This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020- 7990C

Supporting Dynamic Event Monitoring
in the Lightweight Distributed Metric
Service (LDMS)

aka: LDMS_Streams

Tom Tucker, Ann Gentile, Jim Brandt

_ __| () ENERGY NS4

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.



Introduction @

LDMS is designed to minimize the impact of system and application related data collection on
running application. Its primary model of operation is pull-based to minimize the functional
demands and hence impact on the compute nodes.

However, for dynamic and/or irregular events, both log and numeric, the natural model would be
push-based.

A combination of models would enable low-overhead, low-latency handling of both regular system
monitoring data and event data. The ultimate goal is to enable the examination of application
performance data in conjunction with system conditions

Implementing both within one architecture enables (a) ease of use and (b) use of the existing
LDMS transports (Socket, uGNI, IB Verbs) and authentication without additional development
required.

We describe the LDMS_Streams functionality and APl to enable arbitrary string-based push events
and provide use-cases demonstrating the utility of combined push and pull based data flows.



3

LDMS Architecture: Background @)

LDMS is plugin-based

Sampler plugins — data is stored in a well-defined construct called a metric set
Store plugins

Aggregator daemons are typically configured to pull the data from producer ldmsd

Minimize impact:
Data collected by sampler plugins is stored in well-defined memory space and overwritten by each
new sample

Metric set: Data is split into meta-data and data values. Only the latter is transported each time
Pull mode minimizes the CPU and memory requirements of the compute node Idmsd

Aggregator Daemons with store plugins call the store function when they pull data
relevant to that plugin



Push-based Data Flow: LDMS Streams

Application

L2 Idmsd

pubhsh

Application i publish
Database

optional

Data is published to a running l[dmsd

Syntax includes a tag that uniquely identifies a stream. Multiple messages can be associated with a stream
Remote subscribers: ldmsd can subscribe to producer l[dmsd and particular streams to be pushed that data
Local Subscribers: Plugins can also subscribe to a stream. Subscriber callback function is invoked by the
ldmsd whenever a message for that stream is pushed to the Idmsd




Push-based Data Flow: LDMS Streams (cont’d)

Native

= ]
pplication m
m Stream
Plugin

. Native ' .
- format L1 ldmsd publish
Application
m Database

optional

A plugin can write out streams data to a store just like a canonical store plugin writes out pull-based data
Stream data is more flexible in its type: json or str typed messages as opposed to metric set

May require case-specific unpacking at the aggregator/store, but that is off compute node

May require case-specific adjustments at the on-node publish (e.g.,json translation), however we seek to
minimize the overhead and intrusion at the on-node publish




Design and Implementation — Message Internals @

marker - begins every message and ensures that the
receiver can reliably determine that the data is the start of
a new message

request/response type - specifies the type of the
T configuration request. Streams data has two types:
request/response ‘type LDMSD_STREAM_SUBSCRIBE_REQ

flags (EOM/SOM,...) LDMSD_STREAM_PUBLISH_REQ
messasge number

Eequest dd message number and request _id: handle requests larger
record length ’ : -
than the transports’ maximum record length

Request specific data: :
S - stream name Data particular to the request:

| — stream data type

| - stream data LDMSD STREAM_SUBSCRIBE_REQ - stream name.

LDMSD_STREAM_PUBLISH REQ -- stream name, stream
data type, and the data being published to that stream.
Data type is one of LDMSD_STREAM_STRING or LDMSD_STREAM_JSON.



7 | Design and Implementation - Delivery

LDMSD_STREAM_SUBSCRIBE_REQ :

Remote — another l[dmsd wanting to be pushed a stream

Local — a plugin wanting the callback function to be
invoked for a streams data

A stream client is created in the [dmsd. Stream clients are
stored in an RB tree indexed by the stream name.

LDMSD_STREAM_PUBLISH_REQ:

JSON data is validated and put into a structure for easier
parsing by the callback function.

String data is not validated
RB Tree is walked to determine clients for that stream

Delivery is best effort — no reconnect/resend

Data is not cached — subscriber only receives data published after subscription



8

Design and Implementation: Function Calls @®

* Local Subscribe:

extern [dmsd_stream_client_t l[dmsd_stream_subscribe(const char
*stream name, ldmsd _stream_recv_cb tch fn, void *ctxt);

* Callback typedef:

typedef int (*ldmsd_stream_recv _cb_t)(ldmsd_stream client_t c, void

*ctxt, ldmsd_stream_type t stream_ type, const char *data, size_t data_len,
json_entity t entity)

* Publish:

extern int ldmsd_stream_publish(ldms_t xprt, const char *stream name,
ldmsd_stream_type t stream_type, const char *data, size t data_len);

Examples in the hello_stream sampler and store directories in the V4 release



Use Case |: Combined Application and System Data

< oocfull

MILC — NERSC_TIME instrumentation: the time spent in particular algorithm sections - conjugate
gradient, calculation of the fermion force, and time spent in restoring the fermion links.

Augmented code to include timestamp and a identification tag

LDMS setup is the canonical set up with the additional stream subscription config lines

Application launch line includes directing the output to a parser that reformats tagged lines as json and

publishes them to a stream

Canonical store plugin stores metric data;
stream subscriber plugin stores stream data

Example: Single node MILC run. Conjugate

Gradient timing and iteration information output

by the code and published. CPU information

collected via LDMS via canonical methods.

* CG output at variable ~30 sec intervals
determined by the code

* LDMS system data collection at 2 sec intervals

g
V]
+~
5=
4+
0
i
.
[
>
(o]
)
c
)]
Q
n
Q
£
S
+
c
(V]
5
o

System Metric

350
Time (sec)

CG time —+—
CG iter —x—
user time —«—

N iterations over last interval relative to max




10

Use Case 2: Combined Log File and System Data ® |

Log data is irregular, dynamic data
syslog - can be written to a file or redirected to a port
application log data

tracking a file using inotify or listening on a port can publish the live data in string format to
the ldmsd_stream interface.

At the store, contextual extraction may be required to enable actionable response or plotting.



Use Case 3: Slurm Plugin for Job Information

Slurm loads the LDMS libslurm notifier
plugin on each compute node.

Each time a job is changes state (starts,
terminates, pauses), this slurm plugin is
used to get job information such as
identifier, state, size, uid, gid, time, etc.

The stream publish interface is used to
get relevant information to the ldmsd.

Through subscription to the “Slurm”
stream other sampler plugins can gain
access to this information and include it
in their (pull-based) metric sets.

publish

slurmd/
slurmstepd




Upcoming Work @® |
|

Working with Trilinos developers to inject application progress data, based on
Teuchos Timers, into the LDMS stream (ASC FY21 L2 Milestone)

Determining visual representations and analytics for the combined data
Application Teams seeking to inject science variables at run time

Supporting plugin development:

refactoring so that a Streams’ Plugin callback and a canonical Plugin’s store )
function can share the same code



