

BNL-221931-2021-JAAM

Membrane-Confined Iron Oxychloride Nanocatalysts for Highly Efficient Heterogeneous Fenton Water Treatment

S. Zhang, E. Stavitski

To be published in "ENVIRONMENTAL SCIENCE & TECHNOLOGY"

July 2021

Photon Sciences
Brookhaven National Laboratory

U.S. Department of Energy
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

1 **Membrane-Confined Iron Oxychloride Nanocatalysts for Highly**
2 **Efficient Heterogeneous Fenton Water Treatment**

4 Shuo Zhang,[†] Tayler Hettke,[†] Qianhong Zhu,[†] Meng Sun,[†] Seunghyun Weon,^{†‡} Yumeng Zhao,^{†,§}
5 Eli Stavitski,[§] Menachem Elimelech,[†] Jae-Hong Kim*,[†]

6 [†]Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave, New Haven,
7 Connecticut 06511, United States

8 [‡]School of Health and Environmental Science, Korea University, Seoul 02841, Republic of Korea

9 [#]State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090,
10 China

11 [§]National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States

13 **Abstract.** Heterogeneous advanced oxidation processes (AOPs) allow for the destruction of
14 aqueous organic pollutants via oxidation by hydroxyl radicals ($\cdot\text{OH}$). However, practical treatment
15 scenarios suffer from the low availability of short-lived $\cdot\text{OH}$ in aqueous bulk, due to both mass
16 transfer limitations and quenching by water constituents such as natural organic matter (NOM).
17 Herein, we overcome these challenges by loading iron oxychloride catalyst within the pores of a
18 ceramic ultrafiltration membrane, resulting in an internal heterogeneous Fenton reaction that can
19 degrade organics in complex water matrices with pH up to 6.2. With $\cdot\text{OHs}$ confined inside the
20 nanopores (~ 20 nm), this membrane reactor completely removed various organic pollutants with
21 water fluxes of up to $100 \text{ L m}^{-2} \text{ h}^{-1}$ (equivalent to a retention time of 10 s). This membrane, with a
22 pore size that excludes NOM ($> 300 \text{ kDa}$), selectively exposed smaller organics to $\cdot\text{OH}$ within the
23 pores under confinement and showed excellent resiliency to representative water matrices
24 (simulated surface water and sand filtration effluent samples). Moreover, the membrane exhibited
25 a sustained AOPs (> 24 hours) and could be regenerated for multiple cycles. Our results suggest
26 the feasibility of exploiting ultrafiltration membrane based AOPs platforms for organic pollutant
27 degradation in complex water scenarios.

28 **Keywords:** membrane reactor, iron oxychloride, hydroxyl radicals, kinetics, confinement effect

29 **Synopsis**

30 A ceramic ultrafiltration membrane loaded with iron oxychloride nanocatalyst achieves highly
31 efficient flow-through treatment of organic pollutants in complex water matrix due to size
32 exclusion and nanoconfinement effect.

33 ■ INTRODUCTION

34 Anthropogenic organic pollutants released into surface and ground waters pose a significant threat
35 to the environment and human health.¹ Advanced oxidation processes (AOPs) are widely used to
36 destroy organic pollutants, typically as a polishing step in water and wastewater treatment. The
37 Fenton reaction is frequently employed in industrial wastewater treatment to achieve oxidative
38 organic destruction by producing hydroxyl radicals ($\cdot\text{OH}$) through the activation of hydrogen
39 peroxide (H_2O_2).² Compared to the benchmark homogeneous process, which employs dissolved
40 iron as an activation catalyst, the Fenton reaction utilizing heterogeneous catalysts offers simple
41 operation, low cost, negligible energy input, and absence of sludge generation. Therefore,
42 heterogeneous Fenton reaction is increasingly being considered as an alternative to the benchmark
43 UV/ H_2O_2 process used in water treatment. Nevertheless, heterogeneous AOPs remain mostly in
44 the lab-scale developmental phase due to the relatively slow kinetics compared to their
45 homogeneous counterparts. The extremely short lifetime of $\cdot\text{OH}$ in the aqueous phase ($<10\ \mu\text{s}$)³
46 limits its mass transfer from the site of generation (*i.e.*, catalyst surface) to the aqueous bulk, which
47 severely restricts the radical availability.^{4,5} Furthermore, coexisting natural organic matter (NOM)
48 in surface waters ($0.1\text{--}20\ \text{mg L}^{-1}$)⁶ can block the catalytic sites and quench $\cdot\text{OH}$ ($k_{\cdot\text{OH}/\text{NOM}} \approx 10^9\text{--}$
49 $10^{10}\ \text{s}^{-1}$)⁷, which can deactivate heterogeneous catalysts and even nullify AOPs treatments targeting
50 organic micropollutants.⁸

51
52 We propose to overcome these challenges by loading heterogeneous Fenton catalysts inside
53 an ultrafiltration (UF) membrane porous structure and conducting the AOPs within the membrane
54 channels. We target UF because of its low energy consumption and greater water production rate
55 compared to membranes with smaller pores such as reverse osmosis and nanofiltration. AOPs are
56 also most beneficial to existing water treatment processes that employ UF and conventional media
57 filters and therefore require additional steps to remove small organics. The proposed configuration
58 blocks organic macromolecules larger than the membrane pores from reaching the catalyst sites.
59 Therefore, catalyst fouling and radical quenching are expected to be significantly reduced.
60 Micropollutants smaller than the membrane pores can enter the internal porous structure or
61 channels and be degraded by the $\cdot\text{OH}$ generated through surface catalysis. This unique
62 confinement of the reaction within the membrane pores renders AOPs to be ‘selective’, in contrast
63 to its hallmark property of being a non-selective treatment due to the non-selective reactivity of
64 $\cdot\text{OH}$. Past efforts in combining AOPs with membrane filtration mostly focused on reducing
65 membrane fouling by loading catalysts on the membrane surface^{9, 10} or coupling with
66 electrocatalysis.^{11, 12}

68 We here report a high-performance ceramic UF membrane loaded with heterogeneous
69 Fenton catalysts for the effective removal of organic pollutants in complex water matrices. We
70 select iron oxychloride (FeOCl) among various iron-based catalysts reported so far based on its
71 high efficiency for H₂O₂ activation at pH up to 6.2.¹³ This design marks an important contrast to
72 some past studies that explored loading of Fenton-like catalysts onto the membrane matrix which
73 function only at extremely low pH (< 3), the well-known hurdle in Fenton-like catalysis.^{14, 15} The
74 FeOCl-loaded ZrO₂/TiO₂ ceramic membrane (FeOCl-CM), synthesized here for the first time,
75 demonstrates a near-complete destruction of select organic pollutants through single-pass
76 treatment at a permeate water flux equivalent to common UF processes, with the AOPs confined
77 within the membrane pores. This is accompanied by size exclusion of the majority of background
78 organics larger than a molecular weight cut-off (MWCO) of 300 kDa. We further show that the
79 membrane maintains its performance for over 24 hours and has excellent resiliency to complex
80 water matrices containing NOM and inorganic constituents. The findings of this work highlight
81 the practical significance of engineering membrane-confined AOPs treatment systems to deal with
82 contaminated waters.

84 ■ EXPERIMENTAL

85 **Materials and Reagents.** For iron-based nanocatalyst synthesis, the chemicals used are ferric
86 chloride hexahydrate (FeCl₃·6H₂O, reagent grade, > 98.0%), ferrous chloride tetrahydrate
87 (FeCl₂·4H₂O, Puriss p.a., ≥99.0%), ferrous sulfate heptahydrate (FeSO₄·7H₂O, Reagentplus,
88 ≥99.0%), copper (II) nitrate trihydrate (Cu(NO₃)₂·3H₂O, Puriss p.a., 99-104%), urea (Reagentplus,
89 ≥99.5%), polyvinylpyrrolidone (PVP, average molecular weight: 40, 000), disodium
90 ethylenediaminetetraacetic dihydrate (EDTA-Na, 99.0-101.0% titration), ethylene glycol
91 (anhydrous, ≥99.8%), and sodium citrate (A.C.S. reagent, supplied by Avantor Performance
92 Materials, Inc.). For model contaminants, the chemicals used are para-chlorobenzoic acid (*p*CBA,
93 analytical standard), bisphenol A (BPA, ≥99.0%), 2,4-dichlorophenol (DCP, > 99%),
94 sulfamethoxazole (SMX, analytical standard), 17 α -ethinylestradiol (EE, ≥98%), and atrazine
95 (ATZ, analytical standard). For the MWCO test, the polyethylene oxide chemicals used include
96 average molecular weights of 100, 200, 300, 400, and 600 kDa. Unless otherwise specified, all the
97 chemicals were purchased from Sigma-Aldrich (USA) and used as received without further
98 purification. The Suwannee River NOM was purchased from the International Humic Substances
99 Society (USA).

