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2 ‘ Thor is a ~2-MA pulsed-power machine at Sandia capable of a
large range of pulse shapes for ramp loading of materials I
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* 04 “bricks” (2 capacitors + 1 switch) arranged in 8 towers
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* Machine stores 51 kJ electrical energy when charged to 90 kV
* Switching all bricks synchronously delivers ~2.5 MA with ~150-ns rise time

* Independently trigger groups of 4 or 8 bricks, timing spread up to 500 ns .
* Peak stress in Al/Cu electrodes of 10-40 GPa at strain rates of 5X10°=107/s
* Stripline targets allow two identically-loaded samples (or drive + sample)
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* Presently operate at 2 shots/week, but 4 shots/day possible with full support
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3 ‘ Thor experiment design requires trade-offs among sample size

Pulse shape is simple superposition of basis functions

/ (when dynamic inductance can be neglected)
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1. Choose a peak pressure
° Restricts choice of panel width

Pressure (GPa)
[
L

2. Decide on desired pulse shape (loading rate)
° Restricts peak pressure for given width 20
. . . . 15
3. Determine required measurement time window e e
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° May further restrict width, pressure, loading rate 10 ) i
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4. Tterate using 1-D numerical simulations 5 7 Pr—
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° 2-D simulation if dynamic inductance is large o TN L R S
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Primary diagnostic used at Thor is laser-based velocimetry

Air-delay VISAR system
> Up to 9 channels, automatically dual sensitivity
> VPF as low as 12 m/s/fringe

PDYV system

> Up to 8 channels, with arbitrary frequency shifts
° Collimated, focusing, or bare two-fiber probes
° Array probes (uniformity, statistics)

° Frequency multi-plexing (intra-array cross-talk)

Custom 3D-printed probe holders

Fiber Fiber spacer
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s | Thor is ideal to test and develop other diagnostics/subsystems
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X-ray diffraction (XRD) o ¥ ¥ a \ T
> 1.1-MV needle-and-washer e-beam diode system ' T M= e R |
> 30-ns pulse of line and bremsstrahlung emission _ . e ST
8.0 keV (Cu), 17.4 keV (Mo), 22.1 keV (Ag)
Conical head with 90° turn
Reflection geometry, 9-25° incidence angle
Angular resolution ~0.7° FWHM, ~0.2° shifts
Issues raised by 2019 tests have been solved
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Thor panel
XRD sample
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Resistive pre-heating
> 50-W cartridge heater in base side of each panel
o PIV feedback control of panel temperature near sample
° Spring-loaded ceramic probe holder sample/window
> Demonstrated to 380°C (Kapton insulator limit is 400°C)

Optical spectroscopy | N nl
o Streaked visible spectroscopy (real-time reflectance) sample window
° Thermo-reflectance methods under development load /Wzg‘jrlégeht
> Mid-infrared band pyrometry under development (T > 325°C) — <\,
spectrometer/
Possible to field vacuum chamber around target Aulfim | streak camera




¢ I Thor is part of the Dynamic Integrated Compression Experimental
(DICE) facility at Sandia

DICE building is outside restricted area, allowing uncleared and foreign-national visitors

On-site target characterization and assembly capabilities include:

° Class 100 clean room
° Precision (optical) metrology, sample preparation
° Measure mass, density, ultrasonic longitudinal/shear sound speeds
> Rapid prototyping (3-D printing)

° Limited machining, but includes water-jet cutting of “sheet” panel targets

Additional dynamic-compression drivers

° Veloce small pulser
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° 3”-bore single-stage gas gun




7 | Briefly present ten examples of recent work performed at Thor

* time-dependent constitutive response of CaF, (Seth Root, Patricia Kalita)

* strtength of phase-transforming Sn (Justin Brown)

* sttength of additively-manufactured stainless steel 304 (Paul Specht)

* Rayleigh-Taylor instability growth in PMMA (Justin Brown, Paul Specht)

* ramp compression of single-crystal Sn (Justin Brown, Jason Schartf)

* kinetics of dynamic solidification in liquid Ga (Justin Brown, Jon Belof)

* X-ray diffraction measurements on Zr, Al (Tom Ao, Dane Morgan)

* refining electrical conductivity model for Cu (Andy Porwitzky, Kyle Cochrane)
* quantifying uniformity of loading in Thor striplines (Jean-Paul Davis)

* densification of hydrous silicate glasses (Jean-Paul Davis, Alisha Clark)
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Single-crystal CaF, (S. Root, P. Kalita)
6mm LiF

Drive and Sample PDV signals for shots 101, 102, 107, and 109
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" \ * Loading rate was varied by ~40X,
resulting in dramatically different

signatures of the elastic-plastic
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9 ‘ Strength of AM LENS™ 304L Stainless Steel (P. Specht)

