July 7, 2021

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Signal Preconditioning to Minimize Impulse Response
Contribution

Sean K. Lehman

July 07, 2021

Abstract

A study was performed to identify a method to minimize the effect of a linear time-invariant
(LTI) system impulse response on an input. Three methods were studied: Wiener filter, the
N4SID algorithm and transfer function estimation, the latter two using functions from MAT-
LAB’s System Identification Toolbox. Although all three methods were able estimate an un-
known forward impulse response given an input/output time series pair, only the Wiener filter
was able to estimate a system inverse which satisfactorily solved the problem using a cosine
similarity measure.

LLNL-TR-824190

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United

States government. Neither the United States government nor Lawrence Livermore National Se-
curity, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of any information, ap-
paratus, product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States government or Lawrence Livermore National
Security, LLC. The views and opinions of authors expressed herein do not necessarily state or re-
flect those of the United States government or Lawrence Livermore National Security, LLC, and
shall not be used for advertising or product endorsement purposes.

Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Secu-
rity, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under
Contract DE-AC52-07NA27344.

Auspices This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

1

Contents
1 Introduction 3

2 Signal Preconditioning 4

3 Proof-of-Concept 6

4 Empirical Results 11

5 Conclusion 14

A Wiener Filter 15

B Similarity Measure 16

C MATLAB Levinson-Wiggins-Robinson Algorithm, lwr.m 17

D MATLAB Wiener-Based Signal Preconditioner Algorithm Precondition.m 20

E MATLAB M-File Which Demonstrates the Preconditioner tst Precondition.m 22

2

1 Introduction
All input/output systems have transfer functions which modify the input. For example, wave-based
transducers emit the derivative (high-pass filtered version) of their inputs, at a minimum. A study
was performed to identify a method to minimize the effect of a linear time-invariant (LTI) system
impulse response on an input. That is, given the LTI system,

y = h ∗ x, (1)

where xn is the input time series, yn the output and hn the forward system impulse response,
determine a preconditioned input time series, xpre such that

y ≈ h ∗ xpre. (2)

In theory, xpre = h−1 ∗ x. Only the input and output time series are available, the system impulse
response, h, is unknown. Its inverse must be estimated.

Three algorithms were studied,

• The Wiener filter (see Appendix A);

• The MATLAB numerical algorithm for state-space identification function, n4sid();

• The MATLAB transfer function estimation function, tfest().

The latter two functions are from the System Identification Toolbox. Although determining an
estimate of the impulse response, ĥ, is not required, the algorithms were used to identify it as a
confirmation they functioned as expected on an input/output test set.

All three methods were successful at approximating the forward impulse response in proof-
of-concept test using a 1–12 Hz chirp input and a single cycle 6.5 Hz sinusoid impulse response.
However, only the Wiener filter estimation of the inverse was successful at compensating for the
forward impulse response’s effect on the input. The measure of success is the cosine similarity as
described in Appendix B.

The next section presents an overview of signal preconditioning. Section 3 develops a proof-of-
concept. Section 4 presents the empirical results using data from an electromechanical transducer
system.

3

2 Signal Preconditioning
As shown in Figure 1, signal preconditioning involves convolving the input time series, xn, with an
approximation to the inverse impulse response, ĥ−1, resulting in a preconditioned time series, xpre,
which minimizes the effect of the forward impulse response, resulting in a close approximation
to the input signal at the output. This is more easily understood in the frequency domain where
convolution transforms into a multiplication by the transfer function,

X̂ = H
(
H−1X

)
= HXpre, (3)

where Xpre ≡ H−1X is the preconditioned signal spectrum.
The inverse impulse response is estimated by swapping the input/output time series, as shown

in Figure 2, in the impulse response estimation algorithms.

4

Forward Problem

Preconditioned Time Series

Figure 1: Preconditioned problem. Given an input/output time series, x and y, with unknown
system impulse response, h, estimate the inverse impulse response, ĥ−1. Then precondition the
input so that when presented to the forward system, its output closely matches the original input.
That is, convolve x with an approximation to the inverse impulse response, ĥ−1, such that the
effects of the impulse response, h, are minimized.

Inverse Problem

Figure 2: Inverse problem. The inverse impulse response may be estimated by swapping the
input/output time series in the algorithms.

5

3 Proof-of-Concept
The proof-of-concept used a 1–12 Hz chirp as input and a 6.5 Hz single cycle sinusoid as forward
impulse response. The time series are presented in Figure 3. The upper left plot presents the input,
x. The upper right shows the output, y, with peak around 6.5 Hz. The middle left plot shows the
true impulse response in red along with the Wiener, state-space (“SS”, n4sid()) and transfer
function (“TF”, tfest()) estimates. The true impulse response is 24 samples. In a real situation
where the impulse response length is unknown, a guess must be made of its length. In this example,
73 samples was selected. Similarly with the state-space and transfer function estimates. A value
of 2 states was selected for the former, and 6 poles and 7 zeros for the latter.

The middle right plot presents the estimated inverse impulse response for the three methods
where the number of Wiener taps remains 73 but the states were increased to 6 and the poles and
zeros to 12 and 13, respectively. The state-space and transfer function numbers were selected in
an attempt to maximize the cosine similarity between the chirp input and preconditioned output.
However, given the poor inverse performance of the the n4sid() and tfest() functions, the
task proved futile.

The bottom left graph shows the preconditioned input using the Wiener approach, the graph to
its right overlays the chirp input and the preconditioned output. The similarity is 0.982 indicating
a good match and the success of the Wiener algorithm.