100
101 **Synthesis of FeOCl-CM.** A circular disc-shaped ceramic UF membrane (termed as “CM”;
102 MWCO = 400 kDa; diameter = 4.7 cm; thickness = 0.25 cm; composition, ZrO₂ and TiO₂),

103 purchased from Sterlitech corporation (USA) was used as the substrate. The internal growth of
104 FeOCl platelet nanocatalysts was realized via successive incubation and annealing treatment. First,
105 iron(III) chloride hexahydrate was dissolved in anhydrous ethanol at a concentration of 1.2 g mL⁻¹. Then, the ceramic membrane was immersed in this solution, and the whole system was sonicated
106 for 5 h at 40 kHz and subsequently shaken for 17 hours at 160 rpm to ensure a thorough liquid
107 impregnation. Afterwards, the membrane was removed from the iron chloride solution, held by
108 polished silicon wafers on both sides, and then heated in air at 220°C for 1 hour with a temperature
109 ramp rate of 10°C min⁻¹. After naturally cooled to room temperature, the material was washed with
110 ethanol and deionized water for several times to completely remove residual impurities, and then
111 placed in a vacuum oven for 12 hours at 40 °C. The as-prepared composite membrane was labeled
112 as “FeOCl-CM” with the MWCO reduced to 300 kDa ([Text S1](#) for details).

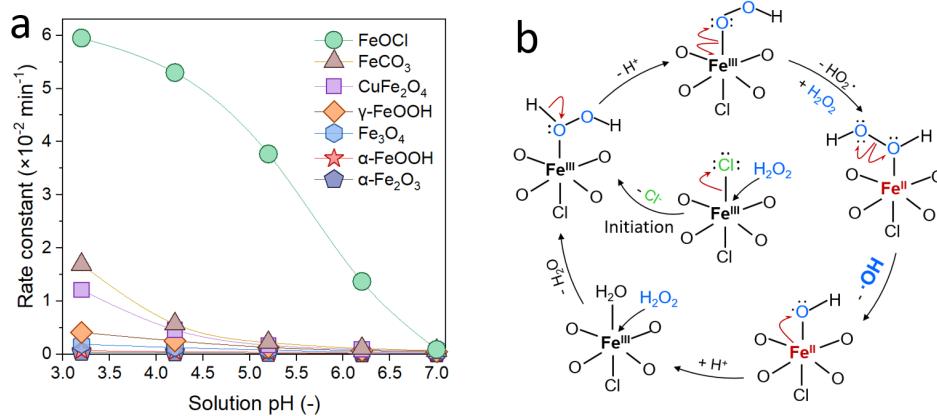
113
114
115 **Material Characterization.** Cross-sectional membrane morphologies were examined by a
116 Hitachi SU-70 analytical field emission SEM microscope (accelerating voltage = 5 kV). X-ray
117 diffraction (XRD) patterns were obtained using a Rigaku SmartLab X-ray Diffractometer with Cu
118 K α monochromatic radiation at 40 kV and 44 mA. Element mapping was captured by energy
119 dispersive spectroscopy (EDS) coupled with a cold field emission scanning electron microscope
120 (Hitachi SU8230). X-ray absorption spectroscopy (XAS) spectra were collected on a Beamline 8-
121 ID (ISS) of the National Synchrotron Light Source II (Brookhaven National Laboratory, USA),
122 using a Si (111) double crystal monochromator and a passivated implanted planar silicon detector.
123 The data were collected at room temperature, with energy calibrated by a Fe foil, and were
124 processed using Demter XAS analysis software. The nitrogen adsorption-desorption isotherms at
125 -196.15 °C were detected by Autosorb-iQ-C (Quantachrome, USA), and the specific surface areas
126 were calculated based on the multipoint Brunauer-Emmett-Teller model.

127
128 **Membrane Performance Test.** Flow-through catalytic reactions were conducted using a dead-
129 end membrane test system ([Figure S1](#)). In a typical experiment, the catalytic membrane was first
130 fixed inside the reaction module and sealed tightly by O-ring rubber bands to avoid water leakage.
131 Then, the stock solution in a water tank, *i.e.*, the background water containing H₂O₂ (2 mM) and a
132 model organic compound (*e.g.*, BPA, 20-50 μ M), was fed into the membrane module at prescribed
133 flow rates under different transmembrane pressures controlled by a nitrogen tank. For the long-
134 term performance test, the stock solution was replenished every 24 hours, and no more than 5% of
135 the spiked BPA was oxidized by H₂O₂ without catalyst present during each 24-hour interval. The
136 membrane water fluxes were determined by a weighing balance recording online by RS-232
137 interface (EBTRIS2202-1S, Sartorius, Elk Grove, IL). After the membrane reaction, the permeate

138 sample was collected and immediately analyzed for model organic degradation, TOC removal, and
139 iron and chloride leaching. All the experiments were performed at room temperature.

141 ■ RESULTS AND DISCUSSION

142 **Selection of FeOCl.** Various iron-based heterogeneous catalysts have been developed to enable
143 the Haber-Weiss cycle (*i.e.*, repeating redox reactions involving dissolved Fe(II) and Fe(III) for
144 H₂O₂ activation and •OH generation)² on their solid surfaces. However, iron atoms exhibit
145 different redox potentials and binding behaviors with H₂O₂ depending on their coordination
146 environment. Consequently, the efficiency of an iron catalytic center for •OH production and even
147 the tendency of undesired iron dissolution during the redox reaction can vary greatly. We first
148 synthesized the prevailing iron-based Fenton catalysts documented so far, including α -Fe₂O₃,¹⁶
149 Fe₃O₄,¹⁷ α -FeOOH,¹⁸ γ -FeOOH,¹⁹ FeCO₃,²⁰ CuFe₂O₄,²¹ and FeOCl (Text S2 and Figure S2).²² We
150 then compared their AOP performances when suspended in water containing 2 mM H₂O₂ at
151 varying solution pH (Text S3). *p*CBA was employed as a probe, which reacts rapidly with •OH
152 ($k_{\cdot\text{OH}/p\text{CBA}} \approx 5 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$)²³ while being inert toward H₂O₂ (Figure S3). All the *p*CBA
153 degradation rates (Figure S4) followed pseudo-first order kinetics ($R^2 = 0.976\text{--}0.998$), and relevant
154 rate constants are shown in Figure 1a. Within the pH window of 3.2 to 7.0, FeOCl exhibited much
155 higher rate constants than those of the other catalysts, with the order of FeOCl > FeCO₃ > CuFe₂O₄
156 > γ -FeOOH > Fe₃O₄ > α -FeOOH > α -Fe₂O₃. All catalysts, except FeOCl, suffered low
157 performance when the solution pH surpassed 4.2. Above pH 6.2, all the other catalysts were
158 completely deactivated, while FeOCl retained its reactivity. Our earlier study showed that FeOCl
159 is even less sensitive to the solution pH when we shortened the reaction time to 1 minute, with a
160 fast organics degradation at pH 7.0.²⁴


161
162 FeOCl is known to function as a catalyst through the redox cycle shown in Figure 1b.²⁴

163 The outstanding catalytic property of FeOCl has been related to the fact that Fe(III) reduction to
164 Fe(II) occurs more favorably than in other catalysts. Note that the Fe(III)-to-Fe(II) reduction is
165 much slower than Fe(II)-to-Fe(III) oxidation, making it the rate limiting step of the redox cycle,
166 especially at high pH for both homogeneous and heterogeneous Fenton reactions.²⁵ For other iron-
167 based catalysts, various strategies, including applying external potential (*i.e.*, electro-Fenton) and
168 providing an auxiliary reductive pathway, have been explored to enhance Fe(III) reduction on the
169 surface.^{26,27} For FeOCl, the H₂O₂ dehydrogenation step that leads to Fe(III) reduction is known to
170 be much more energetically favorable; *e.g.*, a first principle study²⁸ suggests that the H₂O₂
171 dehydrogenation energy barrier for FeOCl (0.23 eV) is much lower than that for Fe₂O₃ (0.76 eV),
172 a Fenton-like catalyst frequently employed in past works.^{16,29,30} The unique electronic property of

173 Fe(III) in FeOCl leading to more favorable reduction has also been noticed in other fields of
 174 application.^{31, 32} As examples, significant charge transfer occurred between an intercalated
 175 polyaniline compound in FeOCl host, causing up to 25% of Fe(III) reduced to Fe(II),³¹ as well as
 176 a partial Fe(III)-to-Fe(II) reduction occurring when N-methyl-2-pyrrolidinone molecules were
 177 intercalated into FeOCl layers.³² These results, supported by mechanisms proven in the literature,
 178 demonstrated FeOCl's outstanding catalytic ability and pH adaptability, which motivated our
 179 further study to incorporate FeOCl into membrane scaffolds for heterogeneous Fenton reaction.

