
Supporting Dynamic Event Monitoring
in the Lightweight Distributed Metric
Service (LDMS)

aka: LDMS Streams

LDMSCON2020

Tom Tucker, Ann Gentile, Jim Brandt

Open Grid Computing,
Austin,TX

e
Sandia National Laboratories is a multimission

laboratory managed and operated by National

Technology & Engineering Solutions of Sandia,

LLC, a wholly owned subsidiary of Honeywell
International inc., for the U.S. Department of

Energy's National Nuclear Security

Administration under contract DE-NA0003525.

SAND2020-7990C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

2 Introduction <><- OGC 0

LDIVIc is designed to minimize the impact of system and application related data collection on
running application. Its primary model of operation is pull-based to minimize the functional
demands and hence impact on the compute nodes.

However, for dynamic and/or irregular events, both log and numeric, the natural model would be
push-based.

A combination of models would enable low-overhead, low-latency handling of both regular system
monitoring data and event data. The ultimate goal is to enable the examination of application
performance data in conjunction with system conditions

Implementing both within one architecture enables (a) ease of use and (b) use of the existing
LDMS transports (Socket, uGNI, IB Verbs) and authentication without additional development
required.

We describe the LDMS_Streams functionality and API to enable arbitrary string-based push events
and provide use-cases demonstrating the utility of combined push and pull based data flows.

3 LDMS Architecture: Background .X-- OGC 0

LDMS is plugin-based
Sampler plugins — data is stored in a well-defined construct called a metric set

Store plugins

Aggregator daemons are typically configured to pull the data from producer ldmsd

Minimize impact:
Data collected by sampler plugins is stored in well-defined memory space and overwritten by each
new sample

Metric set: Data is split into meta-data and data values. Only the latter is transported each time

Pull mode minimizes the CPU and memory requirements of the compute node ldmsd

Aggregator Daemons with store plugins call the store function when they pull data
relevant to that plugin

4 Push-based Data Flow: LDMS Streams

Application

Application

Native
format

Native
format

parser

Loptional
parser

json
or str

json
or str

publisher

publisher

L1 ldmsd

L1 ldmsd/

L2 ldmsd

¡ publish

Database

OGC

• Data is published to a running ldmsd
• Syntax includes a tag that uniquely identifies a stream. Multiple messages can be associated with a stream
• Remote subscribers: ldmsd can subscribe to producer ldmsd and particular streams to be pushed that data
• Local Subscribers: Plugins can also subscribE to a stream. Subscriber callback function is invoked by the

Idmsd whenever a message for that stream is pushed to the ldmsd

5 Push-based Data Flow: LDMS Streams (cont'd)

Application

Application

Native
format

Native
format

 json
or str

parser

parser

optional

json

or str

publisher

publisher

L1 ldmsd

L1 ldmsd

publishl

L2 ldmsd

A

publish 1111111111111.

Database

<>1(-- OGC

• A plugin can write out streams data to a store just like a canonical store plugin writes out pull-based data
• Stream data is more flexible in its type: typed messages as opposed to metric set
• May require case-specific unpacking at the aggregator/store, but that is off compute node
• May require case-specific adjustments at the on-node publish (e.g.,json translation), however we seek to

minimize the overhead and intrusion at the on-node publish

6 Design and Implementation — Message Internals

ldmsd request header

marker (Oxff)
request/response type
flags (EOM/SOM,...)
messasge number
request id
record length

Request specific data:
— stream name
stream data type
stream data

<>(--OGC

marker - begins every message and ensures that the
receiver can reliably determine that the data is the start of
a new message

request/response type - specifies the type of the
configuration request. Streams data has two types:

LDMSD_STREAM_SUBSCRIBE_REQ

• LDMSD_STREAM_PUBLISH_REQ

message number and request id: handle requests larger
than the transports' maximum record length

Data particular to the request:

LDMSD_STREAM_SUBSCRIBE_REQ— stream name.

LDMSD_STREAM_PUBLISH_REQ -- stream name, stream
data type, and the data being published to that stream.