Table 1 lists the simulation parameters and results. The similarity measures reflect the success
in the forward problem for the three methods and the poor performance with the inverse with the
state-space and transfer function methods.

For completeness, Figure 4 presents the state-space and transfer function inverse results. Ev-
idently, for this proof-of-concept problem, the System Identification Toolbox functions perform
well and as expected in the forward but not inverse case. When examining the spectra presented
in the bottom plot of Figure 5, one observes good matches with the chirp input, yet their time
domain equivalents have poor similarity measures. This indicates there is an issue with the phases.
Perhaps, this may be explored at another time.

6

Table 1: Proof-of-concept parameters.

Simulation Parameters
Input, x, & output, y, size 1441 samples

Forward impulse response, h, size 24 samples
Forward Wiener filter taps 73 samples
Inverse Wiener filter taps 73 samples

Forward state-space (SS) size 2
Forward transfer function (TF) 6 poles / 7 zeros

Inverse state-space (SS) size 6
Inverse transfer (TF) 12 poles / 13 zeros

Sample interval 6.94e-03 seconds
Regularization, alpha 1.00e-12

SNR 40 dB
Noise variance 6.11e-02

Similarity Measure between Input & Preconditioned
Output

Input, x, & output, x̂ 0.982
Similarity Measures between Forward & Estimated

Impulse Responses
True & Wiener estimate 0.990

True & SS estimated 0.899
True & TF estimate 0.998

Similarity Measures between Input and Preconditioned
Output

Input & Wiener estimate 0.982
Input & SS estimate -0.127
Input & TF estimate 0.676

7

0 1 2 3 4 5 6 7 8 9 10
Time (s)

-1

-0.5

0

0.5

1
Input, x

0 1 2 3 4 5 6 7 8 9 10
Time (s)

-10

-5

0

5

10

Output, y

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Time (s)

-1

-0.5

0

0.5

1

Im
pu

ls
e

R
es

po
ns

e

Forward Impulse Response & Estimated Impulse Responses

Truth, h 24
Wiener 73 (0.990)
SS 2 (0.899)
TF 6/7 (0.998)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (s)

-1

-0.5

0

0.5

1

Im
pu

ls
e

R
es

po
ns

e
Inverse Impulse Response & Estimated Inverses

Wiener 73
SS 6
TF 12/13

0 1 2 3 4 5 6 7 8 9 10
Time (s)

-1

-0.5

0

0.5

1

Weiner Preconditioned Input, xpre

0 1 2 3 4 5 6 7 8 9 10
Time (s)

-1

-0.5

0

0.5

1

Input & Wiener Preconditioned Output, ypre (Similarity: 0.982)

Input
Output

Figure 3: Proof-of-concept results with the Wiener filter algorithm.

8

0 1 2 3 4 5 6 7 8 9 10
Time (s)

-1

-0.5

0

0.5

1

Input & Wiener Preconditioned Output, ypre (Similarity: 0.982)

Input
Output

0 1 2 3 4 5 6 7 8 9 10
Time (s)

-1

-0.5

0

0.5

1

Preconditioned Input SS & TF Inputs, xpre

0 1 2 3 4 5 6 7 8 9 10
Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

Input & Preconditioned SS & TF Outputs, ypre

Wiener 1441
SS 1441 (-0.384)
TF 1441 (-0.416)

Input
SS (-0.127)
TF (0.676)

Figure 4: Proof-of-concept results with the state-space and transfer function algorithms.

9

0 10 20 30 40 50 60 70
Frequency (Hz)

10-5

100

Spectra

x
y
h
xpre
ypre
hest
hinv

0 10 20 30 40 50 60 70
Frequency (Hz)

10-10

10-5

Spectra

h
hest
hss
htf
hinv
hssinv
htfinv

0 10 20 30 40 50 60 70
Frequency (Hz)

10-6

10-4

10-2

Spectra

x
ypre
yss
ytf

Figure 5: Proof-of-concept spectral results. The input, original output and impulse response are
represented by x, y and h respectively. xpre and ypre are the Wiener filter based preconditioned in-
put and resulting output. hest and hinv are the Wiener based forward and inverse impulse responses.
hss & htf are the state-space and transfer function estimates. hssinv & htfinv are the corresponding
inverse estimates. yss & ytf are the state-space and transfer function preconditioned outputs. It is
curious their spectra are good matches with the chirp input, yet their time domain equivalents have
poor similarity measures. This indicates there is an issue with the phases.

10

4 Empirical Results
The Wiener filter algorithm was applied to a real transducer system in which an input voltage
signal drives an electromechanical transducer. The goal is to have the input signal match the
output motion. Two data sets were collected. The first, presented in Figure 6, was subjectively
quieter and required no regularization in the Wiener filter. A maximum similarity of 0.97 between
the input and output time series was achieved by iterating over the number of filter taps. The result
was 2500 points.

The second data set, shown in Figure 7, was noisier. It required a regularization constant of
10−3. A maximum similarity of 0.87 was achieved using 8192 filter points.