180

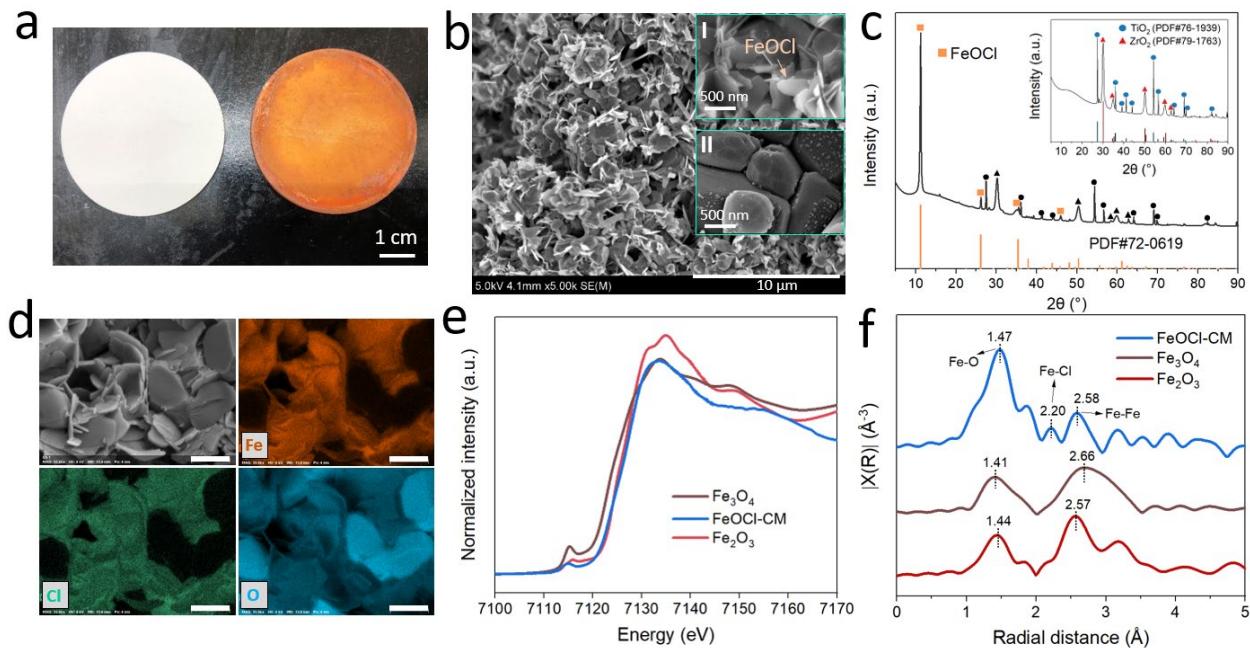
181

182

183

184 **Figure 1.** (a) Pseudo-first-order rate constant versus solution pH for the heterogeneous Fenton oxidation of *p*CBA in
 185 a batch reactor with different iron-based catalysts. Conditions: catalyst loading, 0.1 g L^{-1} ; initial *p*CBA concentration,
 186 $20 \mu\text{M}$; initial H_2O_2 concentration, 2 mM . (b) Proposed mechanism for FeOCl-mediated activation of H_2O_2 with •OH
 187 production.

188


189 **Fabrication and Characterization of Membrane Reactor.** The color of the ceramic membrane
 190 changed from white to brownish yellow after FeOCl was loaded (Figure 2a). A cross-sectional
 191 SEM view showed the random distribution of platelet nanostructures inside the membrane scaffold
 192 (Figure 2b and inset I), in clear contrast to the bare ceramic membrane (inset II). XRD
 193 diffractogram (Figure 2c) shows the characteristic FeOCl crystallographic structure with (010),
 194 (110), (021), and (040) facets at 2θ values of 11.15° , 26.1° , 35.37° , and 45.81° , respectively. The
 195 dominant facet (010) indicates the stacked structure of the FeOCl layers with the interplanar
 196 spacing of about 7.92 \AA according to Bragg's law. The other peaks represent the composition of
 197 the ZrO_2 and TiO_2 that constitute the ceramic membrane (Figure 2c inset).

198

199 EDS mapping (Figure 2d) on iron and chloride elements matches well with the profile of
 200 the randomly distributed nanoplatelets. According to the white line intensity in normalized near-

edge X-ray absorption spectroscopy (XANES, Figure 2e), the first derivative change of Fe K-edge spectra for FeOCl appears at 7123.4 eV, in a position between that of Fe_3O_4 (7122.9 eV) and Fe_2O_3 (7124.2 eV), suggesting the presence of both Fe(III) and Fe(II). Fourier transformed extended X-ray adsorption fine structure spectroscopy (EXAFS, Figure 2f) suggests the presence of Fe-O and Fe-Fe bonds in the planar structure, similar to those in Fe_3O_4 or Fe_2O_3 . Notably, the peak at 2.20 Å evidences the out-of-plane weakly bonded Fe-Cl coordination shell (one Fe atom coordinates with two Cl atoms). These unsaturated Fe-sites have been proposed as the dominant catalytic center, leading to the outstanding catalytic performance of FeOCl compared to other iron-based catalysts.²⁴ Our synthesis method significantly expanded the surface area of the limited inner space of this membrane reactor. Specifically, with a FeOCl loading of 0.21 g and a specific surface area of $15.46 \text{ m}^2 \text{ g}^{-1}$ (Figure S5) the ratio of the available catalyst surface to the inner volume of FeOCl-CM (0.35 cm^3) was estimated to be $9.3 \times 10^6 \text{ m}^2 \text{ m}^{-3}$ (Text S4).

213

214
215

216 **Figure 2.** (a) Photographs of bare ceramic membrane (left) and FeOCl-CM composite membrane (right). (b) Cross-
217 sectional SEM images of FeOCl-CM membrane with 5,000 times of magnification (inset figure with 25,000 times of
218 magnification). (c) XRD pattern of FeOCl-CM membrane (peaks indicated by black circles and triangles are assigned
219 to titanium dioxide and zirconium dioxide, respectively, as shown in the inset figure). (d) EDS mapping of the cross-
220 sectional view of FeOCl-CM (Scale bar: 700 nm). (e) Fe K-edge XANES spectra of FeOCl-CM, Fe_3O_4 , and Fe_2O_3 ,
221 respectively. (f) Fourier transforms of the $\chi(k) \cdot k^3$ into R space in the range from 0 to 5 Å for FeOCl-CM, Fe_3O_4 , and
222 Fe_2O_3 , respectively.

223
224

225 **Membrane Reactivity.** The catalytic Fenton reactivity was evaluated by filtering a synthetic feed
226 water at pH 6.2 containing *p*CBA and H_2O_2 (2 mM) through the membrane samples; *i.e.*, a single

227 pass through the membrane. Control experiments performed using a bare CM membrane
228 confirmed no catalytic activity in the absence of FeOCl ([Figures 3a and 3b](#)). Using as-synthesized
229 FeOCl-CM, however, we observed a complete removal of *p*CBA at membrane water fluxes up to
230 100 L m⁻² h⁻¹ (LMH) ([Figure 3a](#)). This translates to the complete probe destruction at a retention
231 time down to about 10 s within the membrane pores (see [Figure S6](#) the correlation between
232 transmembrane pressure, water flux, and retention time). The FeOCl-CM outperforms previously
233 reported membrane-based Fenton-like reaction systems ([Table S1](#)) that work only either at much
234 lower water fluxes (< 20 LMH, removal rate > 80%),^{33,34} under very acidic conditions (e.g., pH ≈
235 3),³⁵ or with extra energy assistance (e.g., photo-Fenton,³⁶ electro-Fenton²⁶).

237 The performance of FeOCl-CM over 5 hours of operation at steady-state water flux of 100
238 LMH is shown in [Figure 3b](#). Without H₂O₂, there was a partial removal of *p*CBA due to adsorption
239 at the initial few minutes. Such effect quickly disappeared within the first 30 min due to saturation
240 of the adsorption sites. With the addition of H₂O₂ as the radical precursor, nearly 100% organic
241 removal was maintained for the duration of experiments without deactivation. The results of EPR
242 analysis ([Figure 3c](#)) performed using 5,5-dimethyl-pyrroline-oxide (DMPO) as a spin trapping
243 agent ($k_{\cdot\text{OH}/\text{DMPO}} \approx 3.4 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$)³⁷ confirmed •OH as the main reactive species. The EPR
244 signals in the permeate of FeOCl-CM was much stronger than those obtained from the batch
245 reaction ([Figure S7](#)) performed using a high concentration of FeOCl catalyst suspension (5 g L⁻¹).
246 The results collectively indicate that an efficient heterogeneous Fenton process driven by FeOCl
247 occurred inside the FeOCl-CM.

