EEEEEEEE
EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

LLNL-TR-824190

Signal Preconditioning to
Minimize Impulse Response
Contribution

S. K. Lehman

July 7, 2021

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Signal Preconditioning to Minimize Impulse Response
Contribution

Sean K. Lehman

July 07, 2021

Abstract

A study was performed to identify a method to minimize the effect of a linear time-invariant
(LTT) system impulse response on an input. Three methods were studied: Wiener filter, the
N4SID algorithm and transfer function estimation, the latter two using functions from MAT-
LAB’s System Identification Toolbox. Although all three methods were able estimate an un-
known forward impulse response given an input/output time series pair, only the Wiener filter
was able to estimate a system inverse which satisfactorily solved the problem using a cosine
similarity measure.

LLNL-TR-824190

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United
States government. Neither the United States government nor Lawrence Livermore National Se-
curity, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of any information, ap-
paratus, product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States government or Lawrence Livermore National
Security, LLC. The views and opinions of authors expressed herein do not necessarily state or re-
flect those of the United States government or Lawrence Livermore National Security, LLC, and
shall not be used for advertising or product endorsement purposes.

Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Secu-
rity, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under
Contract DE-AC52-07NA27344.

Auspices This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

Contents

(L Introduction|

(2 Signal Preconditioning|

3 Proof-of-Concept]

4 Empirical Results|

5 Conclusion|
[A_Wiener Filter]

(B Similarity Measure|

|C_MATLAB Levinson-Wiggins-Robinson Algorithm, 1wr . m|

D MATLAB Wiener-Based Signal Preconditioner Algorithm Precondition.ml

11

14

15

16

17

20

1 Introduction

All input/output systems have transfer functions which modify the input. For example, wave-based
transducers emit the derivative (high-pass filtered version) of their inputs, at a minimum. A study
was performed to identify a method to minimize the effect of a linear time-invariant (LTI) system
impulse response on an input. That is, given the LTI system,

y = hxu, o))

where x,, is the input time series, y, the output and h,, the forward system impulse response,
determine a preconditioned input time series, ', such that

Yy ~ h*zpe. 2)

In theory, Z,,e = h™! % z. Only the input and output time series are available, the system impulse
response, h, is unknown. Its inverse must be estimated.
Three algorithms were studied,

* The Wiener filter (see Appendix [A);
* The MATLAB numerical algorithm for state-space identification function, n4sid () ;
e The MATLAB transfer function estimation function, t fest ().

The latter two functions are from the System Identification Toolbox. Although determining an
estimate of the impulse response, h, is not required, the algorithms were used to identify it as a
confirmation they functioned as expected on an input/output test set.

All three methods were successful at approximating the forward impulse response in proof-
of-concept test using a 1-12 Hz chirp input and a single cycle 6.5 Hz sinusoid impulse response.
However, only the Wiener filter estimation of the inverse was successful at compensating for the
forward impulse response’s effect on the input. The measure of success is the cosine similarity as
described in Appendix

The next section presents an overview of signal preconditioning. Section [3|develops a proof-of-
concept. Section [presents the empirical results using data from an electromechanical transducer
system.

2 Signal Preconditioning

As shown in Figure[I] signal preconditioning involves convolving the input time series, z,,, with an
approximation to the inverse impulse response, hl, resulting in a preconditioned time series, Ty,
which minimizes the effect of the forward impulse response, resulting in a close approximation
to the input signal at the output. This is more easily understood in the frequency domain where
convolution transforms into a multiplication by the transfer function,

X =H(H'X)=HXp, 3)

where X .. = H ' X is the preconditioned signal spectrum.
The inverse impulse response is estimated by swapping the input/output time series, as shown
in Figure |2} in the impulse response estimation algorithms.

Forward Problem

rT—» h Y

Preconditioned Time Series

T—> phl > Tpe—> h T

Figure 1: Preconditioned problem. Given an input/output time series, and y, with unknown
system impulse response, i, estimate the inverse impulse response, h~L. Then precondition the
input so that when presented to the forward system, its output closely matches the original input.
That is, convolve x with an approximation to the inverse impulse response, h~1, such that the
effects of the impulse response, h, are minimized.

Inverse Problem

Y— h- 1o

Figure 2: Inverse problem. The inverse impulse response may be estimated by swapping the
input/output time series in the algorithms.

3 Proof-of-Concept

The proof-of-concept used a 1-12 Hz chirp as input and a 6.5 Hz single cycle sinusoid as forward
impulse response. The time series are presented in Figure (3| The upper left plot presents the input,
2. The upper right shows the output, y, with peak around 6.5 Hz. The middle left plot shows the
true impulse response in red along with the Wiener, state-space (“SS”, n4sid ()) and transfer
function (“TF”, t fest ()) estimates. The true impulse response is 24 samples. In a real situation
where the impulse response length is unknown, a guess must be made of its length. In this example,
73 samples was selected. Similarly with the state-space and transfer function estimates. A value
of 2 states was selected for the former, and 6 poles and 7 zeros for the latter.

The middle right plot presents the estimated inverse impulse response for the three methods
where the number of Wiener taps remains 73 but the states were increased to 6 and the poles and
zeros to 12 and 13, respectively. The state-space and transfer function numbers were selected in
an attempt to maximize the cosine similarity between the chirp input and preconditioned output.
However, given the poor inverse performance of the the n4sid () and tfest () functions, the
task proved futile.

The bottom left graph shows the preconditioned input using the Wiener approach, the graph to
its right overlays the chirp input and the preconditioned output. The similarity is 0.982 indicating
a good match and the success of the Wiener algorithm.

Table |1|lists the simulation parameters and results. The similarity measures reflect the success
in the forward problem for the three methods and the poor performance with the inverse with the
state-space and transfer function methods.

For completeness, Figure [] presents the state-space and transfer function inverse results. Ev-
idently, for this proof-of-concept problem, the System Identification Toolbox functions perform
well and as expected in the forward but not inverse case. When examining the spectra presented
in the bottom plot of Figure [5] one observes good matches with the chirp input, yet their time
domain equivalents have poor similarity measures. This indicates there is an issue with the phases.
Perhaps, this may be explored at another time.

Table 1: Proof-of-concept parameters.

Simulation Parameters

Input, z, & output, y, size
Forward impulse response, h, size
Forward Wiener filter taps
Inverse Wiener filter taps
Forward state-space (SS) size
Forward transfer function (TF)
Inverse state-space (SS) size
Inverse transfer (TF)

Sample interval
Regularization, alpha

SNR

Noise variance

1441 samples

24 samples

73 samples

73 samples

2

6 poles / 7 zeros
6

12 poles / 13 zeros
6.94e-03 seconds
1.00e-12

40 dB

6.11e-02

Similarity Measure between Input & Preconditioned

Output

Input, x, & output, & \

0.982

Similarity Measures between Forward & Estimated
Impulse Responses

True & Wiener estimate
True & SS estimated
True & TF estimate

0.990
0.899
0.998

Similarity Measures between Inp
Output

ut and Preconditioned

Input & Wiener estimate
Input & SS estimate
Input & TF estimate

0.982
-0.127
0.676

Impulse Response

o
o

o

Input, x
L |
L H\
L q‘
0 1 2 3 4 5 6 7 8 9 10
Time (s)
Ise R & E: d R

T T
Truth, h 24
Wiener 73 (0.990)|
——S52(0.899)
———TF 6/7 (0.998)

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Time (s)

Weiner Preconditioned Input, xpl_e

Impulse Response

Output, y

10 T
sl 4
oH n
5 |
10 1
.
0 1 2 3 4 5 6 7 8 9
Time (s)
Inverse Imp Resp & d Inverses
T T T T T T T T T
Wiener 73
1} ——8S6 u
——TF12/13

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9
Time (s)
Input & Wiener Preconditioned Output, ypre (Similarity: 0.982)
i YRR l
S
| H
orl
| \H
0.5
; ' INEEERRRRR | ”
1 1 1 1 1 1 1 ’W 1
0 1 2 3 4 5 6 7 |——output| 9

Figure 3: Proof-of-concept results with the Wiener filter algorithm.

Input & Wiener Preconditioned Output, Yore (Similarity: 0.982)

I I I I ’——A—‘—L
1‘ \ A A ‘A\ A A A “A ' ’ A 1 ‘:\ i I [I | BAAhhhhtd n:g&lﬁm,
O.SA\ | fA | | f 1
0*\‘ ‘
0.5 — f “ | | i
4L V VVV ‘Yi ilr\vuulb-\ “'ilv'rw‘u\‘\x | |
0 2 3 4 5 6 8 9 10
Time (s)

ditioned Input SS & TF Inputs,)(pre
T

Precon

Ipt&P onditio dSS&TFOtpt Yore [—Input

15— 73() Ii
p | m" Al
g '/V\ " .'\h.\w‘ \’\‘H.H“m.‘\v Wml\”"l"‘u"l"ﬁl‘”'%

Figure 4: Proof-of-concept results with the state-space and transfer function algorithms.