11

-3500 -3000 -2500 -2000 -1500 -1000 -500 0
Time (ms)

-0.1

-0.05

0

0.05

0.1

V
ol

ta
ge

 (
V
)

Channel 1 (Input)

-3500 -3000 -2500 -2000 -1500 -1000 -500 0
Time (ms)

-1

-0.5

0

0.5

V
ol

ta
ge

 (
V
)

Channel 2 (Output)

0 5 10 15 20 25 30 35 40
Time (ms)

-0.5

0

0.5

1

A
m

pl
itu

de

Estimated Impulse Response; Regularization: 0.0e+00; Nh: 2500

0 5 10 15 20 25 30 35 40
Time (ms)

-0.05

0

0.05

0.1

0.15

A
m

pl
itu

de

Estimated Inverse Impulse Response

-3500 -3000 -2500 -2000 -1500 -1000 -500 0
Time (ms)

-0.02

-0.01

0

0.01

0.02

A
m

pl
itu

de

Preconditioned Input

-3500 -3000 -2500 -2000 -1500 -1000 -500 0
Time (ms)

-0.1

-0.05

0

0.05

0.1

A
m

pl
itu

de

Preconditioned Output; Similarity Before: -0.78; After: 0.97

Based upon a dot product or cosine theta measure,
these two time series have a similarity measure of 0.97.

This should be the input to
achieve the approximation to the
desired output.

These data were “clean” and
required no regularization

Figure 6: First input/output time series.

12

-2 0 2 4 6 8 10 12 14 16
Time (ms)

-0.04

-0.02

0

0.02

0.04

0.06

0.08

V
ol

ta
ge

 (
V
)

Channel 1 (Input)

-2 0 2 4 6 8 10 12 14 16
Time (ms)

-0.4

-0.2

0

0.2

0.4

0.6

V
ol

ta
ge

 (
V
)

Channel 2 (Output)

0 0.1 0.2 0.3 0.4 0.5 0.6
Time (ms)

-0.01

-0.005

0

0.005

0.01

A
m

pl
itu

de

Estimated Impulse Response; Regularization: 1.0e-03; Nh: 8192

0 0.1 0.2 0.3 0.4 0.5 0.6
Time (ms)

-8

-6

-4

-2

0

A
m

pl
itu

de
10-4 Estimated Inverse Impulse Response

-2 0 2 4 6 8 10 12 14 16
Time (ms)

-4

-2

0

2

4

A
m

pl
itu

de

10-3 Preconditioned Input

-2 0 2 4 6 8 10 12 14 16
Time (ms)

-0.02

0

0.02

0.04

A
m

pl
itu

de

Preconditioned Output; Similarity Before: -0.07; After: 0.87

Based upon a dot product or cosine theta measure,
these two time series have a similarity measure of 0.87.

This should be the input to
achieve the approximation to the
desired output.

These data are noisier and
required regularization

Figure 7: Second input/output time series.

13

5 Conclusion
Three methods were evaluated to solve a signal preconditioning problem:

• The Wiener filter (see Appendix A),

• The MATLAB numerical algorithm for state-space identification function, n4sid(),

• The MATLAB transfer function estimation function, tfest(),

the latter two functions having been taken from the MATLAB System Identification Toolbox.
Although all three algorithms solved the forward problem, only the Wiener filter successfully

solved the inverse and preconditioning problem. Further investigation is required to determine why
the state-space and transfer function methods failed at the inverse problem.

14

A Wiener Filter
There are multiple interpretations of the Wiener filter. A deconvolution interpretation is used here.

Consider a linear time-invariant system, shown in Figure 8, described by

yn = hn ∗ xn, (4)

yn =
N−1∑
m=0

hmxn−m (5)

where xn is the input, yn is the output and hn is the unknown system impulse response. The Wiener
solution is to find hn such that

hn = argmin
hn

E
{
e2
n

}
, (6)

where

en ≡ yn −
N−1∑
m=0

hmxn−m. (7)

Expand E {e2
n},

E
{
e2
n

}
= E


(
yn −

N−1∑
m=0

hmxn−m

)2
 , (8)

= E
{
y2
n

}
+ E


(
N−1∑
m=0

hmxn−m

)2
− 2E

{
N−1∑
m=0

hmxn−m yn

}
. (9)

Minimize with respect to hk,

∂

∂hk
E
{
e2
n

}
= 2E

{
N−1∑
m=0

hmxn−m xn−k

}
− 2E {xn−k yn} , (10)

= 2
N−1∑
m=0

hmE {xn−m xn−k} − 2E {xn−k yn} , (11)

= 2
N−1∑
m=0

hmRxx(m− k)− 2Ryx(k) ≡ 0, (12)

where the correlations are defined as

Rxx(m) = E {xn xn−m} , (13)
Ryx(k) = E {xn−k yn} . (14)

Eqn. (12) is a matrix equation,

Rxx(m− k) · h(m) = Ryx(k) (15)

15

with solution,

h(m) = R−1
xx (m− k) · Ryx(k). (16)

When the data are noisy, a regularization may be included with the inverse as,

h(m) = (Rxx(m− k) + α)−1 · Ryx(k), (17)

where α is a positive constant.
Given input, xn, and output, yn, time series, Eqn. (16) is used to identify the forward impulse

response, hn.

B Similarity Measure
An inner product or cos θ test is used to determine the similarity between to functions or time series
in particular,

m =
y · x
|y| |x|

. (18)

Using this measure, identical time series yield m ≡ 1, time series which are 180 degrees out of
phase have m ≡ −1 and those which are completely dissimilar result in m ≡ 0.

Figure 8: Forward linear time-invariant problem.

16

C MATLAB Levinson-Wiggins-Robinson Algorithm, lwr.m
The Levinson-Wiggins-Robinson (lwr) algorithm is the core of the Wiener filter. It solves Eqn. (16)
or generally Eqn. (17) when there is a need for a regularization constant.