248

249

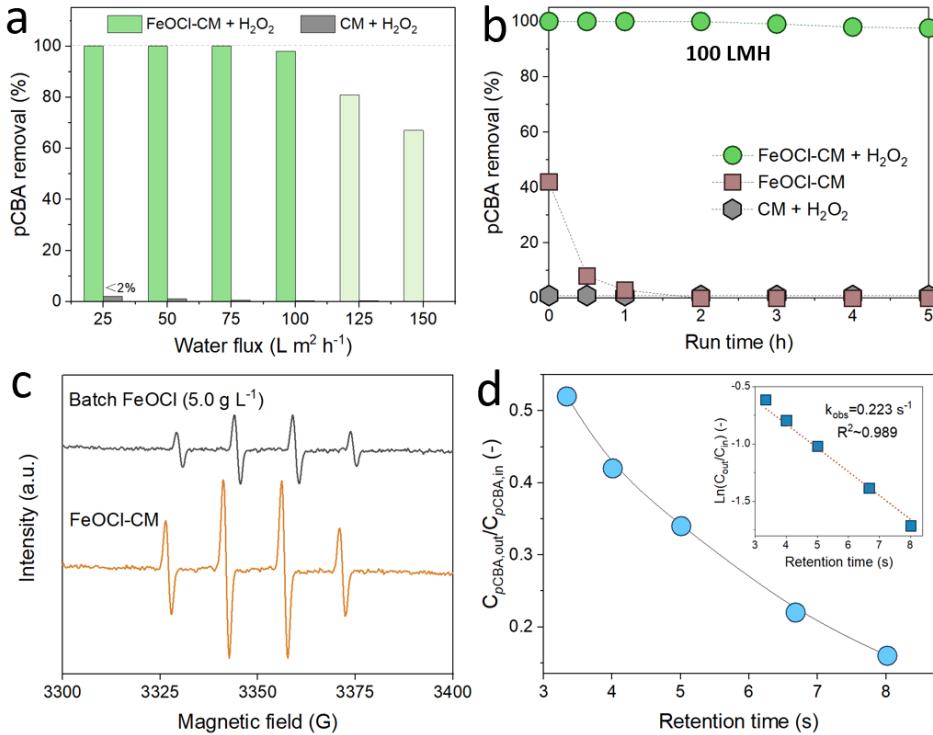
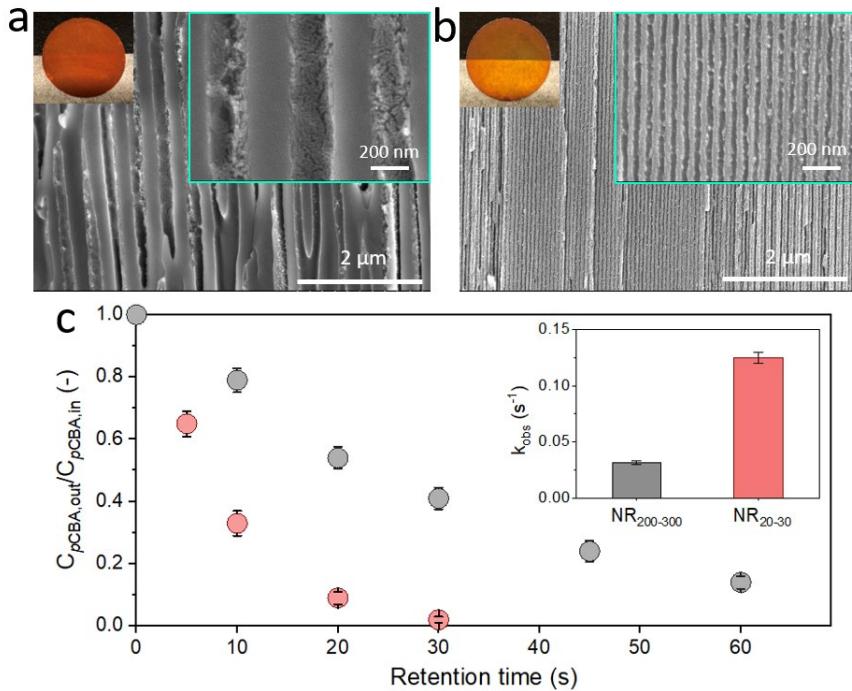


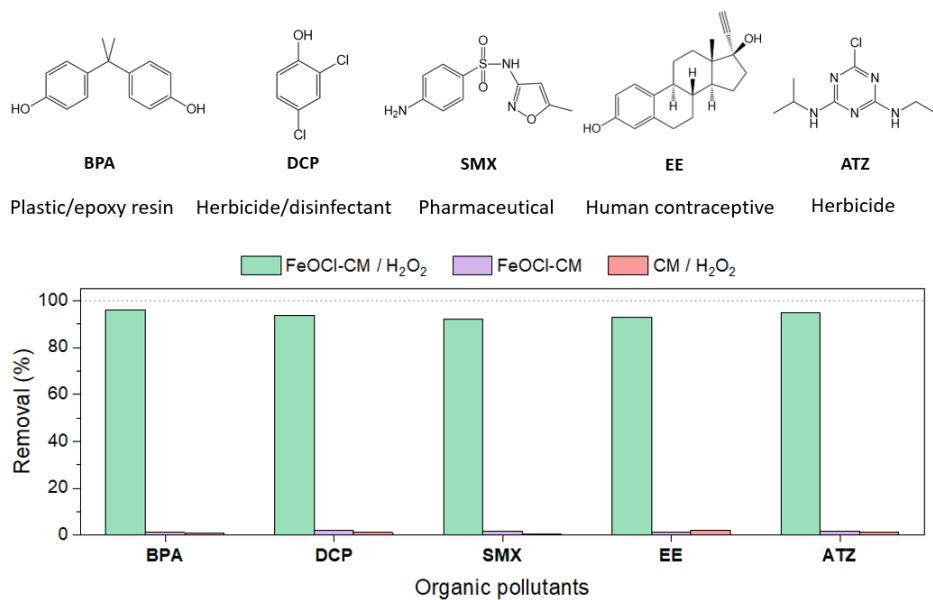
Figure 3. (a) The removal of *p*CBA as a model organic contaminant versus water flux using bare CM and FeOCl-CM as membrane reactors, respectively. The permeate samples were collected after 4-hour runtime. (b) A long-term run of FeOCl-CM for the removal of *p*CBA with (heterogeneous Fenton reaction) and without H₂O₂ (plain adsorption), respectively. (c) EPR spectra of the DMPO spin-trapping for the flow-through catalytic Fenton in FeOCl-CM and batch-mode catalytic Fenton with FeOCl nanoplates, respectively. Conditions: DMPO concentration, 0.1 mM; solution pH, 6.2; FeOCl in batch-mode: 1 g L⁻¹; water flux for FeOCl-CM: 100 LMH. The peaks emerged are DMPO-OH (a_N = a_H = 14.9 G). (d) Normalized concentration of *p*CBA versus retention time. Inset figure is the kinetics determined by linear regression analysis. The sample for outlet *p*CBA concentration was obtained after 4-hour runtime to prevent adsorption from impacting the kinetic analysis. The retention times, *i.e.*, 3.3, 4.1, 5.0, 6.7, and 8.0 s, correspond to water fluxes of 300, 250, 200, 150, and 125 LMH, respectively. Conditions of feed water for all the membrane tests: *p*CBA, 50 μM; H₂O₂, 2 mM; solution pH, 6.2.

The probe concentration profile as a function of retention time is shown in Figure 3d. Note that further increasing the permeation flux means decreasing the retention time within the membrane pores, which is conceptually equivalent to shortening the reaction time in a batch reactor. The first-order rate constant of *p*CBA destruction by FeOCl-CM (inset Figure 3d) was 0.22 s⁻¹, approximately 1,200 times higher than that obtained from batch suspension reaction (1.8 × 10⁻⁴ s⁻¹ at pH 6.2, Figure S4). We estimate the steady-state •OH concentration confined inside the membrane to be approximately 44.6 pM ($k_{\cdot OH}/pCBA \approx 5.0 \times 10^9$),²³ in stark contrast to the batch-mode counterpart (~ 0.036 pM). Such an intense •OH exposure inside the membrane was partly contributed by large surface area (~ 9.3 × 10⁶ m² m⁻³) available for catalysis (Text S4). This


274 is unlikely to occur in the case of batch suspension reaction where particle agglomeration limits
275 the surface availability and thus the reactivity of the whole system.³⁸ Supporting this assertion is
276 the limited enhancement of •OH EPR signal intensity in response to an increasing FeOCl
277 concentration from 1 to 5 g L⁻¹ ([Figure S7](#)).

278

279 We also attribute the enhanced kinetics to the nanoconfinement effect; *i.e.*, •OH exposure
280 is increased by confining short-lived •OH (<10 μ s)³ in a nanoscale domain. Pore size of FeOCl-
281 CM was estimated to be approximately 20 nm ([Text S1](#)), which is at the critical value (*e.g.*, about
282 25 nm) that is known to trigger the nanoconfinement effect for the surface-catalyzed reaction.³⁹
283 To verify this hypothesis, we synthesized another set of FeOCl-loaded membranes using anodized
284 aluminum oxide (AAO) as the template. The AAO template provides accurate and uniformly
285 distributed channels with inner diameters of 20-30 nm (NR₂₀₋₃₀, [Figure 4a](#)) and 200-300 nm (NR₂₀₀₋₃₀₀,
286 [Figure 4b](#)), respectively. In both cases, FeOCl was immobilized on the inner surface of the
287 membrane to prevent catalyst agglomeration during comparison of the *p*CBA degradation kinetics.
288 We found that the effective •OH concentration confined inside NR₂₀₋₃₀ (25 pM, $k_{\text{obs}} = 0.125 \text{ s}^{-1}$)
289 was much higher than that inside NR₂₀₀₋₃₀₀ (6.2 pM, $k_{\text{obs}} = 0.031 \text{ s}^{-1}$) ([Figure 4c](#)). Note that the
290 ratio of pore surface area to pore volume was approximately the same between these two
291 membranes ([Figure S8](#)). Consequently, there was about 4 times greater of •OH exposure solely
292 due to the decrease in the dimension of space (*i.e.*, pores of AAO) from 200-300 nm to 20-30 nm.
293 NR₂₀₀₋₃₀₀ also elevated the kinetics to a large extent compared to the batch reaction (≈ 160 times).
294 Although FeOCl-CM does not have such a precise pore size as AAO, it is reasonable to assume
295 that the similar nanoconfinement effect contributes to its much improved •OH exposure compared
296 to FeOCl suspension.


