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2 I Thor is a ~2-MA pulsed-power machine at Sandia capable of a
large range of pulse shapes for ramp loading of materials
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• 64 "bricks" (2 capacitors + 1 switch) arranged in 8 towers

• Machine stores 51 kJ electrical energy when charged to 90 kV

• Switching all bricks synchronously delivers —2.5 MA with —150-ns rise time

• Independently trigger groups of 4 or 8 bricks, timing spread up to 500 ns

• Peak stress in Al/Cu electrodes of 10-40 GPa at strain rates of 5x105-107/s

• Stripline targets allow two identically-loaded samples (or drive + sample)

• Presently operate at 2 shots/week, but 4 shots/day possible with full support
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3 I Thor experiment design requires trade-offs among sample size
(panel width), pulse rise time, peak pressure, and edge waves

Load Current
Pulse shape is simple superposition of basis functions
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1. Choose a peak pressure
o Restricts choice of panel width

2. Decide on desired pulse shape (loading rate)
o Restricts peak pressure for given width

3. Determine required measurement time window
o May further restrict width, pressure, loading rate

4. Iterate using 1-D numerical simulations
O 2-D simulation if dynamic inductance is large
(narrowest panels at highest currents)
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4 I Primary diagnostic used at Thor is laser-based velocimetry

Air-delay VISAR system
o Up to 9 channels, automatically dual sensitivity
o VPF as low as 12 m/s/fringe

PDV system
o Up to 8 channels, with arbitrary frequency shifts
o Collimated, focusing, or bare two-fiber probes
O Array probes (uniformity, statistics)

O Frequency multi-plexing (intra-array cross-talk)

Custom 3D-printed probe holders
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5 I Thor is ideal to test and develop other diagnostics/subsystems

X-ray diffraction (XRD)
• 1.1-MV needle-and-washer e-beam diode system
O 30-ns pulse of line and bremsstrahlung emission

o 8.0 keV (Cu), 17.4 keV (Mo), 22.1 keV (Ag)

Conical head with 90° turn

Reflection geometry, 9-25° incidence angle

Angular resolution —0.7° FWHM, —0.2° shifts

Issues raised by 2019 tests have been solved

image
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Thor panel
XRD sample

X-ray
diode
head

Resistive pre-heating
o 50-W cartridge heater in base side of each panel

O PIV feedback control of panel temperature near sample

o Spring-loaded ceramic probe holder sample/window

O Demonstrated to 380°C (Kapton insulator limit is 400°C)

Optical spectroscopy
O Streaked visible spectroscopy (real-time reflectance)

O Thermo-reflectance methods under development

O Mid-infrared band pyrometry under development (T > 325°C)

Possible to field vacuum chamber around target

sample

load

Au film

window

white light
source

spectrometer/
streak camera



6  Thor is part of the Dynamic Integrated Compression Experimental
(DICE) facility at Sandia

DICE building is outside restricted area, allowing uncleared and foreign-national visitors

On-site target characterization and assembly capabilities include:

o Class 100 clean room

o Precision (optical) metrology, sample preparation

o Measure mass, density, ultrasonic longitudinal/shear sound speeds

o Rapid prototyping (3-D printing)

o Limited machining, but includes water-jet cutting of "sheet" panel targets

Additional dynamic-compression drivers

o Veloce small pulser

o 3"-bore single-stage gas gun



7 I Briefly present ten examples of recent work performed at Thor

• time-dependent constitutive response of CaF2 (Seth Root, Patricia Kalita)

• strength of phase-transforming Sn (Justin Brown)

• strength of additively-manufactured stainless steel 304 (Paul Specht)

• Rayleigh-Taylor instability growth in PMMA (Justin Brown, Paul Specht)

• ramp compression of single-crystal Sn (Justin Brown, Jason Scharff)

• kinetics of dynamic solidification in liquid Ga (Justin Brown, Jon Belof)

• X-ray diffraction measurements on Zr, A1 (Tom Ao, Dane Morgan)

• refining electrical conductivity model for Cu (Andy Porwitzky, Kyle Cochrane)

• quantifying uniformity of loading in Thor striplines (Jean-Paul Davis)

• densification of hydrous silicate glasses (Jean-Paul Davis, Alisha Clark)



8 I Single-crystal CaF2 (S. Root, P. Kalita)
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• Loading rate was varied by —40X,
resulting in dramatically different
signatures of the elastic-plastic
transition.