1 function [h,varargout] = lwr(x , y , Norder , varargin)
2 %**
3 %
4 % TITLE: lwr.m
5 % AUTHOR: Sean K. Lehman
6 % DATE: April 08, 2021
7 % FUNCTION: This is the Levinson-Wiggins-Robinson algorithm to compute the
8 % FIR Wiener solution.
9 % This is based upon JVC's original lwr.m code.

10 %
11 % y = h * x;
12 % SYNTAX:
13 % h = lwr(x , y , Norder);
14 % [h,Rxx] = lwr(x , y , Norder);
15 % [h,Rxx,Ryx] = lwr(x , y , Norder);
16 % ... = lwr(x , y , Norder , alpha);
17 %
18 % x is the input.
19 % y is the output.
20 % h is the impulse response to be estimated.
21 % Norder is the number of FIR taps or fiter order.
22 % alpha is an optional regularization parameter.
23 %
24 % CALLS:
25 %
26 % MODIFICATIONS:
27 %
28 %
29 %**%
30 alpha = 0;
31 switch nargin
32 case 4
33 if ¬isempty(varargin{1}); alpha = varargin{1}; end
34 end
35

36 %%%
37 % JVC's lwr() code returns a result which matches MATLAB's firwiender()
38 % code. His code uses FD_Xcorr() which normalizes by,
39 % N = max(Nx , Ny);
40 % Nfft = 2ˆnextpow2(N);
41 % if Nfft/2 < N; Nfft = 2*Nfft; end
42 % Apply the same normalization here
43 %%%
44 % Normalization

17

45 %%%
46 N = max([length(x) length(y)]);
47 Nfft = 2ˆnextpow2(N);
48 if Nfft/2 < N; Nfft = 2*Nfft; end
49 %%%
50 % Correlations
51 %%%
52 [Rxx,lags] = xcorr(x(:), Norder);
53 Ryx = xcorr(y(:),x(:),Norder);
54 Rxx = Rxx / Nfft;
55 Ryx = Ryx / Nfft;
56 n = find(lags==0);
57 ndx = (0:Norder)';
58 Rxx = Rxx(n+ndx);
59 Ryx = Ryx(n+ndx);
60 Rxx(1) = Rxx(1) + alpha;
61 a = zeros([Norder 1]);
62 k = zeros([Norder 1]);
63 kstar = k;
64 h = zeros([Norder+1 1]);
65 a(1) = 1;
66 ∆ = Rxx(2);
67 p = Rxx(1);
68 kstar(1) = ∆/p;
69 a(2) = -kstar(1);
70 h(1) = Ryx(1)/p;
71 del = h(1)*Rxx(2);
72 p = p - kstar(1)*∆;
73 k(1) = (del-Ryx(2))/p;
74 h(1) = h(1) - k(1)*a(2);
75 h(2) = -k(1);
76 if Norder+1 ≥ 3
77 for n = 3:Norder+1
78 ∆ = a(1:n-1)'*Rxx(n:-1:2);
79 kstar(n-1) = ∆/p;
80 at = [a(1:n-1); 0];
81 a = at-kstar(n-1)*flipud(at);
82 del = h(1:n-1)'*Rxx(n:-1:2);
83 p = p-kstar(n-1)*∆;
84 k(n-1) = (del-Ryx(n))/p;
85 h(1:n) = [h(1:n-1); 0] - k(n-1)*a(n:-1:1);
86 end
87 end
88

89 switch nargout
90 case 2
91 varargout{1} = Rxx;
92 case 3
93 varargout{1} = Rxx;
94 varargout{2} = Ryx;
95 end

18

19

D MATLAB Wiener-Based Signal Preconditioner Algorithm
Precondition.m

1 function [xpre,varargout] = Precondition(x,y,varargin)
2 %**
3 %
4 % TITLE: Precondition.m
5 % AUTHOR: Sean K. Lehman
6 % DATE: April 19, 2021
7 % FUNCTION: Use a Wiener filter to attempt to precondition an input to
8 % minimize the effects of a transfer function
9 % SYNTAX: xpre = Precondition(x,y)

10 % xpre = Precondition(x,y,N)
11 % xpre = Precondition(x,y,N,alpha)
12 % xpre = Precondition(x,y,N,alpha,method)
13 % [xpre,hinv] = Precondition(...)
14 % [xpre,hinv,h] = Precondition(...)
15 %
16 % method is either 'lwr' or 'firwiener'
17 % CALLS:
18 %
19 % MODIFICATIONS:
20 %
21 %
22 %**
23 x = reshape(x , [] , 1);
24 y = reshape(y , [] , 1);
25 Nx = length(x);
26 alpha = 0;
27 Method = 'lwr';
28 if Nx 6= length(y)
29 error('Inputs must have the same lengths');
30 end
31 Nh = fix(Nx/2);
32

33 switch nargin
34 case 3
35 if ¬isempty(varargin{1}); Nh = varargin{1}; end
36 case 4
37 if ¬isempty(varargin{1}); Nh = varargin{1}; end
38 if ¬isempty(varargin{2}); alpha = varargin{2}; end
39 case 5
40 if ¬isempty(varargin{1}); Nh = varargin{1}; end
41 if ¬isempty(varargin{2}); alpha = varargin{2}; end
42 Method = varargin{3};
43 end
44