297

298

Figure 4. The cross-sectional SEM views of (a) NR₂₀₋₃₀ and (b) NR₂₀₀₋₃₀₀, respectively. Photographs are inserted for each of them. (c) Evolution of normalized *p*CBA concentration versus retention time after catalytic treatment by the NRs. Inset figure shows the pseudo-first order kinetic constants. Error bars represent the data from triplicated tests. Conditions of entrance water: *p*CBA, 50 μ M; H₂O₂, 2 mM; solution pH, 6.2.

We further tested FeOCl-CM for the removal of organic pollutants that have wide industrial, agricultural, and pharmaceutical applications, including BPA, DCP, SMX, EE, and ATZ (Figure 5). For example, BPA has been predominantly used for producing polycarbonate products, and its exposure to humans threatens the reproductive, metabolic, and neurological functions.^{40, 41} We selected only small molecules that cannot be removed by typical UF membranes. Control experiments confirmed that these organics were not removed either by FeOCl-CM without H₂O₂ addition (*i.e.*, no removal by adsorption or size exclusion) or by pristine ceramic membrane with H₂O₂ addition (*i.e.*, no direct reaction with H₂O₂). When we filtered the water containing these pollutants and 2 mM H₂O₂ through FeOCl-CM, we obtained at least 92% degradation of all the model pollutants with a single pass, consistently over several hours of operation with the water flux of 100 LMH (Figure S9). The overall removal efficiency can be improved by increasing the reaction time, which is equivalent of decreasing the permeate flux. For example, by simply lowering the permeate flux to 90 LMH while keeping other conditions unchanged, we obtained the complete removal of this set of organic pollutants (Figure S10).

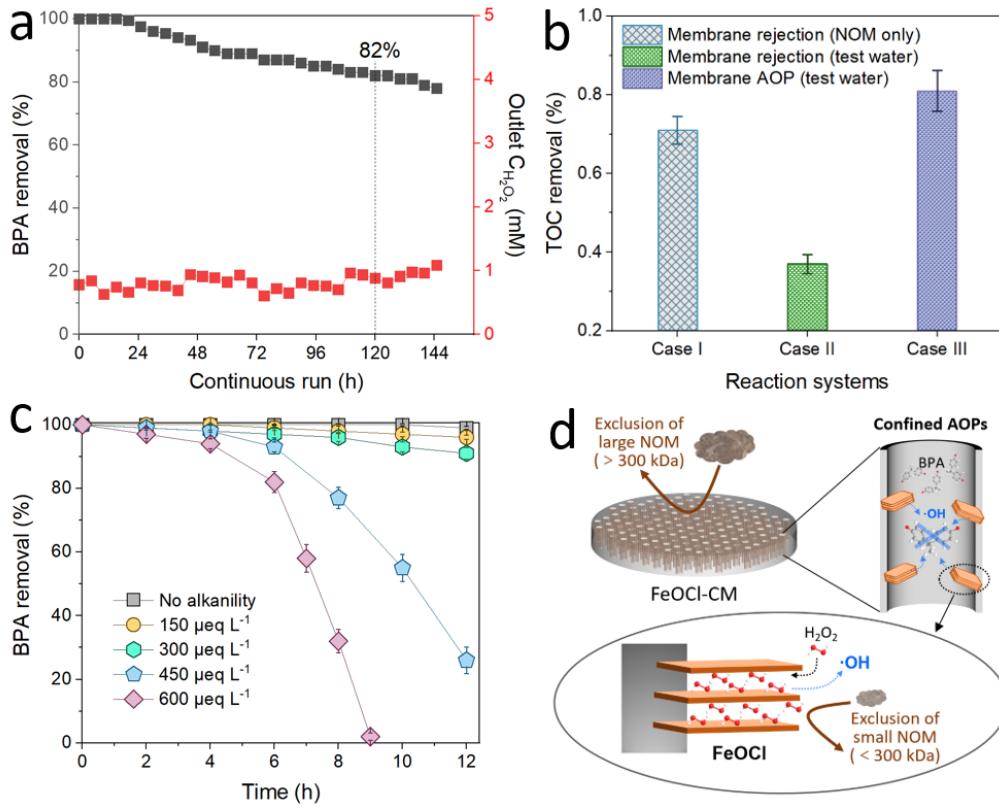
325 **Figure 5.** Removal test of five organic pollutants by membrane AOPs (*i.e.*, FeOCl-CM/H₂O₂), bare membrane
 326 adsorption (*i.e.*, FeOCl-CM), and CM substrate with H₂O₂ addition (*i.e.*, CM/H₂O₂). Conditions: organic
 327 concentration, 50 μ M; H₂O₂, 2 mM; solution pH, 6.2; water flux, 100 LMH; the tested samples are after 4-hour
 328 continuous runtime.

331 **Long Term Performance in Complex Water Matrices.** FeOCl-CM maintained complete
 332 removal of BPA for at least 24 hours of continuous runtime at a water flux of 25 LMH (Figure 6a).
 333 When the run time was further prolonged to 120 hours (5 days), the catalytic activity in the
 334 membrane reactor experienced only a small loss, where over 80% of BPA removal was still
 335 achieved together with sustained consumption of H₂O₂ (Figure 6a). The loss of iron from the
 336 FeOCl basal structure was negligible of approximately 0.03 mg (Figure S11), which was far less
 337 (< 0.1%) than the total amount of iron present in the membrane (*i.e.*, 110 mg iron in the 210 mg
 338 of FeOCl that constitutes the composite membrane used in the filtration setup). However, we
 339 noticed a leaching of chloride over the duration of the experiment (Figure S11). While the release
 340 of chloride is not of any environmental concern at this concentration (~10 mg L⁻¹), we postulate
 341 that it is related to the gradual loss of catalytic activity of FeOCl over time. The Fenton-like
 342 reaction cycle in Figure 1b is initiated by the binding of H₂O₂ to Fe site that is coordinated with
 343 labile Cl ligand. The Fe is then coordinated with H₂O throughout the reaction cycle, serving as a
 344 site to coordinate with H₂O₂. The fact that the catalytic activity gradually decreases over time
 345 indicates that H₂O₂ has a higher affinity to the original Fe site bound to Cl compared to the Fe site
 346 formed after each cycle of catalysis.

347

348 We further tested FeOCl-CM with a simulated surface water containing common inorganic
 349 constituents and NOM (Table S2) spiked with BPA. NOM is known to quench $\cdot\text{OH}$ (second order
 350 constant of $10^9\text{-}10^{10} \text{ M}^{-1} \text{ s}^{-1}$)⁷ and hinder the AOPs treatment of coexisting aromatic pollutants.⁷
 351 This effect can be seen in our batch experiment where the NOM-spiked system (5 mg L^{-1})
 352 significantly hindered the degradation of BPA (Figure S12). However, such an interference can be
 353 largely avoided with FeOCl-CM which rejects the majority of NOM (about 70% in term of TOC)
 354 by size exclusion (Figure 6b). In other words, the FeOCl catalysts that reside inside CM pores are
 355 not exposed to the majority of NOM, allowing them to selectively target the destruction of BPA
 356 and achieve a complete removal of BPA for at least 10 hours (Figure 6c). Note that 70% NOM
 357 rejection corresponds to about 37% TOC removal for the feed solution containing both NOM (5 mg-C L^{-1})
 358 and BPA ($20 \mu\text{M}$ or 3.6 mg-C L^{-1}) (Figure 6b, middle column, without H_2O_2 addition).
 359 But the total TOC removal reached 82% due to the combined removal of large NOM by size
 360 exclusion (37%) and destruction of BPA through FeOCl catalysis (45% removal in terms of total
 361 TOC of the feed) within merely 40 seconds of retention time (25 LMH).

362


363 A fraction of NOM would enter the pore and could have contributed to catalyst deactivation.
 364 It is also known that exposure of catalysts to organic pollutants can result in deactivation due to a
 365 gradual occupation of the reactive sites.^{8, 42} Such a poisoning effect was found to be minor with
 366 FeOCl within the experimental timeframe. The surface of FeOCl platelets between interlayers (d-
 367 spacing of 7.92 \AA) presumably were protected from the entrance of BPA molecules with a
 368 comparable size of about 7.52 \AA (van der Waals diameter; determined by a fast calculation
 369 method⁴³) as well as small NOM that passes through the membrane. In contrast, H_2O_2 precursor
 370 molecules, with a much smaller size (2.5 \AA mean diameter) and a high affinity to FeOCl's
 371 polarized surfaces due to the Lewis base property,⁴⁴ will likely achieve an easier intercalation into
 372 the van der Waals layers for $\cdot\text{OH}$ production.⁴⁵ Consequently, an additional size exclusion
 373 phenomenon (*i.e.*, in addition to size exclusion by CM membrane pores) is in a play to further
 374 protect catalysts from deactivation by organics (Figure 6d).