Spectra

[0 1 R

Frequency (Hz)

Spectra

1040

Frequency (Hz)

Spectra

—
E o ‘ x %
1025 -
Yes £
% E
10 E
ST eaee u\% P 3

. R e S S NN NP NSO\
° | | ‘ TETERREx r\wa FERFCRFE r;«"r:x“@vﬁ;"OVC%‘/VC*"*C‘"”C“P’?
0 10 20 50 40 * ” "

Frequency (Hz)

Figure 5: Proof-of-concept spectral results. The input, original output and impulse response are
represented by x, y and h respectively. 2y, and ;. are the Wiener filter based preconditioned in-
put and resulting output. hes and hyy,, are the Wiener based forward and inverse impulse responses.
hss & hye are the state-space and transfer function estimates. hggn, & hiany are the corresponding
inverse estimates. yss & vy are the state-space and transfer function preconditioned outputs. It is
curious their spectra are good matches with the chirp input, yet their time domain equivalents have
poor similarity measures. This indicates there is an issue with the phases.

10

4 Empirical Results

The Wiener filter algorithm was applied to a real transducer system in which an input voltage
signal drives an electromechanical transducer. The goal is to have the input signal match the
output motion. Two data sets were collected. The first, presented in Figure [6] was subjectively
quieter and required no regularization in the Wiener filter. A maximum similarity of 0.97 between
the input and output time series was achieved by iterating over the number of filter taps. The result
was 2500 points.

The second data set, shown in Figure [/}, was noisier. It required a regularization constant of
1073, A maximum similarity of 0.87 was achieved using 8192 filter points.

11

Channel 2 (Output)
T T T

Channel 1 (Input)
T T T

01
S 0.05 s
g Q
Il 0 8
E= E=
o o
> -0.05] >
-0.1
. 1l
-3500 -3000 -2500 -2000 -1500 -1000 -500 0 -3500 -3000 -2500 -2000 -1500 -1000 -500 0
Time (ms) Time (ms)
Estimated I Resp R ion: 0.0e+00; Nh: 2500 Estimated Inverse Impulse Response
1 ! ! These data were“clean” and ' 7] ! ! ! ! !
required no regularization 0.15] B
0.5
3 g o]
> 3
= =
s o} S 0.05 b
£ £
< < 0 e
05 1 -0.05 .
.
0 5 10 15 20 25 30 35 40 . 0 5 10 15 20 25 30 35 40
Time (ms) Based upon a dot product or cosine theta measure, Time (ms)
these two time series have a similarity measure of 0.97.
Preconditioned Input Preconditioned Output; Similarity Before: -0.78; After: 0.97
0.02F T T T T T T —3 T T T T T T T T
01
0.01
e 2 0.05
2 2
a 0 a 0
£ £
< < -0.05
-0.011 . . 1
This should be the input to o1
achieve the approximation to the
-0.02~ desired output. . g - : . : . : - y -
-3500 “Suuu couu pRVIVIV 1oud -1000 -500 0 -3500 -3000 -2500 -2000 -1500 -1000 -500 0
Time (ms) Time (ms)

Figure 6: First input/output time series.

12

Channel 1 (Input)
T T T

0

Channel 2 (Output)
T T T

Estimated Inverse Impulse Response
T T T T

4 6 8
Time (ms)

a measure,
easure of 0.87.

06
g g 04
< L 02
S S
S 5 0
> >
-02
-04
-2 0 2 4 6 8 10 12 14 16
Time (ms)
Estimated I I p ; larization: 1.0e-03; N,:\8192
' ' These data are noisier and '
0.01f required regularization 4 0
L) L) >
S 0.005- s -
£ £
=y L | |
g 0 g™
< <
-0.005- . -6
-0.01- -8
.
0 Q1 02 Qa3 04 Qa5 06)
Time (ms) Based upon a dot product or cosine thet:
these two time series have a similarity m
1073 Preconditioned Input
T T T T T T T 0.04
4k This should be the input to i
achieve the approximation to the
Ll desired output. |)
S S
£ £
a =y
g0 £
< <
-2
-4
.

4 6 8
Time (ms)

10 12

Preconditioned Output; Similarity Before:
T T T T T

02 Qa3 04 Qs 06
Time (ms)
-0.07; After: 0.87
T T ——

Figure 7: Second input/output time series.

13

5 Conclusion

Three methods were evaluated to solve a signal preconditioning problem:
* The Wiener filter (see Appendix [A),
* The MATLAB numerical algorithm for state-space identification function, n4sid (),
e The MATLAB transfer function estimation function, t fest (),

the latter two functions having been taken from the MATLAB System Identification Toolbox.

Although all three algorithms solved the forward problem, only the Wiener filter successfully
solved the inverse and preconditioning problem. Further investigation is required to determine why
the state-space and transfer function methods failed at the inverse problem.

14

A Wiener Filter

There are multiple interpretations of the Wiener filter. A deconvolution interpretation is used here.
Consider a linear time-invariant system, shown in Figure |8} described by

Yn = hn*mn7 (4)

N-1
m=0

where x,, is the input, ¥, is the output and A, is the unknown system impulse response. The Wiener
solution is to find A,, such that

h, = argminE {ei} , (6)
hn
where
N-1
m=0
Expand E {e2 },
N-1 2
E{ei} = E (yn - Z hmxn—m> 5 (8)
m=0
N-1 2 N-1
= E{2}+E (Z hmxn_m> —2E { S hnnm yn} . ©)
m=0 m=0
Minimize with respect to hy,
a) N-1
P {e2} = 2B {mz:jo [xn_k} — 2E @0t Yn} (10)
N-1
= 2 Z hon BA{xn—m Tni} — 2E{xp_k yn}, (11)
m=0
N-1
= 2> hpRe(m —k) — 2Ry, (k) = 0, (12)
m=0
where the correlations are defined as
Eqn. (I2) is a matrix equation,
Roz(m —k)-h(m) = Ry (k) (15)

with solution,
h(m) = Ry, (m— k) Ry (k). (16)
When the data are noisy, a regularization may be included with the inverse as,
h(m) = (Rex(m—k)+a)" - Ry(k), (17)

where « is a positive constant.
Given input, x,,, and output, y,, time series, Eqn. (16)) is used to identify the forward impulse
response, h,.

B Similarity Measure

An inner product or cos 6 test is used to determine the similarity between to functions or time series
in particular,
T
- 4T (18)
[yl ||

Using this measure, identical time series yield m = 1, time series which are 180 degrees out of
phase have m = —1 and those which are completely dissimilar result in m = 0.

rT—» h Y

Figure 8: Forward linear time-invariant problem.

16

C MATLAB Levinson-Wiggins-Robinson Algorithm, 1wr .m

The Levinson-Wiggins-Robinson (Iwr) algorithm is the core of the Wiener filter. It solves Eqn. (16)
or generally Eqn. when there is a need for a regularization constant.

function [h,varargout] = lwr(x , y , Norder , varargin)

Lk Kk kK ok k& ok ok ok ok ok ok ok ok ok ok k ok ok k ok ok ok ok ok ok ok ok ok k k ok k ok ok k ok ok ok k ke ok k ok ok k ok ok ok k ke ok k ok ok k ok ok ok k kK ok ok ok ok ok ok ok ok ok ok ok

% TITLE: lwr.m

% AUTHOR: Sean K. Lehman

% DATE: April 08, 2021

% FUNCTION: This is the Levinson-Wiggins-Robinson algorithm to compute the
% FIR Wiener solution.

% This is based upon JVC's original lwr.m code.
% y = h ~ x;

% SYNTAX:

% h = 1lwr(x , y , Norder);

% [h,Rxx] = lwr(x , y , Norder);

% [h,Rxx,Ryx] = lwr(x , y , Norder);

% = lwr(x , y , Norder , alpha);

% x 1s the input.

% y 1s the output.