• Data can be used to constrain the
time-dependent nature of the
constitutive response.
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9 I Strength of AM LENSTM 304L Stainless Steel (R Specht)

AM X Cross Section

AM Z Cross Section

1.0 mm

LENS = laser-engineered
net shaping

• Flow strength generates differences near peak stress
o Lower velocities correspond to higher yield strengths
o Dual-sample: both AM orientations exhibit higher flow strength than wrought
• Single-sample: strengths similar but wrought may be higher

• Results suggest possible issues with experimental dimensions generating
large sample-to-sample variations
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10 I Multi-point velocimetry can address statistical material response

Measurement #1 Measurement Al

• Use a commercially available fiber array
o 3 different frequency high-power send lasers
O 2 different frequency reference lasers

• The low velocities allow frequency
multiplexing of all signals including cross talk
o Obtain measurements at one receive fiber from
2-3 send fibers
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11 Multi-phase strength of Sn (J. Brown, J. Carpenter)
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• Measured velocity is a combination of EOS,
phase transition kinetics, and strength.

• With different loading rates on Thor we may be
able to uniquely identify these different aspects
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12 I Rayleigh-Taylor instability growth of PMMA (J. Brown, P. Specht)

• Easy to machine ripples in PMMA

• PDV simultaneously probes front and back of PMMA

• Filling a critical gap between Hopkinson bar and shock-
driven Richtmyer-Meshkov experiments.
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13  Tin single crystals (J. Brown, J. Scharff)
• Four crystal orientations, identical machine configurations

o Material response for each orientation is very different from others

• Repeat the loading rate but go to higher pressures
o Observed elastic-plastic transition is highly repeatable

• Nothing distinct at higher pressures in <001> and <110> but
the behavior near peak is suggestive of something odd happening
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14  Kinetics of dynamic solidification in Ga (J. Brown, J. Belof)
• Al panels (heated to -34°C) and LiF windows

2 type-IIB anodized Al to avoid embrittlement by liquid Ga
LiF acoustic impedance similar to e-Ga, uniform sample loading

• Vary pulse shape (loading rate) and sample thickness
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1 5 I X-ray diffraction measurements (T.Ao, D. Morgan)
image
plate

/Thor77: Al panel (1.119mm), Zr sample (0.505mm), TPX window (0.488mm),
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Early 2019 experiments on Zr, CdS:
O Thor / flash-diode timing issues

o every shot damaging CPF Rexolite insulator
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2020 experiments on Al:
• problems have all been addressed
• multiple shots, vary X-ray timing
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16 Electrical conductivity of Cu (A. Porwitzky, K. Cochrane)

Conductivity Ecc,„ calibrated to "burn-through" of thin electrodes
0 match time of velocity uptick when melt front reaches free surface

• Velocity of thick electrode on opposite panel not sensitive to E.
0 given B-field diffusion rate, fractional mass loss much less for thick panel
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O had to significantly increase E. along isotherms in
temperature range —2000-7000 K near melt curve

o Thor far more sensitive to this region than Z
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17  Uniformity of magnetic-pressure loading (J.-R Davis)
Standard Thor panel sizes keep 2:1 (length:width) aspect ratio of original Veloce stripline

O 15x30-mm Veloce stripline exhibits —2% variation in magnetic pressure across 12-mm sample
o not clear whether gradient scales self-similarly to smaller sizes

o measured —2% variation across only 4 mm in 10x20-mm Thor panel (1-mm floor in 0.5" thick panel)

Tested water-jet cut 1-mm thick "sheet" panel (10x25 mm)
• < 1% variation across —10 mm along centerline
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18 I Densification of hydrous silicate glasses (J.-P. Davis,A. Clark)
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• Supports the "Origin of Earth's Water" Z Fundamental Science project

• Elastic properties of hydrous/anhydrous silicate glasses under ramp compression are relevant to interpretation of
mantel-transition-zone (MTZ) seismic data

• "Densification" of glasses = anomalous compressibility, sound speed depends weakly on pressure

• Data collected on dry/damp (100/400 ppm H20) magnesium silicate glasses for range of pressures, pulse shapes

• Preliminary results suggest densification begins above 10 GPa, not complete by 18 GPa
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