L Vrought, * Flow strength generates differences near peak stress

] > Lower velocities correspond to higher yield strengths

° Dual-sample: both AM orientations exhibit higher flow strength than wrought
o Single-sample: strengths similar but wrought may be higher

* Results suggest possible 1ssues with experimental dimensions generating
large sample-to-sample variations
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10 | Multi-point velocimetry can address statistical material response

Measurement #1 Measurement #2 o
L —Measurement 1

——Measurement 2 LN

Measurement 3 i,
—Measurement 4
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* Use a commercially available fiber array .
o 3 different frequency high-power send lasers
o 2 different frequency reference lasers

—Measurement 7
—Measurement 8
—Measurement 9
Measurement 10
"~ —Measurement 11
—Measurement 12
~—Measurement 13
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* The low velocities allow frequency
multiplexing of all signals including cross talk
> Obtain measurements at one receive fiber from

2-3 send fibers
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11 I Multi-phase strength of Sn (J. Brown, |. Carpenter)

Velocity (km/s)

0.8

0.6

0.4

0.2

u—;—u

T T
Measured ——
Weak ——
Strong ——
Multi ——

T—B

Simulations using different
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a multi-phase model

1.6

* Measured velocity is a combination of EOS,
phase transition kinetics, and strength.

* With different loading rates on Thor we may be
able to uniquely identify these different aspects
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12 I Rayleigh-Taylor instability growth of PMMA (]. Brown, P. Specht)

* Easy to machine ripples in PMMA Electrode Electrode

* PDV simultaneously probes front and back of PMMA |
* Filling a critical gap between Hopkinson bar and shock- Velopetry o Ripple
driven Richtmyer-Meshkov experiments. velocimetry
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13 ‘ Tin single crystals (J. Brown, . Scharff)

Velocity (m/s)
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* Four crystal orientations, identical machine configurations
° Material response for each orientation is very different from others

* Repeat the loading rate but go to higher pressures
> Observed elastic-plastic transition is highly repeatable

* Nothing distinct at higher pressures in <001> and <110> but

the behavior nea
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e of something odd happening
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13 Thor shots
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Fast solidification occurs at metastability
limit due to homogeneous nucleation
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* Al panels (heated to ~34°C) and LiFF windows

° type-1IB anodized Al to avoid embrittlement by liquid Ga
o LiFF acoustic impedance similar to ¢-Ga, uniform sample loading

* Vary pulse shape (loading rate) and sample thickness

14 ‘ Kinetics of dynamic solidification in Ga (J. Brown, ]. Belof)

Model predicts solidification
complete in all experiments,
but pullback signature only
visible when loading fast
enough or sample thick enough
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15 ‘ X-ray diffraction measurements (1. Ao, D. Morgan) ,
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Early 2019 experiments on Zr, CdS:
> Thor / flash-diode timing issues
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2020 experiments on Al:
° problems have all been addressed
> multiple shots, vary X-ray timing
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16 | Electrical conductivity of Cu (A. Porwitzky, K. Coc
* Conductivity E___ calibrated to “burn-through” of thin electrodes
> match time of velocity uptick when melt front reaches free surface
* Velocity of thick electrode on opposite panel not sensitive to E___
> given B-field diffusion rate, fractional mass loss much less for thick panel
* Unfold thick-panel drive, optimize tabular E__
modifications to match thin panel burn-through
Cathode Flyer / Anode .
® ® ®d Stress > B, for Cu previously tuned to Z data
wave . - . . . |
= front ° had to significantly increase E__ along isotherms in
B = temperature range ~2000-7000 K near melt curve i
0
& ° Thor far more sensitive to this region than Z
oY o4
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17 I Uniformity of magnetic-pressure loading (J.-P. Davis)

Standard Thor panel sizes keep 2:1 (length:width) aspect ratio of original Veloce stripline
°15%30-mm Veloce stripline exhibits ~2% variation in magnetic pressure across 12-mm sample

°not clear whether gradient scales self-similarly to smaller sizes

> measured ~2% variation across only 4 mm in 10X20-mm Thor panel (1-mm floor in 0.5” thick panel)

Standard 10x20
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T) l
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Tested water-jet cut 1-mm thick “sheet” panel (10X25 mm)
* < 1% variation across ~10 mm along centerline
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particle velocity (km/s)
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Densification of hydrous silicate glasses (J.-P. Davis, A. Clark)

* Supports the “Origin of Earth’s Water” Z Fundamental Science project

* Elastic properties of hydrous/anhydrous silicate glasses under ramp compression are relevant to interpretation of

mantel-transition-zone (M'TZ) seismic data

* “Densification” of glasses = anomalous compressibility, sound speed depends weakly on pressure

* Data collected on dry/damp (100/400 ppm H,O) magnesium silicate glasses for range of pressures, pulse shapes

* Preliminary results suggest densification begins above 10 GPa, not complete by 18 GPa
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