% h is the impulse response to be estimated.
% Norder is the number of FIR taps or fiter order.
% alpha 1s an optional regularization parameter.
% CALLS:

% MODIFICATIONS:

o

Gk Kk kK ok ok ok kok ok ok ok ok ok ok ok ok k ok ok ok ok ok ok ok ok ok ok kK k ok ok k ok ok k ok ok ok sk k ok k ok ok k ok ok ok k ke ok ok ok ok ok k ok ok k kK ok ok ok ok ok ok K ok ok kK |

alpha = 0;
switch nargin

case 4

if —isempty(varargin{l}); alpha = varargin{l}; end

end
555555555555 5555555555555 5555555555 5555555555555 555555%55%5555%5%55%5%5%%%
% JVC's lwr () code returns a result which matches MATLAB's firwiender ()
% code. His code uses FD_Xcorr () which normalizes by,
% N = max(Nx , Ny);
% Nfft = 2 nextpow2 (N);
% if Nfft/2 < N; Nfft = 2«Nfft; end
% Apply the same normalization here
5555555555555 5555555555555 5555555555555 5%5%555555%5%555555%5%55%5%5%55%5%55%5%%%%

17

o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°

45

length (x) length(y) 1);

max ([
= 2 nextpow2(N);

46

Nfft

47

end

Nfft = 2«Nfft;

if Nfft/2 < N;

48

o\
o\
o\
o\°
o\
o\
o\
o
o\
o\°
o\°
o\
o\
o\
o\°
o\
o\
o\
o\
o\°
o\°
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\°
o\
o\°
o\
o\
o\
o\
o\
o\
o
o\
o\°
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\°
o\°
o\°
o\
o\
o\
o\
o\
o\
o\
o\
o\°
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\°
o\

49

Correlations

o)
°

50

o
o
o
o
o
o\
o\
o\
o\
o
o
o
o
o
o
o
o\
o\
o\
o
o
o
o
o
o
o
o
o\
o\
o\
o
o
o
o
o
o
o
oe
o\
o\
o\
o
o
o
o
o
o
oe
o\
o\
o\
o
o
o
o
o
o
o
o
o\
o\
o\
o
o
o
o
o
o
o
o
o\
o\
o\
o
o

51

xcorr(x(:), Norder);

[Rxx, lags]
Ryx

52

:),Norder) ;

1), x(

= Rxx / Nfft;

xcorr (y(
= Ryx / Nfft;

53

Rxx

54

Ryx

55

)i

find(lags==0
(0:Norder) ';
Rxx (n+ndx) ;
Ryx (n+ndx) ;

Rxx (1)

56

ndx

57

Rxx

58

Ryx

59

= + alpha;

Rxx (1)

60

—
IS
O O
T T
N
O O
zZ 2
n 0
O O
N
O O -
N N M
[
O
@®©
B
%)
T A A

61
62
63

zeros ([Norder+1l 1]);

1;
Rxx(2);

66

Rxx (1) ;

a/p;
= —-kstar(l);

67

kstar (1)

68

Ryx (1) /p;

h(l) *Rxx (2);

del

71

p — kstar(l) xa;
(del-Ryx(2))/p;

3
3:Norder+1l

>

if Norder+1l

76

for n

71

= a(l:n-1) "*Rxx(n:-1:2);

78

kstar (n-1) = a/p;

at

79

01;

[a(l:n-1);
= at-kstar (n-1)+flipud(at);

80

81

h(l:n-1)'"*Rxx(n:-1:2);

= p-kstar(n-1) *xa;

del

82

83

(del-Ryx(n))/p;

k (n-1) =

84

h(l:n)

85

end

86

end

87

88

switch nargout

89

case 2

90

Rxx;

varargout{l} =

case 3

91

92

= RxX;
= Ryx;

varargout{1l}

93

varargout{2}

94

end

95

18

19

D MATLAB Wiener-Based Signal Preconditioner Algorithm

Precondition.m

function [xpre,varargout] = Precondition (x,y,varargin)

Lk Kk kK ok ok ok ok ok ok ok ok ok ok ok ok ok k ok Kk ok ok ok ok ok ok ok ok ok k ok ok k ok ko k ok ok k ke ok k ok ok k ok ok ok k ke ok k ok ko k ok ok k kK ok ok ok ok ok ok ok ok ok kK

$ TITLE: Precondition.m

% AUTHOR: Sean K. Lehman

% DATE: April 19, 2021

% FUNCTION: Use a Wiener filter to attempt to precondition an input to
% minimize the effects of a transfer function

% SYNTAX: xpre = Precondition (x,V)

% xpre = Precondition (x,vy,N)

% xpre = Precondition(x,y,N,alpha)

% xpre = Precondition (x,v,N,alpha,method)

% [xpre,hinv] = Precondition(...)

% [xpre,hinv,h] = Precondition(...)

% method is either 'lwr' or 'firwiener'

% CALLS:

% MODIFICATIONS:
%*********‘k*******‘k**‘k*********‘k**********‘k*******‘k**‘k*********************

X = reshape(x , [1 , 1);
% = reshape(y , [1 , 1);
Nx = length(x);

alpha = 0;

Method = 'lwr';

if Nx # length (y)

error ('
end

Inputs must have the same lengths');

Nh = fix(Nx/2);

switch nargin

case 3
if
case 4
if
if
case 5
if
if

—isempty (varargin{l}); Nh varargin{l}; end

—isempty (varargin{l}); Nh varargin{l}; end
—isempty (varargin{2}); alpha = varargin{2}; end

—isempty (varargin{l}); Nh = varargin{l}; end
—isempty (varargin{2}); alpha = varargin{2}; end

Method = varargin{3};

end

switch Method

20

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

case 'lwr'
hinv = lwr(vy , x , Nh , alpha);
case 'firwiener'
hinv = firwiener(Nh , v , x)';
otherwise
error ('%s: Method is either ''lwr''
end
xpre = conv(hinv , x) ;
xpre = xpre (l:Nx);
% [xpre,hinv] = Precondition(...
% [xpre,hinv,h] = Precondition(...

switch nargout

case 2
varargout{l} = hinv;
case 3
varargout{l} = hinv;
switch Method
case 'lwr'
varargout{2} = lwr(x , vy
case 'firwiener'

varargout {2} firwiener (
end

end

or

'"firwiener''',Method);

21

E MATLAB M-File Which Demonstrates the Preconditioner

tst Precondition.m

function tst_Precondition(varargin)

Lk Kk kK ok ok ok ok ok ok ok ok ok ok ok ok ok k ok Kk ok ok ok ok ok ok ok ok ok k ok ok k ok ko k ok ok k ke ok k ok ok k ok ok ok k ke ok k ok ko k ok ok k kK ok ok ok ok ok ok ok ok ok kK

TITLE: tst_Precondition.m
AUTHOR: Sean K. Lehman
DATE : June 14, 2021
FUNCTION: Test the Precondition.m function
SYNTAX:
CALLS: Precondition ()
fetchrigure ()
Similarity ()
QUESTION:

Given an LTI of the form,
y = conv(h , x)

Seerk a preconditioned input, x_{pre}, to minimize the difference
between y_{pre} and x based upon a cosine similarity measure.

That is, seek an input such that
m = y_{pre}' x x / (norm(y_{pre}) * norm(x))
is maximized, where
y_{pre} = conv(h , x_{pre})
and
x_{pre} = conv(h™{-1} , x)
and h"{-1} is an estimate of the inverse of h.

As demonstrated in this M-file, a Wiener approach using MATLAB's
firwiener () function yielded the best results.

However, an approach using the System Identification Toolbox functions,
n4sid() and tfest() is also tried.

Although they estimate the forward impulse response well, they failed
miserably at estimating the inverses for preconditioning.

o o° o° o O° A A A° A A A AN AN N N N N O O O A A A AN AN N N AN N N O A A A o o o°

%**
Print = 'no';
switch nargin
case 1
Print = varargin{ 1 };
end

22

4

(2))

lse response.

im

io.
impu

X.

1,
7
ine
)i

))

igna
(1),tend, f1

im
7
7
7

Fcxth

8.51/4;
t s
17
im
)i
1%
t.

inpu
1/Fc)"

tend) '’
length(th)

[11

(2xp
inpu

:dt
dt

1/ (12*max (f1l
sin

(0
chirp(t, fl

[1 12
10;
6.25;
(0

the figure aspect rat
AspectRatio =

= length(t

Get the signal length.