45 switch Method

20

46 case 'lwr'
47 hinv = lwr(y , x , Nh , alpha);
48 case 'firwiener'
49 hinv = firwiener(Nh , y , x)';
50 otherwise
51 error('%s: Method is either ''lwr'' or ''firwiener''',Method);
52 end
53

54 xpre = conv(hinv , x) ;
55 xpre = xpre(1:Nx);
56

57 % [xpre,hinv] = Precondition(...)
58 % [xpre,hinv,h] = Precondition(...)
59 switch nargout
60 case 2
61 varargout{1} = hinv;
62 case 3
63 varargout{1} = hinv;
64 switch Method
65 case 'lwr'
66 varargout{2} = lwr(x , y , Nh , alpha);
67 case 'firwiener'
68 varargout{2} = firwiener(Nh , x , y)';
69 end
70 end

21

E MATLAB M-File Which Demonstrates the Preconditioner
tst Precondition.m

1 function tst_Precondition(varargin)
2 %**
3 %
4 % TITLE: tst_Precondition.m
5 % AUTHOR: Sean K. Lehman
6 % DATE: June 14, 2021
7 % FUNCTION: Test the Precondition.m function
8 % SYNTAX:
9 % CALLS: Precondition()

10 % fetchrigure()
11 % Similarity()
12 %
13 %
14 % QUESTION:
15 % Given an LTI of the form,
16 % y = conv(h , x)
17 %
18 % Seerk a preconditioned input, x_{pre}, to minimize the difference
19 % between y_{pre} and x based upon a cosine similarity measure.
20 %
21 % That is, seek an input such that
22 % m = y_{pre}' * x / (norm(y_{pre}) * norm(x))
23 % is maximized, where
24 % y_{pre} = conv(h , x_{pre})
25 % and
26 % x_{pre} = conv(hˆ{-1} , x)
27 % and hˆ{-1} is an estimate of the inverse of h.
28 %
29 % As demonstrated in this M-file, a Wiener approach using MATLAB's
30 % firwiener() function yielded the best results.
31 %
32 % However, an approach using the System Identification Toolbox functions,
33 % n4sid() and tfest() is also tried.
34 %
35 % Although they estimate the forward impulse response well, they failed
36 % miserably at estimating the inverses for preconditioning.
37 %
38 %
39 %
40 %**
41 Print = 'no';
42 switch nargin
43 case 1
44 Print = varargin{ 1 };
45 end

22

46 %%%
47 % Define the figure aspect ratio.
48 %%%
49 AspectRatio = [11 8.5]/4;
50 %%%
51 % Form a chirp input signal, x.
52 %%%
53 flim = [1 12];
54 tend = 10;
55 dt = 1/(12*max(flim));
56 t = (0:dt:tend)';
57 x = chirp(t,flim(1),tend,flim(2));
58 %%%
59 % Get the signal length.
60 %%%
61 Nt = length(t);
62 %%%
63 % Create a single cycle sine impulse response.
64 %%%
65 Fc = 6.25;
66 th = (0:dt:1/Fc)';
67 Nhimp = length(th);
68 h = sin(2*pi*Fc*th);
69 %%%
70 % Filter the input.
71 %%%
72 y = conv(h , x);
73 y = y(1:Nt);
74 %%%
75 % Add noise.
76 %%%
77 SNR = 40; % dB
78 SigmaNoise = std(y) * 10ˆ(-SNR/20);
79 noise = SigmaNoise * randn([Nt 1]);
80 y = y + noise;
81 %%%
82 % Given the input/output data, determine the filter using the Wiener
83 % approach.
84 % Guess at Nid since, in practice, the length of the impulse response, h,
85 % is unknown.
86 %%%
87 Nid = 3 * Nhimp;
88 % hest = firwiener(Nid , x , y)';
89 %%%
90 % Determine the inverse.
91 %%%
92 % hinv = firwiener(Nid , y , x)';
93 %%%
94 % Compute the predistored input signal.
95 %%%
96 % xpre = conv(hinv , x) ;

23

97 % xpre = xpre(1:Nt);
98 %%%
99 % Compute the preconditioned input signal using the Precondition() function

100 % which implements all of the above steps.
101 %%%
102 alpha = 1e-12;
103 [xpre,hinv,hest] = Precondition(x,y,Nid,alpha,'lwr');
104 %%%
105 % Compute the output using the predistored signal.
106 % This should be a close match to the input.
107 %%%
108 ypre = conv(hest , xpre) ;
109 ypre = ypre(1:Nt);
110 %%%
111 %%%
112 %%%
113 % Use the ID Toolbox.
114 % Put the time series into ID toolbox format.
115 %%%
116 dforward = iddata(y , x , dt); % For the forward estimate
117 dinverse = iddata(x , y , dt); % For the inverse estimate
118 %%%
119 % Estimate the forward SS & TF models using the ID toolbox.
120 %%%
121 Nss = 2;
122 Ntf = 6;
123 ssopt = n4sidOptions('EnforceStability' , true);
124 ssforward = n4sid(dforward , Nss , ssopt);
125 tfforward = tfest(dforward , Ntf);
126 %%%
127 % Estimate the inverse models.
128 %%%
129 Nssinv = 3 * Nss;
130 Ntfinv = 2 * Ntf;
131 ssinverse = n4sid(dinverse , Nssinv , ssopt);
132 tfinverse = tfest(dinverse , Ntfinv);
133 %%%
134 % Create impulse for impulse responses.
135 %%%
136 u = zeros([2*Nid 1]);
137 u(1) = 1;
138 u = iddata([] , u , dt);
139 %%%
140 % Compute the forward impulse responses.
141 %%%
142 ipssforward = sim(ssforward , u(1:Nid));
143 iptfforward = sim(tfforward , u(1:Nid));
144 %%%
145 % Compute the inverse impulse responses.
146 %%%
147 ipssinverse = sim(ssinverse , u);