375

376 We also observed that most coexisting inorganic substances did not show an evident effect
 377 on the FeOCl-CM performance. However, we noticed that carbonate species tends to deactivate
 378 surface iron sites likely due to the formation of a passive layer.^{46, 47} When the solution alkalinity
 379 was increased to $600 \mu\text{eq L}^{-1}$ (*i.e.*, $59.0 \text{ mg L}^{-1} \text{ CaCO}_3$) at a fixed pH of 6.2, the BPA removal was
 380 maintained only for the first 4 hours (Figure 6c). It should be noted that FeOCl-CM maintained
 381 near complete BPA removal efficiency for at least 12 hours under an alkalinity of $300 \mu\text{eq L}^{-1}$ (*i.e.*,
 382 $29.5 \text{ mg L}^{-1} \text{ CaCO}_3$), which is the level found in most surface waters.⁴⁸

383

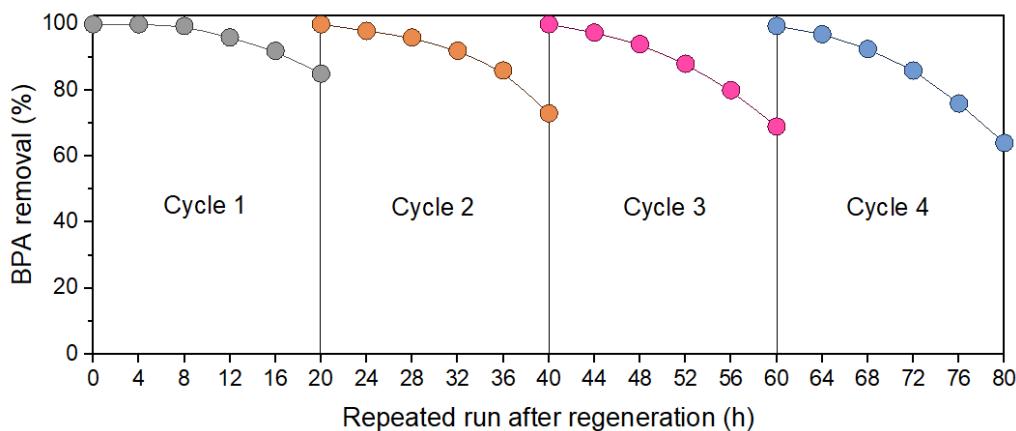
384

385

386

Figure 6. (a) Removal of BPA during a long-term operation of membrane AOPs. Conditions: BPA, 20 μM ; H_2O_2 , 2 mM; solution pH, 6.2; water flux: 25 LMH. (b) Removal of TOC from the simulated surface water with (test water) and without (NOM only) model pollutants. (c) Membrane AOPs induced removal of BPA under simulated surface water with different background alkalinity (adjusted by NaHCO_3). Conditions: BPA, 20 μM ; NOM, 5 mg L^{-1} (Suwannee River NOM); the recipe of inorganic constituents referred to the NEWT test water (Nanotechnology Enabled Water Treatment, Table S2 for details); H_2O_2 , 2 mM; solution pH, 6.2; water flux: 25 LMH. (d) Schematic diagram of the double size exclusion effect played by the UF membrane reactor (for selective use of $\cdot\text{OH}$) and the layered FeOCl catalyst (for entrance of H_2O_2 to produce $\cdot\text{OH}$).

395


396

Performance with Real Water Sample. We further tested FeOCl-CM to treat a water sample collected from a drinking water treatment plant in New Haven, Connecticut and spiked with 20 μM BPA. The tested water was the sand filter effluent with pH = 6.5, alkalinity = 270 $\mu\text{eq L}^{-1}$, TOC = 1.6 mg L^{-1} , UV 254 nm absorption = 0.017 cm^{-1} , and turbidity = 0.064 NTU. FeOCl-CM completely removed BPA for the first 10 hours of continuous filtration, while the efficiency gradually decreased for the next 10 hours, reaching approximately 82% removal after 20 hours of operation (Figure 7). Considering the relatively high alkalinity of the test water, this result is consistent with the results we obtained with synthetic surface water (Figure 6c).

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

As discussed above, this gradual loss of performance is likely related to the loss of Fe centers bound to Cl, the preferred site for H_2O_2 binding and activation, due to water coordination and alkaline passivation. We found that the FeOCl-CM reactivity could be effectively recovered by a successive soaking in HCl solution (0.5 M) and annealing treatment (220 °C, 1 hour) for repeated use (Figure 7). This regeneration treatment led to an effective chloride intercalation and restoration of Fe-Cl bonds, through which the crystalline structure of FeOCl was recovered (Figure S13a). High temperature annealing was found to be critical to recover Fe-Cl sites, as evidenced by the ineffective catalyst regeneration with acid-only treatment (Figure S13b). This result again highlights the significance of the Fe-Cl sites that contribute to the overall kinetics of H_2O_2 activation and $\cdot\text{OH}$ production. Acid treatment has additional benefits such as chemical removal of deposits, scales, and biofoulants from membrane surfaces. The high temperature treatment, however, cannot be performed online and is impractical, requiring further research of an alternative regeneration technique. Additional study can attempt modulation of the coordination environment of Fe centers by doping isomorphic species such as copper⁴⁹ and sulfur⁵⁰ that can enhance the adaptability to alkaline conditions.

422

423
424
425
426

Figure 7. Decontamination of real water. Conditions: BPA, 20 μM ; H_2O_2 , 2 mM; water flux, 25 LMH. Water samples were collected every four hours and immediately sent to analysis.

427
428
429
430
431
432

In summary, we designed a UF membrane reactor with confined FeOCl nanocatalysts, which exhibited highly efficient catalytic Fenton degradation of organic pollutants under realistic conditions—complex water scenarios with NOM, circumneutral pH, and common UF water fluxes. Unique advantages were featured by the reactions confined within the membrane structure (~ 20 nm pore size): (i) ‘selective’ AOPs toward organic pollutants due to the size exclusion of larger NOM (> 300 kDa) that effectively avoided the radical quenching, and (ii) enhanced kinetics

433 of AOPs due to the spatial nanoconfinement effect that augments $\cdot\text{OH}$ exposure. Furthermore, the
434 long-term efficient membrane reaction was revealed and can be attributed to both the surface
435 chemistry of FeOCl as well as its layered structure that excludes smaller NOM (< 300 kDa) that
436 entered membrane pores, thus avoiding an invasion of the active sites. With regard to the excellent
437 membrane resiliency to representative complex water matrices, our future work would focus on
438 enhancing the applicability of such reactive membranes for scaled-up treatment scenarios,
439 including the optimization of operating parameters like catalyst/H₂O₂ dosing, the control of in-
440 pore head loss by modulating the growth of nanocatalysts, as well as the aforementioned
441 enhancement of durability to the background water alkalinity.

442 ■ ASSOCIATED CONTENT

443 Supporting Information

444 Greater detail of complementary experiments, methods, calculation, and discussion.

445 ■ AUTHOR INFORMATION

446 Corresponding Author

447 **Jae-Hong Kim** – Department of Chemical and Environmental Engineering, Yale University, New
448 Haven, Connecticut 06511, United States; orcid.org/0000-0003-2224-3516; Phone: +1 (203) 432-
449 4386; Email: jaehong.kim@yale.edu

450 Authors

451 **Shuo Zhang** – Department of Chemical and Environmental Engineering, Yale University, New
452 Haven, Connecticut 06511, United States; orcid.org/0000-0002-8663-8616

453 **Tayler Hettke** – Department of Chemical and Environmental Engineering, Yale University, New
454 Haven, Connecticut 06511, United States

455 **Qianhong Zhu** – Department of Chemical and Environmental Engineering, Yale University, New
456 Haven, Connecticut 06511, United States

457 **Meng Sun** – Department of Chemical and Environmental Engineering, Yale University, New
458 Haven, Connecticut 06511, United States; orcid.org/0000-0002-8188- 9264

459 **Seunghyun Weon** – Department of Chemical and Environmental Engineering, Yale University,
460 New Haven, Connecticut 06511, United States; School of Health and Environmental Science,
461 Korea University, Seoul 02841, Republic of Korea; orcid.org/0000-0003-4529-8069

462 **Yumeng Zhao** – Department of Chemical and Environmental Engineering, Yale University, New
463 Haven, Connecticut 06511, United States; State Key Laboratory of Urban Water Resource and
464 Environment, Harbin Institute of Technology, Harbin 150090, China

465 **Eli Stavitski** – National Synchrotron Light Source II, Brookhaven National Laboratory, Upton,
466 New York 11973, United States

467 **Menachem Elimelech** – Department of Chemical and Environmental Engineering, Yale
468 University, New Haven, Connecticut 06511, United States; orcid.org/0000-0003- 4186-1563

469 **Notes**

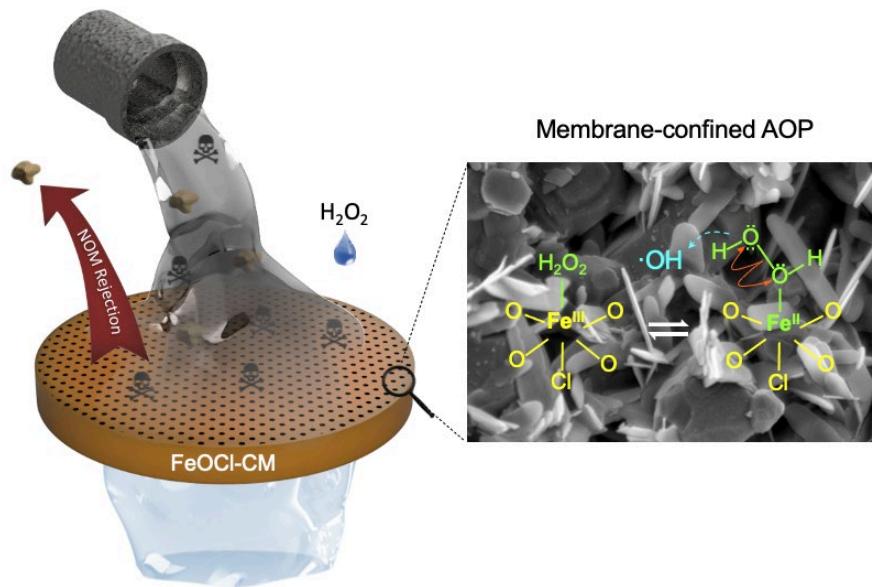
470 The authors declare no competing financial interests.