Define

Form a chirp

Create a single cycle s
Filter the

flim
tend
dt

Nt

Fc

th
Nhimp
h

47
49
51
53
54
55
56
57
59
61
63
65
66
67
68
70

o\ o\ o\ o\ o\° o\ o\ o\

o\ o\ o\ ~ o o\ o o\ o\

o\ o\° o\° N o\° o o\° o\° o\

o\ o\° o\° o\° o o\ o\ o\

o\° o\° o\° ~ o\° oe o\° o\° o\

o\° o\° o\°) o\° oe o\ o\° o\

o\ o\ o0 M 9] o\° o\ o\° o° o\

o\ o\° o QO c o\ o o\ o\° o

o\ o\° o0 O O o\° o° o\ o o

o\ o\ o Q@ 0, o\ o\° o\ o\ o\

o\ o\ o° - 9] o o\ o\ o\ o\

o° o\ oo = 0] o\ o\° o\ o\° o\

o\ o\ o\ “ o\ o\ o\ o° o\

oe o o0 O o\° o o\° o\ o\

oe o o O) o\° o o\° o\° o\

o\ o\° oo P 0 o\° o o\° o\ o\°

o\° o\° o\ — o\° o o\° o\° o\

o° o\ o O 3 o\ o\ o\° o° o\

o\ o\° o0 O Q, o\° o o\ o\° o

o° oo o° -] o\ o\° o o\ o\

o\ o o 0 - o o\ o o\ o\

o\ o\ o 3 o o\ o o\ o\

oo o\ o\ 0] o\ o\° o o\ o\

o\ o\° o0 M N o\ o\ o\ o° o\

oe o o0 O i) o\ o o\° o\ o\

o\° o\° oo P o\° o o\° o\ o\

o\ o\° o — 4 o\° o o\° o\° o\

o\ o\ oo - O o\ o\ o\© o\° o\

o\ o\° oo o\° o o\ o\° o

o\ o\° o\ < o\° o° o\ o\ o\°

o\ o\ o QO is] o\ o\ o o\ o\

o oe oo O o o\ o o\ o o

o\ o\ o P a o o\° o\ o\ o\

oo o\ o [0} o\ o\° o\ o\ o\

o\ o\ o~ oo O — o o\ o o\ o\

o\ o\° — oo O o\ o o\° o° oo

oo o — o - 0] o\° o o\° o° — o°

o o\ — o0 £ < o s o o s o0 @ oo

oo o° oo Y + o° = o° o = o0 G oo

o o o~ P do QO o —~ o° do ~ do O o°

o\ o\ —~ 2 o° P ~ o\ o° o\ o - o

o\ o\° o — o QO 0] o\° > o o0 X o° 0 ode°

oo o\° N o0 T O o o\ o o\ o\

o\ o\ ~ g o\ -— o\ ~ o° o\ N~ o0 P oe

o° o o O o° ~ e o° o° o° o 3 o°

o o\ zZ o @© O o X oe o0 >y o0 Q) o

o o 0 © o° P o] o o oo oo O oo

oe o\ [o° @® “ o\ ~ o o N o -+ o°

o\ o ~ o T (o o o\ o o\ o\

oo oe <X oo oo T oe do T oo T o

o\ o\° o oe P o o\° =+ o -+ o0 O o°

o~ o° oo — QO e~ o0 T -— o° Z, 0 O o0 = o0 Y oo
— oo o n O o0 O oo oo W oe o° O o°
o° oo M x -+ 0 oo P ~ oo ~ o0 Y oo ~— oo P o°

X o0 T O -+ o° 3) o\° H o0 O o0 Y oo 0 oe
o\° ~ Z 0O o° O O N ex O O > e O d° -H o°

N o0 o0 >y @ G oo a 0 O, G o0 O o0 G o0 T o°

oo - & o P -— N E O o0 -+ e O e O o°

c N T O+ oo 3 n o - -+ oe ° -+ o0 Y oe
o0 O P oA o QO 0 G =2 o0 O 0 = oo Q o°

~ 0 I D >y oo O o} N Z Y o O e Y o° o°
> o\ oe - - e o° = o P o - o0 D o°
a oo L\ | | O | I | SIS} Z G 00 x W oo o0 U4 oo O oe
O ~ o0 O o° o Q- 2 oe oo QO oe o° P oo
O >y oo 0 o° 0] G S P O M |l 0 G oo | o° o\
o° - o° 0 o P U © G o° o - o° o° O o°

I Il o0 O oe - oe © AMooe || o0 £ oo o° P oe
e & o° (@] o O O N g o° e Y oo o0 3 oe

oo o Z o O 4 N 3 oe P e O o0 > o O o

o0 T oe o O o > 00 oe 0N o P oo G o £ o°

o0 T oe & 0 o -4 O 3 0 o° D o O o° -H oo O oe

o0 & o0 G O -H W @ W -H o T G d N e G o0 U oo

o\ o Z -4 O o\ o° - o° o\ o° o\

DN DN o0 o0 NN G PNOC OC A A A o ZF o o o° o0 o° oo do o
N @M T ;M o~ w0 —~ & @ ¥ ;N 0> % & O — o ¢ ¥ n
S & & N R &S R R ® ® ® ® 0 8 B © B B XA A A XA S X

23

X

4

conv (hinv

xpre

96

Nt),

1

xpre (

xpre

o

o

97

o
o
o\
o\
o\
o\

o\
o\
o
o
o
o
o
o
o\

o\
o\

o
o
o
o
o
o\
o\
o\
o\

o\
o
o
o
o
o
o\
o\
o\

o\
o
o
o
o
o
o\
o\
o\

o\
o\
o
o
o
o
o
o\
o\

o\
o\
o\
o
o
oo
o
o
o\
o\
o\
o\

o
o

98

function

the Precondition()

ing

i t signal usi

inpu

ioned
lements all of the above steps.

Compute the precondit

o
o

99

imp

which

%

100

o\

101

4

le—-12

alpha

102

Precondition(x,y,Nid, alpha, "lwr');

[xpre,hinv, hest] =

103

1.

istored signa

the pred
This should be a close match to the

ing

Compute the output us

o
°

105

t.

inpu

%

106

o\°

107

4

conv (hest , xpre)
ypre(1

ypre

108

)i

Nt

ypre

109

o\°

o\

112

Use the ID Toolbox.

%

113

to ID toolbox format.

in

ime series

Put the t

o
o

114

o\
o\
o\
o\
o\
o\

o\
o\
o\
o\
o\
o\
o\
o\
o\

o\
o\°
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\

o\
o\
o\
o\
o\
o\
o\
o\
o\

o\
o\°
o\
o\
o\
o\
o\
o\
o\

o\
o\°
o\°
o\
o\
o\
o\
o\
o\

o\
o\
o\©
o\
o\
o\
o\
o\
o\
o\
o\
o\

o\°
o\

115

For the forward estimate

)i %

dt

14

Yy
X

= iddata (

dforward

116

ilmate

t

dinverse = iddata(, dt); % For the inverse es

117

Estimate the forward SS & TF models using the ID toolbox.

%

119

o\
o\
o\
o\
o\
o\

o\
o\
o\°
o\
o\
o\
o\
o\
o\

o\°
o\

o\
o\
o\
o\
o\
o\
o\
o\
o\

o\°
o\
o\
o\
o\
o\
o\
o\
o\

o\
o\°
o\
o\
o\
o\
o\
o\
o\

o\
o\°
o\°
o\
o\
o\
o\
o\
o\

o\
o\°
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\

o\°
o\

120

Nss
Nt f

121

o~

122

14

true)

4

'EnforceStability'’

dforward

n4sidOptions (

ssopt =
ndsid(

123

Nss , ssopt);
Nt f

4

ssforward =

124

’)i

dforward

tfforward = tfest (

125

o\
o\
o\
o\
o\
o\

o\
o\°
o\°
o\°
o\
o\
o\
o\
o\

o\
o\
o\°
o\
o\
o\
o\
o\
o\
o\
o\
o\

o\°
o\°
o\
o\
o\
o\
o\
o\
o\

o\
o\°
o\
o\
o\
o\
o\
o\
o\

o\
o\°
o\°
o\
o\
o\
o\
o\
o\

o\
o\°
o\°
o\
o\
o\
o\
o\
o\
o\
o\
o\°

o\°
o\

126

dels.

inverse mo

Estimate the

%

127

000000
©00000

[
<°0°

4

3 % Nss
= 2 * Ntf;

Nssinv

129

Ntfinv

130

)i

, Ssopt

Nssinv

dinverse ,

ndsid(
tfest (

ssinverse
tfinverse

131

Ntfinv);

4

= dinverse

132

lse responses.

impu

lse for

Create impu

o)
°

134

zeros ([2%Nid 11);

136

137

[]

= iddata(

138

impulse responses.