24

148 iptfinverse = sim(tfinverse , u);
149 %%%
150 % Get the estimated impulse response time series.
151 %%%
152 hss = get(ipssforward,'y');
153 htf = get(iptfforward,'y');
154 hssinv = get(ipssinverse,'y');
155 htfinv = get(iptfinverse,'y');
156

157 % hss = impulse(ssforward);
158 % htf = impulse(tfforward);
159 % hssinv = impulse(ssinverse);
160 % htfinv = impulse(tfinverse);
161 %%%
162 % Compute the predistored input signals.
163 %%%
164 xpress = conv(hssinv , x) ;
165 xpress = xpress(1:Nt);
166 xpretf = conv(htfinv , x) ;
167 xpretf = xpretf(1:Nt);
168 %%%
169 % Compute the output using the predistored signals.
170 % This should be a close match to the input.
171 %%%
172 ypress = conv(hss , xpress) ;
173 ypress = ypress(1:Nt);
174 ypretf = conv(htf , xpretf) ;
175 ypretf = ypretf(1:Nt);
176 %%%
177 % Determine the similarity between the Wiener predistored output and the
178 % desired output.
179 %%%
180 similarity = Similarity(ypre , x);
181 %%%
182 % Determine the similarity of the forward impulse response estimates.
183 %%%
184 hpadded = zeros([Nid+1 1]);
185 hpadded(1:Nhimp) = h;
186 hsimilarity = [...
187 Similarity(hpadded , hest)
188 Similarity(hpadded(1:Nid) , hss)
189 Similarity(hpadded(1:Nid) , htf)
190];
191 %%%
192 % Save the figure handles.
193 %%%
194 figureList = [0;0;0];
195 %%%
196 % Fetch the figure.
197 %%%
198 figureList(1) = fetchfigure('Signal Preconditioning I' , AspectRatio);clf

25

199 %%%
200 % Plot the input.
201 %%%
202 subplot(321)
203 plot(t , x , 'b');
204 xlabel('Time (s)');
205 title('Input, x');
206 set(gca,'fontsize',14);
207 %%%
208 % Plot the output.
209 %%%
210 subplot(322)
211 plot(t , y , 'b');
212 xlabel('Time (s)');
213 title('Output, y');
214 axis tight
215 set(gca,'fontsize',14);
216 %%%
217 % Plot the forward impulse responses.
218 %%%
219 subplot(323)
220 hp = plot(...
221 t(1:size(h)) , h , 'r' , ...
222 t(1:Nid+1) , hest , 'b' , ...
223 t(1:Nid) , hss , 'k' , ...
224 t(1:Nid) , htf , 'g' , ...
225 'linewidth' , 1);
226 set(hp(1:2) , 'linewidth' , 2);
227 axis tight
228 grid on
229 xlabel('Time (s)');
230 ylabel('Impulse Response');
231 title('Forward Impulse Response & Estimated Impulse Responses');
232 legend(...
233 sprintf('Truth, h %d',Nhimp) , ...
234 sprintf('Wiener %d (%.3f)',Nid+1,hsimilarity(1)) , ...
235 sprintf('SS %d (%.3f)',Nss,hsimilarity(2)) , ...
236 sprintf('TF %d/%d (%.3f)',Ntf+[0 1],hsimilarity(3)));
237 set(gca,'fontsize',14);
238 %%%
239 % Plot the inverse impulse responses.
240 %%%
241 subplot(324)
242 % hp = plot(...
243 % t(1:Nid+1) , hinv , 'b' , ...
244 % t(1:Nid) , hssinv , 'k' , ...
245 % t(1:Nid) , htfinv , 'g' , ...
246 % 'linewidth' , 1);
247 hp = plot(...
248 t(1:Nid+1) , hinv , 'b' , ...
249 (0:length(hssinv)-1)*dt , hssinv , 'k' , ...

26

250 (0:length(htfinv)-1)*dt , htfinv , 'g' , ...
251 'linewidth' , 1);
252 set(hp(1) , 'linewidth' , 2);
253 axis tight
254 grid on
255 xlabel('Time (s)');
256 ylabel('Impulse Response');
257 title('Inverse Impulse Response & Estimated Inverses');
258 legend(...
259 sprintf('Wiener %d',Nid+1), ...
260 sprintf('SS %d',Nssinv), ...
261 sprintf('TF %d/%d',Ntfinv+[0 1]));
262 set(gca,'fontsize',14);
263 %%%
264 % Plot the Wiener predistorted input.
265 %%%
266 subplot(325)
267 plot(...
268 t , xpre , 'b', ...
269 'linewidth' , 1);
270 axis tight
271 xlabel('Time (s)');
272 title('Weiner Preconditioned Input, x_{pre}');
273 set(gca,'fontsize',14);
274 %%%
275 % Plot the Wiener predistorted output.
276 %%%
277 subplot(326)
278 plot(...
279 t , x , 'b' , ...
280 t , ypre , 'g' , ...
281 'linewidth' , 1);
282 axis tight
283 xlabel('Time (s)');
284 title(sprintf('Input & Wiener Preconditioned Output, y_{pre} ...

