
Cascaded logic using clocked domain wall devices

1-bit full adder

Clock phase 1:
standby

State: '1' (P)
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Clock phase 2:
receive input & compute
State: '1' (P) 4 '0' (AP)
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Clock phase 3:
transmit & reset

State: '0' (AP) 4 '1' (P)
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Domain wall devices serve double duty

as processing elements and non-volatile data buffers

Micro-pipelined domain wall logic Pipelined CMOS processor

Independent addition operations Independent CPU instructions

Standby Compute Tran 3mit Standby Compute Tran

Domain wall data buffering
(consumes no static power)
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MIPS architecture, from Hennessy & Patterson, Computer Architecture, 2011



32-bit operands

0

1
2

•

29

30

31

0

1
2

•

29

30

31

0

1
2

29

30

31

Bit-level micro-pipelining enables
high-throughput arithmetic operations

Bit 0 —> FAO

Bit 1 —>

Bit 2 —>
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Skewing delay
buffers

Skewing delay Bit 29 —> FA29 
buffers Bit 30 —> FA30 

Bit 31 —> FA31

32-bit sums
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32-bit ripple carry adder
Delay per add: 32 cycles (1 clock cycle = 1 gate delay)

Throughput: 1 sum / gate delay
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32-bit operands
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Skewing delay
buffers

Bit-level micro-pipelining enables
high-throughput systolic processing

32b carry save
array multiplier

32-bit outputs

32b carry
ripple adder

• • •

Skewing delay
buffers

Chain of arithmetic operations (e.g. matrix multiplication)
Delay per operation: X cycles (1 clock cycle = 1 gate delay)

Throughput: 1 output / gate delay
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Domain wall logic energy consumption below scaled CMOS

Domain wall circuit simulation using
micromagnetics-validated SPICE compact models:
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Compact device model: X. Hu et al, IEEE Trans Elec Dev 2019
Circuit benchmarking: T. Xiao et al, IEEE JXCDC 2019CMOS: D. Nikonov, I. Young, IEEE JXCDC 2015
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Robust to process variations and high temperature
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