Compute the forward

%

140

o
o
o
o\
o\
o\

o\
o\°
o\
o
o
o
o\
o\
o\

o\
o\

o
o
o
o
o\
o\
o\
o\
o\

o\
o
o
o
o
oo
o\
o\
o\

o\
o\
o
o
o
o
o\
o\
o\

o\
o\
o\
o
o
o
o
o\
o\

o\
o\
o\
o\
o\
o
o\
oo
o\
o\
o\
o\

o\°
o

141

)i

u(l:Nid)
u (1l

4

ssforward
tfforward

sim(
= sim(

forward
tfforward

ipss

142

)i

Nid)

4

ip

143

lse responses.

impu

Compute the inverse

%

145

u

4

(ssinverse

sim

lpssinverse

147

24

tfinverse

sim(

iptfinverse

148

o
o
o\
o\
o\
o\

o\
o\
o
o
o
o
o
o
o\

o\
o\
o\
o
o
o
o
o
o\
o\
o\
o\

o\
o
o
o
o
o
o\
o\
o\

o\
o
o
o
o
o
o\
o\
o\

o\
o\
o
o
o
o
o
o
o\

o\
o\
o\
o
o
oo
o
o
o\
o\
o\
o\

o
o

149

Get the estimated impulse response time series.

o
o

150

o\°
o\°
o\
o\
o\
o\

o\
o\
o\©
o\°
o\°
o\
o\
o\
o\

o\
o\
o\
o\°
o\
o\°
o\
o\°
o\
o\
o\
o\

o\©
o\°
o\
o\°
o\
o\
o\
o\
o\

o\
o\
o\°
o\
o\°
o\
o\
o\
o\

o\
o\
o\°
o\°
o\
o\°
o\
o\
o\

o\
o\
o\
o\°
o\°
o\°
o\°
o\
o\
o\
o\
o\

o°
o\

151

get (ipssforward, 'y'");

hss
htf

152

= get (iptfforward, 'v');

153

get (ipssinverse, 'yv');

hssinv =

154

get (iptfinverse, 'y');

htfinv =

155

156

)i

ssforward

hss = impulse (
= impulse(tfforward);

htf

157

o)
°

158

)i

ssinverse

hssinv = impulse (

%

159

impulse(tfinverse);

htfinv =

o
o

160

o\
o\
o\
o\
o\
o\

o\°
o\
o\
o\
o\
o\
o\
o\
o\

o\°
o\
o\°
o\
o\
o\
o\
o\
o\
o\
o\°
o\

o\©
o\
o\
o\
o\
o\
o\
o\
o\°

o\°
o\
o\
o\
o\
o\
o\
o\
o\

o\
o\°
o\°
o\
o\
o\
o\
o\
o\

o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\°
o\

o\
o\

161

Compute the predistored input signals.

%

162

o\
o\
o\°
o\°
o\
o\

o\
o\°
o\°
o\
o\
o\
o\
o\°
o\°

o\
o\
o\°
o\°
o\
o\
o\
o\°
o\°
o\°
o\
o\

o\°
o\°
o\°
o\
o\
o\
o\°
o\
o\

o\°
o\°
o\
o\
o\
o\
o\°
o\
o\

o\
o°
o°
o°
o\
o\
o\
o\°
o\

o\
o\
o\°
o\°
o\
o\
o\
o\
o\°
o\
o\
o\

o\°
o\

163

)

X

= conv(hssinv ,

xpress

164

)i

Nt

1
= conv(htfinv

xpress (

xpress

165

)

X

xpretf
xpretf

166

)

Nt

xpretf(1

167

o\°
o\°
o\
o\
o\
o\

o\°
o\
o\°
o\°
o\°
o\
o\
o\
o\
o\
o\
o\
o\°
o\°
o\°
o\°
o\
o\
o\°
o\
o\
o\°

o\°
o\°
o\°
o\°
o\°
o\°
o\
o\
o\

o\
o\°
o\°
o\°
o\°
o\
o\°
o\
o\

o\
o\
o\°
o\°
o\°
o\
o\°
o\°
o\

o\
o\
o\°
o\°
o\°
o\°
o\
o\
o\°
o\
o\
o\°

o\°
o\

168

Compute the output using the predistored signals.

This should be a close match to the input.

o)
°

169

%

170

o\
o\
o\
o\
o\
o\

o\
o\
o\°
o\
o\
o\
o\
o\
o\

o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\

o\°
o\
o\
o\
o\
o\
o\
o\
o\

o\
o\°
o\
o\
o\
o\
o\
o\
o\

o\
o\°
o\
o\
o\
o\
o\
o\
o\

o\
o\°
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\

o\°
o\

171

14

conv(hss , xpress)

ypress

172

)

xpretf)

Nt

1
htf

ypress (

conv (

ypress

173

14

4

ypretf

174

)i

Nt

ypretf(1

ypretf

175

o
o\
o
o\
o\
o\

o\°
o\°
o\
o
o\
o\
o\
o\
o\

o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\

o\
o\
o\
o
o
o\
o\
o\
o\

o\
o\°
o\
o\
o
o\
o
o\
o\

o\
o\
o\
o\
o
o
o\
o
o\

o\
o\
o\°
o\
o\
o
o\
o\
o\
o\
o\
o\

o\
o

176

Determine the similarity between the Wiener predistored output and the

desired output.

o
o

177

%

178

o\
o\°
o\
o\°
o\
o\

o\
o\°
o\°
o\°
o\
o\
o\°
o\°
o\°

o\
o\
o\°
o\
o\°
o\
o\
o\°
o\°
o\°
o\
o\

o\°
o\°
o\
o\
o\°
o\°
o\
o\
o\

o\°
o\°
o\°
o\
o\°
o\°
o\°
o\°
o\

o\
o\°
o\°
o\°
o\
o\°
o\°
o\°
o\

o\
o\
o\°
o\°
o\
o\
o\°
o\°
o\°
o\
o\
o\

o\°
o\

179

similarity

X

Similarity(ypre ,

180

o
o
o
o
o\
o\

o\
o\
o
o
o
o
o
o
o\

o\
o\
o\°
o
o
o
o
o
o\
o\
o\
o\

o
o
o
o°
o
o
o\
o\
o\

o\
o
o
o
o
o
o
o\
o\

o\
o\
o
o
o
o
oo
o
o\

o\
o\
o\°
o
o
o
oo
o
o\
o\
o\
o\

o
o

181

Determine the similarity of the forward impulse response estimates.

o
o

182

o\
o\
o\
o\
o\
o\

o\
o\
o\©
o\°
o\°
o\°
o\
o\
o\

o\
o\
o\
o\°
o\
o\°
o\°
o\
o\
o\
o\
o\

o\°
o\°
o\
o\
o\
o\
o\
o\
o\

o\
o\
o\°
o\°
o\°
o\
o\
o\
o\

o\
o\
o\°
o\°
o\
o\°
o\
o\
o\

o\
o\
o\
o\°
o\°
o\
o\
o\
o\
o\
o\
o\

o\
o\

183

)i

[Nid+1l 1]

= zeros (
h

hpadded

184

4

Nhimp)

hpadded (1:

185

hsimilarity

186

)

hest
hss
htf

4

Similarity (hpadded

187

’

Nid)

Similarity (hpadded (1
Similarity (hpadded (1

188

4

Nid)

189

o~

—

190

oe
o
o
o
o\
o\

o\
o
oe
o
o
o
o
o
o\

o\
o\
o
o
o
oe
o
o
o
o\
o\
o\

oe
o
o
o
o
oe
o
o\
o\

oe
o
o
o
oe
oe
o
o\
o\

o\
o
oe
o
oe
oe
o
o
o\

o\
o\
o
oe
o
o
o
o
oe
o\
o\
o\

o
oe

191

Save the figure handles.

o
°

192

o\
o\
o\
o\
o\
o\

o\
o\°
o\°
o\
o\
o\
o\
o\
o\

o\°
o\
o\©
o\
o\
o\
o\
o\
o\
o\
o\
o\©

o\
o\
o\
o\
o\
o\
o\
o\
o\

o\°
o\°
o\
o\
o\
o\
o\
o\
o\

o\
o\°
o\°
o\
o\
o\
o\
o\
o\

o\°
o\°
o\°
o\
o\
o\
o\
o\
o\
o\
o\
o\

o\
o\

193

[0;0;0];

figurelist =

194

o\°
o\°
o\
o\
o\
o\

o\
o\°
o\°
o\°
o\°
o\°
o\
o\°
o\

o\
o\°
o\°
o\°
o\°
o\
o\°
o\
o\
o\
o\
o\°

o\°
o\°
o\°
o\°
o\°
o\
o\°
o\
o\

o\°
o\°
o\°
o\°
o\°
o\
o\
o\°
o\

o\
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°

o\
o\
o\°
o\°
o\°
o\°
o\°
o\
o\
o\
o\
o\

o\°
o\

195

Fetch the figure.

%

196

o
o
o
o
o\
o\

o\
o\
o
o
o
o
o
o
o\

o\
o\
o\°
o
o
o
o
o\
o\
o\
o\
o\

o
o
o
o
o
o
o\
o\
o\

o\
o
o
o
o
o
o
o\
o\

o\
o\
o
o
o
o
o
o
o\

o\
o\
o
o
o
o
o
o
o\
o\
o\
o\

o
o

197

);clf

AspectRatio

4

'Signal Preconditioning I'

figureList (1) = fetchfigure (

198

25

oe
o
oe
oe
o\
o\

o\
o
oe
oe
o
o
o
o
o\

o\
o
o
oe
oe
oe
oe
o
o
o\
o\
o\

o
oe
oe
o
o
o
o
o\
o\

oe
oe
oe
oe
o
oe
oe
o
o\

o\
oe
oe
oe
o
o
oe
oe
o\

o\
o
oe
oe
oe
o
o
o
o
o\
o\
o\

oe
oe

199

Plot the input.

o
o

200

o\
o\
o\
o\
o\
o\

o\°
o\°
o\
o\
o\
o\
o\
o\
o\

o\
o\°
o\°
o\
o\
o\
o\
o\
o\
o\
o\
o\

o\°
o\
o\
o\
o\
o\
o\
o\
o\

o\
o\
o\
o\
o\
o\
o\
o\
o\

o\
o\°
o\
o\
o\
o\
o\
o\
o\

o\°
o\
o\°
o\
o\
o\
o\
o\
o\
o\
o\
o\

o\°
o\

201

subplot (321)

plot (t

202

14

203

(s)'

'Time
'Input,

xlabel (
title(

204

)i

XV

205

set (gca, 'fontsize',14);

206

o\
o\°
o\
o\
o\
o\

o\
o\°
o\
o\°
o\
o\
o\
o\
o\

o\
o\
o\°
o\
o\°
o\
o\°
o\
o\
o\
o\
o\

o\
o\°
o\
o\
o\
o\
o\
o\
o\

o\°
o\°
o\°
o\°
o\
o\
o\
o\
o\

o\
o\°
o\°
o\°
o\
o\
o\
o\
o\

o\
o\
o\
o\
o\°
o\°
o\°
o\
o\
o\°
o\
o\

o\°
o\°

207

Plot the output.