(Similarity: %.3f)',similarity))
285 legend('Input','Output','Location','NorthEast')
286 set(gca,'fontsize',14);
287 %%%
288 % Fetch the figure.
289 %%%
290 figureList(2) = fetchfigure('Signal Preconditioning II' , AspectRatio ...

);clf
291 %%%
292 % Re-plot the Wiener predistorted output.
293 %%%
294 subplot(311)
295 plot(...
296 t , x , 'b' , ...
297 t , ypre , 'g' , ...
298 'linewidth' , 1);

27

299 axis tight
300 xlabel('Time (s)');
301 title(sprintf('Input & Wiener Preconditioned Output, y_{pre} ...

(Similarity: %.3f)',similarity))
302 legend('Input','Output','Location','NorthEast')
303 set(gca,'fontsize',14);
304 %%%
305 % Plot the SS & TF predistorted inputs.
306 %%%
307 subplot(312)
308 plot(...
309 t , xpre , 'b', ...
310 t , xpress , 'k', ...
311 t , xpretf , 'g', ...
312 'linewidth' , 1);
313 axis tight
314 xlabel('Time (s)');
315 title('Preconditioned Input SS & TF Inputs, x_{pre}');
316 legend(...
317 sprintf('Wiener %d',length(xpre)) , ...
318 sprintf('SS %d (%.3f)',length(xpress),Similarity(xpre,xpress)) , ...
319 sprintf('TF %d (%.3f)',length(xpretf),Similarity(xpre,xpretf)));
320 set(gca,'fontsize',14);
321 %%%
322 % Plot the SS & TF predistorted outputs.
323 %%%
324 subplot(313)
325 plot(...
326 t , x , 'b' , ...
327 t , ypress , 'k' , ...
328 t , ypretf , 'g' , ...
329 'linewidth' , 1);
330 axis tight
331 xlabel('Time (s)');
332 title('Input & Preconditioned SS & TF Outputs, y_{pre}');
333 legend(...
334 'Input',...
335 sprintf('SS (%.3f)',Similarity(xpress,x)),...
336 sprintf('TF (%.3f)',Similarity(xpretf,x)));
337 set(gca,'fontsize',14);
338 %%%
339 % Compute spectra
340 %%%
341 %%
342 Nwindow = 128;
343 Noverlap = Nwindow / 2;
344 Nfft = 2ˆnextpow2(Nt);
345 [X,freq] = pwelch(x , Nwindow , Noverlap , Nfft , 1/dt);
346 Y = pwelch(y , Nwindow , Noverlap , Nfft , 1/dt);
347 H = pwelch([h;zeros([Nt-Nhimp 1])] , Nwindow , Noverlap , Nfft ...

, 1/dt);

28

348 HEST = pwelch([hest;zeros([Nt-length(hest) 1])] , Nwindow , ...
Noverlap , Nfft , 1/dt);

349 XPRE = pwelch(xpre , Nwindow , Noverlap , Nfft , 1/dt);
350 YPRE = pwelch(ypre , Nwindow , Noverlap , Nfft , 1/dt);
351 YPRESS = pwelch(ypress , Nwindow , Noverlap , Nfft , 1/dt);
352 YPRETF = pwelch(ypretf , Nwindow , Noverlap , Nfft , 1/dt);
353 HSS = pwelch([hss;zeros([Nt-length(hss) 1])] , Nwindow , Noverlap ...

, Nfft , 1/dt);
354 HTF = pwelch([htf;zeros([Nt-length(hss) 1])] , Nwindow , Noverlap ...

, Nfft , 1/dt);
355 HINV = pwelch([hinv;zeros([Nt-length(hinv) 1])] , Nwindow , ...

Noverlap , Nfft , 1/dt);
356 HSSINV = pwelch([hssinv;zeros([Nt-length(hssinv) 1])] , Nwindow , ...

Noverlap , Nfft , 1/dt);
357 HTFINV = pwelch([htfinv;zeros([Nt-length(htfinv) 1])] , Nwindow , ...

Noverlap , Nfft , 1/dt);
358 % S = [X Y H HEST XPRE YPRE YPRESS YPRETF HSS HTF HINV HSSINV HTFINV];
359 %%%
360 % Fetch the spectra figure.
361 %%%
362 figureList(3) = fetchfigure('Signal Preconditioning III' , AspectRatio ...

);clf
363 subplot(311)
364 semilogy(...
365 freq , [X Y H XPRE YPRE HEST HINV], ...
366 'linewidth' , 1);
367 xlabel('Frequency (Hz)');
368 title('Spectra');
369 legend('x','y','h','x_{pre}','y_{pre}','h_{est}','h_{inv}');
370 axis tight
371 set(gca , 'fontsize' , 14);
372

373 subplot(312)
374 hp = semilogy(...
375 freq , [H HEST HSS HTF HINV HSSINV HTFINV] , 'linewidth' , 1);
376 set(hp([2 4]) , 'linestyle' , '--');
377 xlabel('Frequency (Hz)');
378 title('Spectra');
379 legend('h','h_{est}','h_{ss}','h_{tf}','h_{inv}','h_{ssinv}','h_{tfinv}');
380 axis tight
381 set(gca , 'fontsize' , 14);
382

383 subplot(313)
384 hp = semilogy(...
385 freq , [X YPRE YPRESS YPRETF] , 'linewidth' , 1);
386 set(hp(4) , 'linestyle' , '--');
387 xlabel('Frequency (Hz)');
388 title('Spectra');
389 legend('x','y_{pre}','y_{ss}','y_{tf}');
390 axis tight
391 set(gca , 'fontsize' , 14);