471 **ACKNOWLEDGMENT**

472 This study was funded by the National Science Foundation Nanosystems Engineering Research
473 Center for Nanotechnology-Enabled Water Treatment (EEC-1449500). This research used
474 beamline 8-ID, Inner Shell Spectroscopy, of the National Synchrotron Light Source II, a U.S.
475 Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of
476 Science by Brookhaven National Laboratory under Contract No. DE-SC0012704.

477 **REFERENCES**

- (1) Tian, Z. Y.; Peter, K. T.; Gipe, A. D.; Zhao, H. Q.; Hou, F.; Wark, D. A.; Khangaonkar, T.; Kolodziej, E. P.; James, C. A. Suspect and Nontarget Screening for Contaminants of Emerging Concern in an Urban Estuary. *Environ. Sci. Technol.* **2020**, *54*, 889-901.
- (2) Weiss, J.; Humphrey, C. W. Reaction between Hydrogen Peroxide and Iron Salts. *Nature* **1949**, *163*, 690-691.
- (3) Laverne, J. A. The Production of OH Radicals in the Radiolysis of Water with ${}^4\text{He}$ Ions. *Radiat. Res.* **1989**, *118*, 201-210.
- (4) Zhang, J.; Nosaka, Y. Mechanism of the OH Radical Generation in Photocatalysis with TiO_2 of Different Crystalline Types. *J. Phys. Chem. C* **2014**, *118*, 10824-10832.
- (5) Zhang, S.; Quan, X.; Wang, D. Zhang, S.; Quan, X.; Wang, D. Fluorescence Microscopy Image-Analysis (FMI) for the Characterization of Interphase HO^\bullet Production Originated by Heterogeneous Catalysis. *Chem. Commun.* **2017**, *53*, 2575-2577.
- (6) Rodrigues, A.; Brito, A.; Janknecht, P.; Proenca, M. F.; Nogueira, R. Quantification of Humic Acids in Surface Water: Effects of Divalent Cations, pH, and Filtration. *J. Environ. Monitor.* **2009**, *11*, 377-382.
- (7) Lindsey, M. E.; Tarr, M. A. Inhibition of Hydroxyl Radical Reaction with Aromatics by Dissolved Natural Organic Matter. *Environ. Sci. Technol.* **2000**, *34*, 444-449.
- (8) Brame, J.; Long, M. C.; Li, Q. L.; Alvarez, P. Inhibitory Effect of Natural Organic Matter or Other Background Constituents on Photocatalytic Advanced Oxidation Processes: Mechanistic Model Development and Validation. *Water Res.* **2015**, *84*, 362-371.
- (9) Wang, T.; Wang, Z. Y.; Wang, P. L.; Tang, Y. Y. An Integration of Photo-Fenton and Membrane Process for Water Treatment by a PVDF@CuFe₂O₄ Catalytic Membrane. *J. Membrane Sci.* **2019**, *572*, 419-427.


- 501 (10) Wang, X. X.; Sun, M.; Zhao, Y. M.; Wang, C.; Ma, W.; Wong, M. S.; Elimelech, M. In Situ
502 Electrochemical Generation of Reactive Chlorine Species for Efficient Ultrafiltration Membrane
503 Self-Cleaning. *Environ. Sci. Technol.* **2020**, *54*, 6997-7007.
- 504 (11) Alpatova, A.; Meshref, M.; McPhedran, K. N.; El-Din, M. G. Composite polyvinylidene
505 fluoride (PVDF) membrane impregnated with Fe_2O_3 nanoparticles and multiwalled carbon
506 nanotubes for catalytic degradation of organic contaminants. *J Membrane Sci* **2015**, *490*, 227-
507 235.
- 508 (12) Zheng, J. J.; Wang, Z. W.; Ma, J. X.; Xu, S. P.; Wu, Z. C. Development of an
509 Electrochemical Ceramic Membrane Filtration System for Efficient Contaminant Removal from
510 Waters. *Environ. Sci. Technol.* **2018**, *52*, 4117-4126.
- 511 (13) Sun, M.; Zucker, I.; Davenport, D. M.; Zhou, X. C.; Qu, J. H.; Elimelech, M. Reactive, Self-
512 Cleaning Ultrafiltration Membrane Functionalized with Iron Oxychloride Nanocatalysts.
513 *Environ. Sci. Technol.* **2018**, *52*, 8674-8683.
- 514 (14) Plakas, K. V.; Mantza, A.; Sklari, S. D.; Zaspalis, V. T.; Karabelas, A. J. Heterogeneous
515 Fenton-like Oxidation of Pharmaceutical Diclofenac by a Catalytic Iron-Oxide Ceramic
516 Microfiltration Membrane. *Chem. Eng. J.* **2019**, *373*, 700-708.
- 517 (15) Cui, L. L.; Ding, P. P.; Zhou, M.; Jing, W. H. Energy Efficiency Improvement on in Situ
518 Generating H_2O_2 in a Double-Compartment Ceramic Membrane Flow Reactor Using Cerium
519 Oxide Modified Graphite Felt Cathode. *Chem. Eng. J.* **2017**, *330*, 1316-1325.
- 520 (16) Zhang, G. K.; Gao, Y. Y.; Zhang, Y. L.; Guo, Y. D. Fe_2O_3 -Pillared Rectorite as an Efficient
521 and Stable Fenton-like Heterogeneous Catalyst for Photodegradation of Organic Contaminants.
522 *Environ. Sci. Technol.* **2010**, *44*, 6384-6389.
- 523 (17) Ardo, S. G.; Neliu, S.; Ona-Nguema, G.; Delarue, G.; Brest, J.; Pironin, E.; Morin, G.
524 Oxidative Degradation of Nalidixic Acid by Nano-magnetite via $\text{Fe}^{2+}/\text{O}_2$ -Mediated Reactions.
525 *Environ. Sci. Technol.* **2015**, *49*, 4506-4514.
- 526 (18) Qian, X. F.; Ren, M.; Zhu, Y.; Yue, D. T.; Han, Y.; Jia, J. P.; Zhao, Y. X. Visible Light
527 Assisted Heterogeneous Fenton-like Degradation of Organic Pollutant via alpha-
528 FeOOH /Mesoporous Carbon Composites. *Environ. Sci. Technol.* **2017**, *51*, 3993-4000.
- 529 (19) Feng, C. H.; Li, F. B.; Mai, H. J.; Li, X. Z. Bio-Electro-Fenton Process Driven by Microbial
530 Fuel Cell for Wastewater Treatment. *Environ. Sci. Technol.* **2010**, *44*, 1875-1880.
- 531 (20) Acisli, O.; Khataee, A.; Soltani, R. D. C.; Karaca, S. Ultrasound-Assisted Fenton Process
532 Using Siderite Nanoparticles Prepared via Planetary Ball Milling for Removal of Reactive
533 Yellow 81 in Aqueous Phase. *Ultrason. Sonochem.* **2017**, *35*, 210-218.
- 534 (21) Fontecha-Camara, M. A.; Moreno-Castilla, C.; Lopez-Ramon, M. V.; Alvarez, M. A. Mixed
535 Iron Oxides as Fenton Catalysts for Gallic Acid Removal from Aqueous Solutions. *Appl. Catal.*
536 *B-Environ.* **2016**, *196*, 207-215.
- 537 (22) Yang, X. J.; Xu, X. M.; Xu, J.; Han, Y. F. Iron Oxychloride (FeOCl): An Efficient Fenton-
538 like Catalyst for Producing Hydroxyl Radicals in Degradation of Organic Contaminants. *J. Am.*
539 *Chem. Soc.* **2013**, *135*, 16058-16061.
- 540 (23) Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. Critical Review of Rate
541 Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals
542 ($\cdot\text{OH}/\cdot\text{O}^-$) in Aqueous Solution. *J. Phys. Chem. Ref. Data* **1988**, *17*, 513-886.
- 543 (24) Sun, M.; Chu, C.; Geng, F.; Lu, X.; Qu, J.; Crittenden, J.; Elimelech, M.; Kim, J. H.
544 Reinventing Fenton Chemistry: Iron Oxychloride Nanosheet for pH-Insensitive H_2O_2 Activation.
545 *Environ. Sci. Technol. Lett.* **2018**, *5*, 186-191.