%

208

o\
o\
o\°
o\°
o\
o\°

o°
o\°
o\°
o\°
o\
o\°
o\°
o\°
o\

o°
o\°
o\°
o\°
o\°
o\
o\
o\°
o\°
o\
o°
o\°

o\°
o\
o\°
o\
o\°
o\°
o\°
o\
o\°

o\°
o\°
o\°
o\
o\
o\°
o\
o\
o°

o\°
o\°
o\°
o\
o\
o\
o\°
o\°
o\

o°
o\°
o\°
o\°
o\°
o\
o\°
o\°
o\
o\
o°
o\°

o\°
o\°

209

subplot (322)

210

'Time
'Output,

xlabel (
title(

212

)i

yl

213

axis tight

214

set (gca, '"fontsize',14);

215

o
o
o
o
o\
o\

o\
o\
o
o
o
o
o\
o\
o\
o\
o\
o\
o\
o
o
o
o
o\
o
o\
o\
o\

o\
o
o
o
o
o
o\
o\
o\

o\
o
o
o
o
o
o
o\
o\

o\
o\°
o
o
oo
o
oo
o
o\

o\
o\
o
o
o
o
o
o
o\
o\
o\
o\

o
o

216

Plot the forward impulse responses.

o
o

217

o\°
o\°
o\
o\
o\
o\

o\
o\
o\
o\°
o\°
o\°
o\
o\
o\

o\
o\
o\
o\°
o\°
o\°
o\°
o\
o\
o\
o\
o\

o\°
o\°
o\°
o\°
o\
o\
o\
o\
o\

o\°
o\
o\°
o\°
o\°
o\
o\
o\
o\

o\
o\
o\°
o\°
o\
o\°
o\
o\
o\

o\
o\
o\©
o\°
o\
o\
o\
o\
o\
o\
o\
o\

o\
o\

218

subplot (323)
hp

219

plot (

t(1l
t(l
t(l
t (1l

220

size (h))
Nid+1)
Nid)

221

4

hest

4

222

223

Nid)
'linewidth'

224

1);
'linewidth'

4

225

2

4

4

set (hp(l:2)
axis tight

grid on

226

227

228

(s)");

xlabel ('Time

229

4

ylabel ("Impulse Response')

230

4

title('Forward Impulse Response & Estimated Impulse Responses')

legend (

231

232

4

d',Nhimp)

o
o

h

sprintf ('Truth,

233

4

($.3f) '",Nid+1l,hsimilarity (1))

.3f) ",Nss,hsimilarity (2))

sprintf ('Wiener %d

sprintf ('SS %d

234

4

(%

235

)i

($.3f) ", Ntf+[0 1],hsimilarity(3))

sprintf ('TF %d/%d

set (gca, "fontsize',14);

236

237

o\
o\
o
o\
o\
o\

o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\°
o\
o\
o\
o\
o\
o\
o\
o\
o\

o\°
o\
o\
o\
o\
o\
o\©
o\
o\

o\
o\
o\
o\
o\
o\
o\
o\
o\

o\
o\°
o\
o\
o\
o\
o\
o\
o\

o\
o\°
o\°
o\
o\
o\
o\
oo
o\
o\
o\
o\

o\
o\

238

Plot the inverse impulse responses.

o
°

239

o\°
o\
o\
o\
o\
o\

o\
o\
o\°
o\°
o\°
o\
o\
o\°
o\

o\
o\
o\
o\°
o\°
o\°
o\°
o\
o\
o\
o\
o\°

o\°
o\°
o\
o\°
o\°
o\°
o\
o\
o\°

o\
o\°
o\°
o\
o\
o\
o\°
o\
o\

o\
o\
o\°
o\°
o\°
o\°
o\
o\
o\

o\
o\
o\°
o\
o\°
o\
o\°
o\
o\
o\
o\
o\

o\°
o\

240

subplot (324)

241

l4

hinv

4

£ (1:Nid+1)
t (1:Nid)
t (1

243

'k'

hssinv ,

14

o\

244

g'

htfinv ,
1);

14

Nid)
'linewidth'

hp = plot(

o\

245

14

246

247

14

hinv

14

Nid+1)
length (hssinv)-1) xdt

t(l

248

hssinv ,

14

(0

249

26

htfinv ,

4

length (htfinv)-1) xdt

(0
'linewidth'

250

1);

14

251

2

, 'linewidth' ,

set (hp (1)
axis tight

grid on

252

253

254

(s)");

xlabel ('Time

255

ylabel ('Impulse Response');

256

title('Inverse Impulse Response & Estimated Inverses');

legend (

257

258

sprintf ('Wiener %d',Nid+1),
sprintf ('SS %d',Nssinv),

259

260

4

sprintf ('TF %d/%d',Ntfinv+[0 171))

set (gca, 'fontsize',14);

261

262

o\
o\
o\
o\
o\
o\

o\°
o\
o\
o\
o\
o\
o\
o\
o\

o\°
o\
o\°
o\
o\
o\
o\
o\
o\
o\
o\°
o\

o\©
o\
o\
o\
o\
o\
o\
o\
o\°

o\°
o\
o\
o\
o\
o\
o\
o\
o\

o\
o\°
o\°
o\
o\
o\
o\
o\
o\

o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\°
o\

o\
o\

263

Plot the Wiener predistorted input.

%

264

o\
o\
o\
o\°
o\
o\

o\
o\°
o\
o\
o\
o\
o\
o\°
o\°

o\
o\
o\°
o\°
o\
o\
o\
o\
o\°
o\°
o\
o\

o\°
o\°
o\°
o\
o\
o\
o\°
o\
o\

o\°
o\°
o\
o\
o\
o\
o\°
o\
o\

o\
o°
o°
o°
o\
o\
o°
o\°
o\

o\
o\
o\°
o\°
o\
o\
o\
o\
o\°
o\
o\
o\

o\°
o\

265

subplot (325)

plot (

266

267

xpre , 'b',

4

t

268

1);

4

'linewidth'

axis tight

269

270

(s)");

xlabel ('Time

271

x_{pre}');

title('Weiner Preconditioned Input,

set (gca, 'fontsize',14);

272

273

Plot the Wiener predistorted output.

%

275

o\°
o\
o\
o\°
o\
o\

o°
o\°
o\°
o\°
o\
o\°
o\
o\
o\

o\°
o\°
o\
o\°
o\
o\
o\°
o\
o\
o\
o\°
o\°

o\°
o\
o\°
o\
o\
o\
o\
o\
o\°

o\°
o\°
o\°
o\
o\°
o\
o\°
o\
o\

o\°
o\°
o\°
o\°
o\
o\°
o\
o\°
o\

o\°
o\°
o\°
o\
o\°
o\
o\°
o\
o\
o\
o\°
o°

o\
o\

276

subplot (326)

plot (

277

278

279

s YPre

t

280

1);

4

'linewidth'

axis tight

281

282

(s)");

xlabel ('Time

283

title(sprintf ('Input & Wiener Preconditioned Output, y_{pre}

284

)

%.3f) ",similarity)

(Similarity
legend('Input', 'Output', 'Location', '"NorthEast"')

set (gca, "fontsize',14);

285

286

Fetch the figure.

o
°

288

o\
o\
o\
o\
o\
o\

o\°
o\
o\°
o\°
o\
o\
o\
o\
o\

o\
o\°
o\
o\°
o\°
o\
o\
o\
o\
o\
o\
o\

o\°
o\°
o\
o\
o\
o\
o\
o\
o\°

o\°
o\
o\°
o\
o\
o\
o\
o\
o\

o\
o\
o\°
o\°
o\
o\
o\
o\
o\

o\
o\°
o\°
o\
o\°
o\
o\
o\
o\
o\
o\©
o\

o\°
o\

289

AspectRatio

4

'Signal Preconditioning II'

figurelList (2) = fetchfigure(

290

Re-plot the Wiener predistorted output.

