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 What it takes to run ldmsd in production
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* Example of samplers configuration
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* How to do the hard things: trap doors

* What it doesn’t do yet

* What shall we do about these?



A detailed LDMS v3 systemd/genders case

e https://github.com/baallan/distribution/blob/master/gendersTutorial.md

* Only the highlights today

* The genders configuration for LDMS has not been demonstrated in CLE6/7
yet because until recently, genders library packages were not readily
available from Cray. (Kevin Stroup resolved this for Sandia machines)

 LDMSD must be built with “--enable-libgenders --enable-genderssystemd”



Running LDMSD in production

* |t is a system service supporting multiple instances

e |[dmsd (sampling daemon)
* [dmsd@agg (aggregator daemon, level one)
* |dmsd@SCLUSTER (aggregator per cluster on level two host(s))

e Should be easy to find out how it was last started (even after dead)

* Capture in/var/run/ldmsd files:
* daemon configuration file.
* daemon environment.
 daemon command line.

* Changing the configuration to enable/disable basic features should be
simple i.e. declarative: add a feature to a list, defaults do the rest.



Goals for the genders-based systemd scripts

* Provide automatically:
e Default behavior for stores, samplers, transport, aggregation.
All information possible for diagnosis (whether live or dead).

Escape hatches: BYO LDMSD configuration scripting if you do not use genders.
e We still need Ildmsd@.service to handle multiple instances.

DRY configuration (don’t repeat yourself).

* Defining an aggregator or storage daemon should not require repeating what was written for
upstream sampler daemons (unless exceptions to defaults are needed).

Valgrind support in production (as root)

* For administrators:
* minimize learning of the “ldmsd programming language”.
* minimize configuration changes across across updates.
e Everything should “just work” in common cases.



What is genders?

* It’s a file format and a library for defining and querying two-level hash
tables
* Typically, the first level of the hash table is unqualified hosthname, eg. chama3

* The second level is attribute/value pairs with specific syntax: values cannot
contain whitespace or comma.

* The attribute syntax can be mapped to I[dmsd plugin configuration language
“keyl=valuel key2=value2,value3,valued4” (though it is not beautiful)

e Attribute meaning is entirely up to application

* e.g.
ch[1-1232],chgw[1-24] ldmsd,ldmsd_port=411,ldmsd_xprt=sock
chgw[1-24] [dmsd_metric_plugins=meminfo:vmstat:Inet_stat
chadmin? ldmsd_dbg=DEBUG,ldmsd_log=//localdisk/ldmsd/log



Sampler configuration example

/etc/sysconfig/ldms.d/ldmsd.local.conf # environment: l[dmsd
/etc/sysconfig/ldms.d/ClusterGenders/genders.local # genders

hl ldmsd # enable ldms
hl ldmsd_metric_plugins=meminfo:vmstat:procstat # list wanted
h1l ldmsd_host=%n-ib0,ldmsd_xprt=rdma # net link
Defaulted:

interval (10 second), offset (0), producer name logged (Shost), schema name
(plugin name), instance name (Shost/Sschema), port(411),
component_id(from Shost), log, auth method.



Sampler node ldmsd.local.conf

LDMS_AUTH_FILE=/etc/sysconfig/ldms.d/ClusterSecrets/Idmsauth.conf
LDMS_GENDERS=/etc/sysconfig/ldms.d/ClusterGenders/genders.local

Defines pointers to the files for this systemd instance of ldmsd
* |dmsd.service is in code exactly as lIdmsd@Ilocal.service



L1 Aggregator configuration example

/etc/sysconfig/ldms.d/ldmsd.L1.conf # environment: ldmsd@L1
/etc/sysconfig/ldms.d/ClusterGenders/genders.L1 # genders for L1

ser[1-187],sergw[1-3],serln1 Idmsd clientof=seradminl
ser[188-374],sergw[4-6],serln2 Idmsd_clientof=seradmin2
seradmin[1-2] Idmsaggd=CLIENTOFLIST

Defaulted:

updater policy(all), connection retry interval(2s), agg. interval (10s), agg. offset (0.2 sec),
port(411), log, connection definitions, thread count, memory reservation.

Looked up in genders.local (DRY):
transport types, hostnames and ports (374 times).



Aggregator node ldmsd.L1.conf

LDMS_AUTH_FILE=/etc/sysconfig/ldms.d/ClusterSecrets/Idmsauth.conf
LDMS_GENDERS=/etc/sysconfig/ldms.d/ClusterGenders/genders.L1

LDMS_GENDERS 1=/etc/sysconfig/ldms.d/ClusterGenders/genders.loc
al

Defines pointers to the files for this systemd instance of Idmsd@L1

* Information lookups on genders in SLDMS_GENDERS 1 tell are used to
determine connection details for the producer list.