- 546 (25) Xing, M. Y.; Xu, W. J.; Dong, C. C.; Bai, Y. C.; Zeng, J. B.; Zhou, Y.; Zhang, J. L.; Yin, Y.
547 D. Metal Sulfides as Excellent Co-catalysts for H₂O₂ Decomposition in Advanced Oxidation
548 Processes. *Chem-Us* **2018**, *4*, 1359-1372.
- 549 (26) Jiang, W. L.; Xia, X.; Han, J. L.; Ding, Y. C.; Haider, M. R.; Wang, A. J. Graphene
550 Modified Electro-Fenton Catalytic Membrane for in Situ Degradation of Antibiotic Florfenicol.
551 *Environ. Sci. Technol.* **2018**, *52*, 9972-9982.
- 552 (27) Zubir, N. A.; Yacou, C.; Motuzas, J.; Zhang, X. W.; Zhao, X. S.; da Costa, J. C. D. The
553 Sacrificial Role of Graphene Oxide in Stabilising a Fenton-like Catalyst GO-Fe₃O₄. *Chem.*
554 *Commun.* **2015**, *51*, 9291-9293.
- 555 (28) Ji, X. X.; Wang, H. F.; Hu, P. J. First Principles Study of Fenton Reaction Catalyzed by
556 FeOCl: Reaction Mechanism and Location of Active Site. *Rare Metals* **2019**, *38*, 783-792.
- 557 (29) Feng, J.; Hu, X. J.; Yue, P. L. Novel Bentonite Clay-Based Fe-Nanocomposite as A
558 Heterogeneous Catalyst for Photo-Fenton Discoloration and Mineralization of Orange II.
559 *Environ. Sci. Technol.* **2004**, *38*, 269-275.
- 560 (30) Ren, Y.; Shi, M. Q.; Zhang, W. M.; Dionysiou, D. D.; Lu, J. H.; Shan, C.; Zhang, Y. Y.; Lv,
561 L.; Pan, B. C. Enhancing the Fenton-like Catalytic Activity of nFe₂O₃ by MIL-53(Cu) Support:
562 A Mechanistic Investigation. *Environ. Sci. Technol.* **2020**, *54*, 5258-5267.
- 563 (31) Jarrige, I.; Cai, Y. Q.; Shieh, S. R.; Ishii, H.; Hiraoka, N.; Karna, S.; Li, W. H. Charge
564 Transfer in FeOCl Intercalation Compounds and Its Pressure Dependence: An X-Ray
565 Spectroscopic Study. *Phys. Rev. B* **2010**, *82*, 165121.
- 566 (32) Yu, T. T.; Li, Q.; Zhao, X. Y.; Xia, H.; Ma, L. Q.; Wang, J. L.; Meng, Y. S.; Shen, X. D.
567 Nanoconfined Iron Oxychloride Material as a High-Performance Cathode for Rechargeable
568 Chloride Ion Batteries. *Acsl Energy Lett.* **2017**, *2*, 2341-2348.
- 569 (33) Karimnezhad, H.; Navarchian, A. H.; Gheinani, T. T.; Zinadini, S. Amoxicillin Removal by
570 Fe-Based Nanoparticles Immobilized on Polyacrylonitrile Membrane: Individual Nanofiltration
571 or Fenton Reaction, vs. Engineered Combined Process. *Chem. Eng. Res. Des.* **2020**, *153*, 187-
572 200.
- 573 (34) Zhang, L. P.; Liu, Z.; Faraj, Y.; Zhao, Y.; Zhuang, R.; Xie, R.; Ju, X. J.; Wang, W.; Chu, L.
574 Y. High-Flux Efficient Catalytic Membranes Incorporated with Iron-Based Fenton-like Catalysts
575 for Degradation of Organic Pollutants. *J. Membrane Sci.* **2019**, *573*, 493-503.
- 576 (35) Zhang, Y. J.; Yuan, M. Y.; Lin, R.; Ma, J. Degradation of Orange IV Solution by a Fenton-
577 like Process Using Fe³⁺/PVDF-PMMA Catalytic Membrane. *J. Environ. Eng.* **2014**, *140*,
578 06014001.
- 579 (36) Lan, H. C.; Wang, F.; Lan, M.; An, X. Q.; Liu, H. J.; Qu, J. H. Hydrogen-Bond-Mediated
580 Self-Assembly of Carbon-Nitride-Based Photo-Fenton-like Membranes for Wastewater
581 Treatment. *Environ. Sci. Technol.* **2019**, *53*, 6981-6988.
- 582 (37) Finkelstein, E.; Rosen, G. M.; Rauckman, E. J. Spin Trapping. Kinetics of the Reaction of
583 Superoxide and Hydroxyl Radicals with Nitrones. *J. Am. Chem. Soc.* **1980**, *102*, 4994-4999.
- 584 (38) Carbojo, J.; Tolosana-Moranchel, A.; Casas, J. A.; Faraldo, M.; Bahamonde, A. Analysis of
585 Photoefficiency in TiO₂ Aqueous Suspensions: Effect of Titania Hydrodynamic Particle Size and
586 Catalyst Loading on Their Optical Properties. *Appl. Catal. B-Environ.* **2018**, *221*, 1-8.
- 587 (39) Zhang, S.; Sun, M.; Hedtke, T.; Deshmukh, A.; Zhou, X.; Weon, S.; Elimelech, M.; Kim, J.
588 H. Mechanism of Heterogeneous Fenton Reaction Kinetics Enhancement under Nanoscale
589 Spatial Confinement. *Environ. Sci. Technol.* **2020**, *54*, 10868-10875.
- 590 (40) Peretz, J.; Vrooman, L.; Ricke, W. A.; Hunt, P. A.; Ehrlich, S.; Hauser, R.; Padmanabhan,
591 V.; Taylor, H. S.; Swan, S. H.; VandeVoort, C. A.; Flaws, J. A. Bisphenol A and Reproductive

- 592 Health: Update of Experimental and Human Evidence, 2007-2013. *Environ. Health Persp.* **2014**,
593 *122*, 775-786.
- 594 (41) Inadera, H. Neurological Effects of Bisphenol A and Its Analogues. *Int. J. Med. Sci.* **2015**,
595 *12*, 926-936.
- 596 (42) Long, M. C.; Brame, J.; Qin, F.; Bao, J. M.; Li, Q. L.; Alvarez, P. J. J. Phosphate Changes
597 Effect of Humic Acids on TiO₂ Photocatalysis: From Inhibition to Mitigation of Electron-Hole
598 Recombination. *Environ. Sci. Technol.* **2017**, *51*, 514-521.
- 599 (43) Zhao, Y. H.; Abraham, M. H.; Zissimos, A. M. Fast Calculation of van der Waals Volume
600 as A Sum of Atomic and Bond Contributions and Its Application to Drug Compounds. *J. Org.*
601 *Chem.* **2003**, *68*, 7368-7373.
- 602 (44) Herber, R. H.; Cassell, R. A. Synthesis, Hyperfine Interactions, and Lattice Dynamics of the
603 Intercalation Compound FeOCl(Kryptofix-21)_{1/18}. *Inorg. Chem.* **1982**, *21*, 3713-3716.
- 604 (45) Yang, X. J.; Tian, P. F.; Zhang, X. M.; Yu, X.; Wu, T.; Xu, J.; Han, Y. F. The Generation of
605 Hydroxyl Radicals by Hydrogen Peroxide Decomposition on FeOCl/SBA-15 Catalysts for
606 Phenol Degradation. *AICHE J.* **2015**, *61*, 166-176.
- 607 (46) Gu, Y. W.; Gong, L.; Qi, J. L.; Cai, S. C.; Tu, W. X.; He, F. Sulfidation Mitigates the
608 Passivation of Zero Valent Iron at Alkaline pHs: Experimental Evidences and Mechanism. *Water*
609 *Res.* **2019**, *159*, 233-241.
- 610 (47) Alowitz, M. J.; Scherer, M. M. Kinetics of Nitrate, Nitrite, and Cr(VI) Reduction by Iron
611 Metal. *Environ. Sci. Technol.* **2002**, *36*, 299-306.
- 612 (48) Omernik, J. M.; Griffith, G. E. Total Alkalinity of Surface Waters: A Map of the Upper
613 Midwest Region of the United-States. *Environ. Manage.* **1986**, *10*, 829-839.
- 614 (49) Jin, H.; Tian, X. K.; Nie, Y. L.; Zhou, Z. X.; Yang, C.; Li, Y.; Lu, L. Q. Oxygen Vacancy
615 Promoted Heterogeneous Fenton-like Degradation of Ofloxacin at pH 3.2-9.0 by Cu Substituted
616 Magnetic Fe₃O₄@FeOOH Nanocomposite. *Environ. Sci. Technol.* **2017**, *51*, 12699-12706.
- 617 (50) Du, J. K.; Bao, J. G.; Fu, X. Y.; Lu, C. H.; Kim, S. H. Mesoporous Sulfur-Modified Iron
618 Oxide as an Effective Fenton-like Catalyst for Degradation of Bisphenol A. *Appl. Catal. B-*
619 *Environ.* **2016**, *184*, 132-141.
- 620

621 TOC Graphic

622