Data type is one of LDMSD_STREAM_STRING or LDMSD_STREAM _EON.

0

7 Design and Implementation - Delivery

LDMSD STREAM SUBSCRIBE REQ :

Remote — another ldmsd wanting to be pushed a stream

Local — a plugin wanting the callback function to be
invoked for a streams data

A stream client is created in the ldmsd. Stream clients are

stored in an RB tree indexed by the stream name.

DMSD_STREAM_PUBLISH REQ:

JSON data is validated and put into a structure for easier
parsing by the callback function.

String data is not validated

RB Tree is walked to determine clients for that stream

OGC

Ca

1
Cb

Cc Cd

• Delivery is best effort — no reconnect/resend

• Data is not cached — subscriber only receives data published after subscription

8 Design and Implementation: Function Calls <><- OGC 0

• Local Subscribe:

extern Idmsd_stream_client_t Idmsd_stream_subscribe(const char
*stream_name, Idmsd_stream_recv_cb_t cb_fi., void *ctxt);

• Callback typedef:

typedef int (*ldmsd_stream_recv_cb_t)(1dmsd_stream_client_t c, void
*ctxt, Idmsd_stream_type_t stream_type, const char *data, size_t data_len,
json_entity_t entity)

oublish:

extern int Idmsd_stream_publish(ldms_t xprt, const char *stream_name,
Idmsd_stream_type_t stream_type, const char *data, size_t data_len);

Examples in the hello stream sampler and store directories in the V4 release

9 Use Case I: Combined Application and System Data <>(-- OGC

• MILC — NERSC TIME instrumentation: the time spent in particular algorithm sections - conjugate
gradient, calculation of the fermion force, and time spent in restoring the fermion links.

• Augmented code to include timestamp and a identification tag
• .__DMS setup is the canonical set up with the additional stream subscription config lines
• Application launch line includes directing the output to a parser that reformats tagged lines as json and

publishes them to a stream

• Canonical store plugin stores metric data;
stream subscriber plugin stores stream data

Example: Single node MILC run. Conjugate
Gradient timing and iteration information output
by the code and published. CPU information
collected via LDMS via canonical methods.
• CG output at variable —30 sec intervals

determined by the code
• LDMS system data collection at 2 sec intervals

100

80
-1-1

4-,
(r)

- 6a) 0

4-,

a)

40

117,

20

0
200

Application Data

System Metric

CG time
CG iter

user time

250 300 350 400 450

Time (sec)

500

0.8

0.6

0.4

0.2

0

f
f
f
r
i
a
M
T
I
M
I
M
M
'
a
F
r
i
B
l
i
W
a
V
E
I
M
S
T
I
L
T
S
M
=

10 Use Case 2: Combined Log File and System Data .t)<- OGC

Log data is irregular, dynamic data
syslog - can be written to a file or redirected to a port

application log data

tracking a file using inotify or listening on a port can publish the live data in string format to
the ldmsd stream interface.

At the store, contextual extraction may be required to enable actionable response or plotting.

o

Use Case 3: Slurm Plugin for Job Information

Slurm loads the LDMS libslurm_notifier
plugin on each compute node.

- Each time a job is changes state (starts,
terminates, pauses), this slurm plugin is
used to get job information such as
identifier, state, size, uid, gid, time, etc.

The stream publish interface is used to
get relevant information to the ldmsd.

Through subscription to the "Slurm"
stream other sampler plugins can gain
access to this information and include it
in their (pull-based) metric sets.

OGC

ldmsd

papD4

publish

slurmd/
slurmstepd

spank
plugin

12 Upcoming Work .X-- OGC 0

Working with Trilinos developers to inject application progress data, based on
Teuchos Timers, into the LDMS stream (ASC FY21 L2 Milestone)

Determining visual representations and analytics for the combined data

Application Teams seeking to inject science variables at run time

Supporting plugin development:

refactoring so that a Streams' Plugin callback and a canonical Plugin's store
function can share the same code