L2 Store configuration example

/etc/sysconfig/ldms.d/ldmsd.L2.conf # environment: [dmsd@L2
/etc/sysconfig/ldms.d/ClusterGenders/genders.L2 # genders for L2

monl [dmsaggd offset default=4200000
monl [dmsd_store_plugins=store_csv

mon1l [dmsd_store_csv=altheader/1:rolltype/2:rollover/0:path//scratch_A/S{LDMSCLUSTER} csv:
create_gid/1000000039:create_perm/644:typeheader/2
monl [dmsd_schemas_store_csv=meminfo:procstat:vmstat

Defaulted:

updater policy(all), connection retry interval(2s), agg. interval (10s), port(411), log, connection
definitions, storage policies.

Looked up in genders.L1: transport types, hostnames, and ports.



L2 storage node ldmsd.L2.conf

LDMS_AUTH_FILE=/etc/sysconfig/ldms.d/ClusterSecrets/Idmsauth.conf
LDMS_GENDERS=/etc/sysconfig/ldms.d/ClusterGenders/genders.L2
LDMS_GENDERS 1=/etc/sysconfig/ldms.d/ClusterGenders/genders.L1

Defines pointers to the files for this systemd instance of [Idmsd@L2

* Information lookups on genders in SLDMS_GENDERS 1 tell are used to
determine connection details for the producer list.



Doing hard things (1): Scaling & Redundancy

* Redundancy
* Milly (monitoring host) defines same ldmsd instances as mon1l

 Scaling to a supercomputing center with many clusters

* Mon1 (monitoring host) defines several service instances
* l[dmsd@chama, [dmsd@uno, l[dmsd@skybridge, Idmsd@eclipse,... CSV feeds
* |[dmsd@eclipse_Grafana GUI feed



Doing hard things (2): no-genders trap door

* Not using genders database at all?
e [dmsd.local.conf becomes:
LDMS_USE_GENDERS=0

LDMSD_PLUGIN_CONFIG_FILE=/etc/ldmsd/ldmsd.local.conf



Doing hard things (3): avoid long attributes
* One plugin is just too complex to configure using only genders syntax?
* Use the genders trap door for the plugins:

mon1l ldmsd_config_text_store_csv=/etc/ldmsd/csv_config

The file csv_config has your ldms plugin special options code:

which gets added to the configuration.



Doing hard things (4): complex plugin trap door

* One plugin is just too complex to configure using only genders syntax?
* Use the genders trap door for a configuration generator:
monl l[dmsd_config _gen_mysampler=mysampler_gen.sh

Program /etc/sysconfig/ldms.d/plugins-conf/mysampler_gen.sh is
called with arguments:

and the output gets added to the configuration.



Dealing with change (v4)

The genders interpreter does have support for new plugins

* New options and new store/sampler plugins are handled transparently.
* Environment expansion S{VAR} in attributes is handled transparently.

* Plugins all act as singletons, which makes attribute naming easy.

But does not yet support

* Failover definitions.

Transport set group definitions.

Multiple updaters.

Automatic interval and offset management.
Push behavior

Passive mode connections



Dealing with change (v5)

* All plugins changing from singleton objects to potentially many similar
instances of “C classes”.
* Some might still restrict themselves to singleton behavior.
* Some might have ‘plugins within plugins’ depending on the instance API.
* Two-layer hash table is likely not a good match for this.

e Still developing what new ldmsd features we will get.

* Maybe include hostlist expansion in the |ldmsd configuration language to
provide for compact expression of aggregation, update, failover.



What shall we do about unsupported v4
features?

* Extending genders processing is a ‘mere matter of scripting’.
* It requires sensible answers to:
What should the default behavior be for feature X?

 Naming the attributes can get a bit messy, however. E.g. now have:
* |dmsd_strgp_exclude_metrics_meminfo

* Should we refactor the gender interpreter to do less (nothing?), and
lean more on a directory full of files that look like .INI/YAML/TOML?
* This would break compatibility with v2/v3 genders support.
* This would break the “single file for tuning l[dmsd” approach.



Thoughts?

e Share them here
e Post them on the ovis issue tracker

* See also: Chris Morrone’s Lively Discussion
 https://github.com/ovis-hpc/ovis/issues/67
and
e https://github.com/ovis-hpc/ovis/wiki/Proposal-2