o
°

292

o\
o\
o\
o\
o\
o\

o\
o\°
o\°
o\
o\
o\
o\
o\
o\

o\°
o\
o\©
o\
o\
o\
o\
o\
o\
o\
o\
o\©

o\
o\
o\
o\
o\
o\
o\
o\
o\

o\°
o\°
o\
o\
o\
o\
o\
o\
o\

o\
o\°
o\
o\
o\
o\
o\
o\
o\

o\°
o\°
o\°
o\
o\
o\
o\
o\
o\
o\
o\
o\

o\
o\

293

subplot (311)

plot (

294

295

296

4

r Ypre

t

297

4

'linewidth'

298

27

axis tight
300 Xlabel ('Time

299

(s)");

sprintf ('Input & Wiener Preconditioned Output,

v_{pre}

title(

301

)

.3f) ", similarity)

o
o

(Similarity
legend('Input', "Output', "Location', '"NorthEast"')

set (gca, "fontsize',14);

302

303

o
o
o
o
o\
o\

o\
o
o
o
o
o
o
o
o
o\
o\
o\
o
o
o
o
o
o
o
o\
o\
o\
o\
o
o
o
o
o
o
o
o\
o\

o
o
o
o
o
o
o
oe
o\

o\
o
o
o
o
o
o
o
o\
o\
o\
o\
o
o
o
o
o
o
o
o\
o\
o\
o
o
o

304

Plot the SS & TF predistorted inputs.

o
o

305

o\
o\°
o\
o\
o\
o\

o\
o\°
o\°
o\°
o\
o\
o\
o\
o\
o\
o\
o\
o\°
o\
o\°
o\
o\°
o\
o\
o\
o\
o\
o\
o\°
o\°
o\
o\
o\
o\
o\
o\
o\

o\°
o\°
o\°
o\°
o\
o\
o\
o\
o\

o\
o\°
o\°
o\°
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\°
o\°
o\°
o\
o\
o\
o\
o\
o\©
o\°
o\°

306

subplot (312)

plot (

307

xpre

308

Vb',

4

t
t
t

309

lkll

xpress ,

4

310

'g',

xpretf ,
'linewidth'

axis tight

14

311

1);

4

312

313

(s)");

xlabel ('Time

314

x_{pre}');

title('Preconditioned Input SS & TF Inputs,

legend (...

315

316

4

d', length (xpre))

o
°

sprintf ('Wiener

317

4

.3f) ", length (xpress),Similarity (xpre, xpress))
.3f) ", length (xpretf),Similarity (xpre, xpretf))

o\

(
(

sprintf ('SS %d

318

)i

o)
°

sprintf ('TEF %d
set (gca, "fontsize',14);

319

320

o\
o\
o\
o\
o\
o\

o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\

o\
o\
o\
o\
o\
o\
o\
o\
o\

o\
o\°
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\°
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\

321

Plot the SS & TF predistorted outputs.

o
°

322

o\°
o\
o\
o\°
o\
o\

o\
o\°
o\
o\
o\
o\
o\°
o\°
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\°
o\°
o\°
o\°
o\
o\
o\
o\
o\
o\
o\
o\°
o\
o\
o\

o\
o\°
o\°
o\
o\
o\
o\
o\
o\

o\
o\°
o\°
o\°
o\°
o\
o\
o\°
o\
o\
o\
o\
o\°
o\°
o\
o\
o\
o\°
o\
o\
o\
o\
o\
o\°
o\

323

subplot (313)

plot (

324

325

326

4

ypress

14

t
t

327

4

328

1);

4

'linewidth'

axis tight

329

330

(s)");

'Input & Preconditioned SS & TF Outputs,

xlabel ('Time

title(

331

)i

v_{pre}’

332

legend (...

333

'Input’', ...
sprintf ('SS

334

.3f) ", Similarity (xpress,x)), ...
($.3f)"'",Similarity (xpretf,x)));

)
<

(

335

sprintf ('TF
set (gca, 'fontsize',14);

336

337

o\
o\
o\
o\
o\
o\

o\°
o\
o\°
o\°
o\
o\
o\
o\
o\
o\
o\
o\°
o\
o\°
o\°
o\
o\
o\
o\
o\
o\
o\
o\°
o\°
o\°
o\
o\
o\
o\
o\
o\
o\°

o\°
o\°
o\°
o\
o\
o\
o\
o\
o\

o\
o\
o\°
o\°
o\
o\
o\
o\
o\
o\
o\
o\°
o\°
o\
o\°
o\
o\
o\
o\
o\
o\©
o\
o\
o\°
o\

338

Compute spectra

%

339

o\
o\
o\
o\
o\
o\

o\°
o\°
o\°
o\°
o\
o\
o\°
o\
o\
o\°
o\°
o\°
o\
o\°
o\
o\
o\
o\
o\
o\
o\
o\
o\°
o\°
o\°
o\
o\°
o\
o\
o\
o\
o\°

o\°
o\°
o\°
o\
o\
o\
o\°
o\
o\

o\°
o\°
o\°
o\°
o\
o\
o\
o\°
o\
o\
o\
o\°
o\°
o\°
o\
o\°
o\
o\°
o\
o\°
o\°
o\°
o\°

o\

340

o
oe

341

Nwindow = 128;
Nwindow / 2
= 2 nextpow2 (Nt

342

14

Noverlap =
Nfft

343

)i

344

4

)

1/dt
1/dt

Nwindow

4

Nfft

, Noverlap ,

Nwindow

Nwindow
[h; zeros ([Nt-Nhimp 1])]

pwelch(x ,
= pwelch(vy ,
= pwelch(

1/dt

[X, freq]

345

)i

Noverlap ,

4

Nfft

Noverlap ,

4

346

Nfft

4

4

347

)i

4

28

348

349
350
351
352
353

354

355

356

357

358
359
360
361
362

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

HEST = pwelch([hest;zeros([Nt-length(hest) 1])] , Nwindow ,
Noverlap , Nfft , 1/dt);

XPRE = pwelch(xpre , Nwindow , Noverlap , Nfft , 1/dt);

YPRE = pwelch(ypre , Nwindow , Noverlap , Nfft , 1/dt);

YPRESS = pwelch(ypress , Nwindow , Noverlap , Nfft , 1/dt);

YPRETF = pwelch(ypretf , Nwindow , Noverlap , Nfft , 1/dt);

HSS = pwelch([hss;zeros([Nt-length(hss) 1]1)] , Nwindow , Noverlap
, Nfft , 1/dt);

HTF = pwelch([htf;zeros([Nt-length(hss) 1])] , Nwindow , Noverlap
, Nfft , 1/dt);

HINV = pwelch([hinv;zeros ([Nt-length(hinv) 1])] , Nwindow ,
Noverlap , Nfft , 1/dt);

HSSINV = pwelch([hssinv;zeros ([Nt-length(hssinv) 1])] , Nwindow ,
Noverlap , Nfft , 1/dt);

HTFINV = pwelch([htfinv;zeros ([Nt-length (htfinv) 1])] , Nwindow ,
Noverlap , Nfft , 1/dt);

$ S = [XY H HEST XPRE YPRE YPRESS YPRETF HSS HTF HINV HSSINV HTFINV];

t
[
O

figurelList (3) = fetchfigure('Signal Preconditioning III' , AspectRa
);clf
subplot (311)
semilogy (
freq , [X Y H XPRE YPRE HEST HINV],
'linewidth' , 1);
xlabel ('"Frequency (Hz)');
title('Spectra');
legend ('x','y', 'h', 'x_{pre}','y_{pre}', 'h_{est}', 'h_{inv}");
axis tight
set(gca , 'fontsize' , 14);

subplot (312)
hp = semilogy (
freq , [H HEST HSS HTF HINV HSSINV HTFINV] , 'linewidth' , 1);
set (hp([2 4]) , 'linestyle' , '"—=');
xlabel ('"Frequency (Hz)');
title('Spectra');
legend('h', 'h_{est}','h_{ss}','h_{tf}','h_{inv}', 'h_{ssinv}','h_{tfinv}");
axis tight
set (gca , 'fontsize' , 14);

subplot (313)
hp = semilogy(...
freq , [X YPRE YPRESS YPRETF] , 'linewidth' , 1);
set (hp(4) , 'linestyle' , '"—="');
xlabel ('"Frequency (Hz)');
title('Spectra');
legend ('x','y_{pre}','y_{ss}',"'y_{tf}");
axis tight
set (gca , 'fontsize' , 14);