29

392 %%%
393 % Print useful information
394 %%%
395 fprintf(1,'%25s : %6d\n','x & y size, Nt',Nt);
396 fprintf(1,'%25s : %6d\n','h size, Nhimp',Nhimp);
397 fprintf(1,'%25s : %6d\n','Wiener size, Nid',Nid);
398 fprintf(1,'%25s : %6d\n','hest size, Nid+1',Nid+1);
399 fprintf(1,'%25s : %6d\n','hinv size, Nid+1',length(hinv));
400 fprintf(1,'%25s : %6d\n','Forward SS size',Nss);
401 fprintf(1,'%25s : %6d/%d\n','Forward TF size',Ntf+[0 1]);
402 fprintf(1,'%25s : %6d\n','Inverse SS size',Nssinv);
403 fprintf(1,'%25s : %6d/%d\n','Inverse TF size',Ntfinv+[0 1]);
404 fprintf(1,'%25s : % .3f\n','x, Wiener similarity',similarity);
405 fprintf(1,'%25s : % .3f\n','x, SS similarity',Similarity(xpress,x));
406 fprintf(1,'%25s : % .3f\n','x, TF similarity',Similarity(xpretf,x));
407 fprintf(1,'%25s : % .3f\n','h, Wiener similarity',hsimilarity(1));
408 fprintf(1,'%25s : % .3f\n','h, SS similarity',hsimilarity(2));
409 fprintf(1,'%25s : % .3f\n','h, TF similarity',hsimilarity(3));
410 fprintf(1,'%25s : %.2e seconds\n','Sample interval, dt',dt);
411 fprintf(1,'%25s : %.2e\n','Regularization, alpha',alpha);
412 fprintf(1,'%25s : %g dB\n','SNR',SNR);
413 fprintf(1,'%25s : %.2e\n','Noise variance',SigmaNoise);
414 %%%
415 % Print figures
416 %%%
417 if strcmp(Print , 'yes')
418 fprintf(1,' Printing figures ... ');
419 for n = 1:length(figureList)
420 EPSFile = sprintf('Signal_Precondition-%d.eps',n);
421 fprintf(1,'%s ... ',EPSFile);
422 figure(figureList(n));
423 orient landscape;
424 print(EPSFile , '-depsc2');
425 end
426 fprintf(1,'done.\n');
427 end
428

429

430

431 end % function tst_Precondition()
432

433 function s = Similarity(x,y,varargin)
434 %**
435 %
436 % TITLE: Similarity.m
437 % AUTHOR: Sean K. Lehman
438 % DATE: April 19, 2021
439 % FUNCTION: Measure the similarity between two time series
440 % SYNTAX:
441 % s = Similarity(x,y)
442 % s = Similarity(x,y,Measure)

30

443 %
444 % Measure is 'cosine' (default)
445 % 'numsim'
446 % where the similarity between two numbers, 'numsim' is
447 % numsim(a,b) = 1 - abs(a - b) / (abs(a)+abs(b))
448 % CALLS:
449 %
450 % MODIFICATIONS:
451 %
452 %
453 %**
454 Measure = 'cosine';
455 switch nargin
456 case 3, Measure = varargin{ 1 };
457 end
458

459 x = reshape(x , [] , 1);
460 y = reshape(y , [] , 1);
461

462 if length(x) 6= length(y)
463 error('Inputs must have the same lengths');
464 end
465

466 switch Measure
467 case 'numsim'
468 s = mean(1 - abs(x-y) ./ (abs(x) + abs(y)));
469 otherwise % cosine measure
470 s = y' * x / (norm(y) * norm(x));
471 end
472 end % s = Similarity(x,y,varargin)
473

474

475 function fig = fetchfigure(FigureName , varargin)
476 %**
477 %
478 % TITLE: fetchfigure.m
479 % AUTHOR: Sean K. Lehman
480 % DATE: July 08, 2004
481 % FUNCTION: Fetch a figure by name
482 %
483 % SYNTAX: fig = fetchfigure(FigureName)
484 % fig = fetchfigure(FigureName , scale)
485 %
486 % MODIFICATIONS: Philip Top 11/24/09 modified function to use findobj
487 % method, should be slightly faster than previous methodology
488 %
489 %
490 %***/
491

492 fig = findobj(get(0,'Children'),'Name',FigureName);
493 if isempty(fig) % Create new window

31

494 scrnsize = get(0 , 'screenSize');
495 fig = figure('Name',FigureName,'visible','off');
496 pos = get(fig , 'position');
497

498 switch length(varargin)
499 case 1
500 scale = varargin{1};
501 if length(scale)==1; scale = scale*[1 1]; end
502 otherwise
503 scale = [1 1];
504 end
505

506 %%%
507 % Center on screen
508 %%%
509 pos(1) = (scrnsize(3)-scale(1)*pos(3))/2;
510 %%%
511 % Because the Windows OS is a cluster f**k, one must correct for the
512 % vertical mis-position.
513 %%%
514 if ispc
515 pos(2) = (scrnsize(4)-scale(2)*pos(4))/2;
516 end
517 %%%
518 % Set the figure position
519 %%%
520 set(fig , 'position' , [pos(1) pos(2) scale(1)*pos(3) ...

scale(2)*pos(4)]);
521 end
522 figure(fig);
523 end % fig = fetchfigure(FigureName , varargin)

32