29

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

o
o\
o\°
o\°
o\°
o\
o\
o\
o\
o\
© h o°
© G o°
o\
o\°
o\°
o\
o\
o\
o\
o o0
o o0
o o0
o\
o\
o\°
o\°
o\
o\
o\
o\
o\
o\
o\
o\
o\°
o\°
o\°
o\
o\
o\
o\
o\
o\
o\
o\
o\°
o\°
o\°
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\°
o\
o\
o\
o\
o\
o
o
o\
o\°
o\
o\°
o\°
o\
o\
o\
o\

° s
=]
D
o

° -
0
5

o
o
o
o

°
'_l
=]
h

° 0

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
oe
oo
o
o
o
o
o
o
o
o°
oe
oo
oo
o
o
o
o
o
o

fprintf (1, '$25s $6d\n', 'x & y size, Nt',6Nt);

fprintf (1, '$25s %$6d\n', 'h size, Nhimp',Nhimp) ;

fprintf (1, '$25s %$6d\n', '"Wiener size, Nid',6Nid);

fprintf (1, '$25s $6d\n', '"hest size, Nid+1',6Nid+1);

fprintf (1, '$25s $6d\n', 'hinv size, Nid+1', length (hinv));

fprintf (1, '%$25s $6d\n', 'Forward SS size',Nss);

fprintf (1, '$25s $6d/%d\n', '"Forward TF size',Ntf+[0 1]);

fprintf (1, '$25s %$6d\n"' 'Inverse SS size',Nssinv);

fprintf (1, '$25s $6d/% d\n , '"Inverse TF size',Ntfinv+[0 11]);

fprintf (1, '$25s % .3f\n', 'x, Wiener similarity',similarity);
fprintf (1, '$25s % .3f\n','x, SS similarity',Similarity (xpress,x));
fprintf (1, '%$25s % .3f\n','x, TF similarity',Similarity (xpretf,x));
fprintf (1, '$25s % .3f\n','h, Wiener similarity',hsimilarity(1));
fprintf (1, '%$25s % .3f\n','h, SS similarity',hsimilarity(2));
fprintf (1, '%25s % .3f\n','h, TF similarity',hsimilarity(3));
fprintf (1, '$25s %.2e seconds\n', 'Sample interval, dt',dt);

fprintf (1, '$25s %.2e\n', 'Regularization, alpha',alpha);

fprintf (1, '%$25s %g dB\n', 'SNR', SNR) ;

fprintf (1, '$25s %.2e\n', 'Noise variance', SigmaNoise) ;

—~ U
=
’_l
=]
o
<
()
0n

1, Printing figures ... ');
for n = l:length(figurelist)
EPSFile = sprintf('Signal_ Precondition-%d.eps',n);
fprintf (1, '$s ... ',EPSFile);
figure (figurelList (n));
orient landscape;
print (EPSFile , '-depsc2');
end
fprintf (1, 'done.\n'");
end

end % function tst_Precondition ()

function s = Similarity(x,y,varargin)

Lk Kk kK ok k& ok ok ok k ok ok ok ok ok ok k ok ok k ok ok ok ok ok ok ok ok ok k ok ok k ok ok k ok ok ok ok ok ok k ok ok k ok ok k ok ok k ok ok k ok ok ok k kK ok ok ok ok ok ok ok ok ok kK

TITLE: Similarity.m
AUTHOR: Sean K. Lehman
DATE: April 19, 2021

FUNCTION: Measure the similarity between two time series
SYNTAX:

Similarity(x,vy)

Similarity(x,y,Measure)

o0 o° o° o° o° o o° o

30

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457

459
460
461
462

464
465
466
467

469
470
471
472

474
475
476
477

479
480
481
482
483
484
485
486
487
488
489
490
491
492
493

Measure is 'cosine' (default)
'numsim’'
where the similarity between two numbers, 'numsim' is
numsim(a,b) = 1 - abs(a - b) / (abs(a)+abs (b))
CALLS:

MODIFICATIONS:

o® o° o0 o° o° o° o° o° o° o

%**
Measure = 'cosine';
switch nargin

case 3, Measure

varargin{ 1 };
end

x = reshape(x , []1 , 1);
y = reshape(y , [1, 1);

if length(x) # length(y)
error ('Inputs must have the same lengths');
end

switch Measure
case 'numsim'
s =mean(1 - abs(x-y) ./ (abs(x) + abs(y)));

Q

otherwise % cosine measure

s =y' x x / (norm(y) * norm(x));
end
end % s = Similarity(x,y,varargin)
function fig = fetchfigure(FigureName , varargin)

%**

TITLE: fetchfigure.m
AUTHOR: Sean K. Lehman
DATE: July 08, 2004

FUNCTION: Fetch a figure by name

SYNTAX: fig fetchfigure (FigureName)
fig = fetchfigure(FigureName , scale)

MODIFICATIONS: Philip Top 11/24/09 modified function to use findobj
method, should be slightly faster than previous methodology

o0 o° 0 o O° A A A° A° A O o o° o

***/

fig = findobj(get (0, 'Children'), 'Name',FigureName) ;

[

if isempty(fig) % Create new window

31

4

'screenSize')

4

0
figure ('Name',FigureName, 'visible', 'off"');

get (

scrnsize
fig

494

495

)i

'position’

fig ,

pos = get (

496

497

switch length(varargin)

498

case 1

499

varargin{l};

scale

500

end

scalex[1 1];

scale =

14

==1

if length(scale)

otherwise

501

502

= [1 11;

scale

503

end

504

505

o
o
o\
oo
o\
o\

o\
o\
o\
o
oo
o
o\
o\
o\
o\
o\
o\°
o\
o\
o\
o
o\
o\
o\
o\
o\
o\

o\
o\
o
o
o\
o\
o\
o\
o\

o\°
o\
o\
o\
o\
o
o\
o\
o\

o\
o\
o\
o
o
o
o
o\
o\

o\
o\
o\
o\
o\
o
o\
o\
o\
o\
o\

506

Center on screen

o
o

507

o\
o\°
o\
o\
o\
o\

o\
o\©
o\°
o\°
o\
o\
o\°
o\
o\

o\
o\
o\
o\°
o\°
o\
o\
o\
o\
o\
o\
o\

o\
o\°
o\°
o\°
o\°
o\
o\
o\
o\

o\
o\°
o\°
o\
o\°
o\
o\
o\
o\

o\
o\
o\°
o\°
o\°
o\
o\°
o\
o\

o\
o\
o\
o\°
o\°
o\
o\
o\
o\
o\
o\©

508

(scrnsize (3)-scale(l)*pos(3))/2;

pos (1)

509

o
o
o
oe
o\
o\

o
oe
oe
oe
oe
o
o
oe
oe

o\
oe
o
oe
oe
oe
o
oe
o
o\
o\
o\

oe
oe
oe
o
oe
oe
oe
o\
o\

oe
oe
oe
oe
o
o
o
oe
o\

o
o
oe
oe
o
o
o
o
o\

o\
oe
oe
oe
oe
o
o
o
oe
o\
o\°

510

one must correct for the

Because the Windows OS is a cluster fxxk,

vertical mis-position.

o
°

511

o
°

512

o\°
o\°
o\
o\
o\
o\

o\
o\
o\°
o\°
o\
o\°
o\°
o\
o\

o\
o\
o\
o\°
o\°
o\°
o\
o\
o\
o\
o\
o\

o\
o\°
o\°
o\
o\
o\
o\
o\
o\

o\
o\
o\°
o\
o\
o\
o\
o\
o\

o\
o\°
o\°
o\°
o\
o\°
o\
o\
o\

o\
o\
o\
o\°
o\°
o\°
o\
o\
o\
o\
o\

513

if ispc

514

(scrnsize (4)-scale (2)*pos(4))/2;

pos (2)

515

end

516

o\
o\
o\
o\
o\
o\

o\°
o\°
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\°
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\

o\
o\
o\
o\
o\
o\
o\
o\
o\

o\
o\°
o\
o\
o\
o\
o\
o\
o\

o\
o\
o\
o\
o\
o\
o\
o\
o\

o\
o\°
o\°
o\
o\
o\
o\
o\
o\
o\
o\

517

Set the figure position

o
°

518

o\°
o\°
o\
o\
o\
o\

o\
o\
o\°
o\°
o\°
o\°
o\°
o\°
o\

o\
o\
o\
o\°
o\°
o\
o\
o\
o\
o\
o\
o\

o\°
o\°
o\°
o\°
o\
o\°
o\
o\
o\

o\
o\°
o\°
o\
o\
o\
o\
o\
o\

o\
o\
o\°
o\
o\
o\
o\
o\
o\

o\
o\
o\
o\°
o\
o\
o\
o\°
o\
o\
o\

519

scale (1) xpos (3)

pos (2)

[pos (1)

4

'position'

fig ,

set (

520

)i

scale (2) xpos (4) 1]

end

521

figure (fiqg);

522

varargin)

fig = fetchfigure(FigureName ,

end %

523

32

