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Figures: E. Waisman et al., Phys. Rev. ST Accel. Beams, Vol. 17, 120401, (2014)




Requirements for full physics power flow simulations
* Electromagnetics described on complex geometries
* Symmetry boundary capabilities = reduced sim domain
* Relativistic particle dynamics

* 1D Transmission line coupling for end-to- (almost)end simulations
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* Electromagnetics described on complex geometries

* Symmetry boundary capabilities = reduced sim domain

* Relativistic particle dynamics

* 1D Transmission line coupling for end-to-(almost)end simulations

* Surface physics:
o Emission:
 Field-emitted electrons ~ 10 ¢cm™ (> 200 kV/cm threshold)
Jd H,O =2 3¢ + 2H* + O* plasma emission from cathodes and anodes

do _Er
= = —ko(MO(t)e FaT E'(6) = E4(1 — ab)
Polyani-Wigner rate Temkin isotherm

Fitted parameters from TPD experiments (GCLDRD desorption thrust: S. Simpson et al)



0 I Requirements for full physics power flow simulations

* Electromagnetics described on complex geometries

* Symmetry boundary capabilities = reduced sim domain

* Relativistic particle dynamics

* 1D Transmission line coupling for end-to-(almost)end simulations

* Surface physics:
o Emission:
 Field-emitted electrons ~ 10 ¢cm™ (> 200 kV/cm threshold)
Jd H,O =2 3¢ + 2H* + O* plasma emission from cathodes and anodes

o Heating:
J Ohmic (EM wave propagation)
J Particle fluxes impacting surfaces (“dE/dx” heating)
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Powerflow model building has benefited from pushing tests for
each physics module through a pipeline of increasingly complex
MITL systems

(2D) planar MITL (3D) Half-o-lute (3D) Powerflow |8a

anode

Idealized single MITL geometry “Half” of an idealized convolute geometry Full geometry

Increasing complexity
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each physics module through a pipeline of increasingly complex
MITL systems

12

(2D) planar MITL

anode

* Work by N. Hamlin, E. Evstati, K. Beckwith, A.
Robinson, N. Bennett, N. Roberds

* Verification successes:
*EM wave propagation: PECs, symmetry BCs
*PIC SCL emission
*'Thermal desorption models
* Combined physics: EM+SCL+desorp

UQ TPD: subject of following talk N. Hamlin

Idealized single MITL geometry

—
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Powerflow model building has benefited from pushing tests for
4 I each physics module through a pipeline of increasingly complex
MITL systems

(3D) Half-o-lute

* Verification successes:

o EM wave propagation
o Transmission line

* EMPIRE and CHICAGO

comparison work done by
D. Sirajuddin, M. Bettencourt

verification with static
BERTHA model

* Full CHICAGO problem
from D. Rose, D. Welch

*  WIP: SCL electron
emission, UQ TPD

“Half” of an idealized convolute geometry

Increasing complexity



| (Half-o-lute) geometry and tet mesh creation through cubit
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top view
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Figures: D. V. Rose, E. A. Madrid, D. R. Welch, R. E. Clark, C. B. Mostrom, W. A. Stygar, and
M. E. Cuneo Phys. Rev. ST Accel. Beams 18, 030402

Meshing parameterized with vvtest and aprepro I

1 # import geometry (cub) file
2 open "halfolute-EM -- geometry in mm.cub"

4 # -- Mesh settings
5 # -- -- scheme
6 vol all scheme tetmesh

3 # -- -- element size adaption (value of 1.0 is ~ uniform mesh)
9 vol all tetmesh growth_factor 1.0

11 # -- -- what "effort level" should the mesher strive to revaluate
12 # connectivity to improve element quality during mesh generation?

3 # (0 = none, 6 = maximum)

f} set tetmesher optimize level 6

A[ # -- Run meshing algorithm in same units as cub file (mm)
7 vol all size {mesh size * 1.0e3}

18 mesh vol all

O # -- export genesis file in units of meters

’1 transform mesh output scale le-3

2 set exodus netcdf4 off
3 set large exodus on
1 export mesh "halfolute-EM -- {mesh size}m-mesh.gen" dimension 3 block 1 overwrite

Creating a |5 deg simulation volume




| (Half-o-lute) Verifying EM+branched transmission line coupling
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About Chicago-pic sim: About empire-pic sim:
0.98 hours on cee-pp-ldrd01, 14 cpus 1.76 hours on cee-pp-ldrd01, 26 cpus

Mesh: 64,260 elements Mesh: 221,180 elements

Time: 180 ns at 6 ps steps Time: 180 ns at 6 ps steps




(Half-o-lute) Verifying EM+branched transmission line coupling

17 I
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| (Half-o-lute) Verifying EM+branched transmission line coupling
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(Half-o-lute) Verifying EM+branched transmission line coupling
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(Half-o-lute) Work-in-progress: SCL electrons,
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initial comparisons
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Powerflow model building has benefited from pushing tests for
each physics module through a pipeline of increasingly complex
MITL systems
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Powerflow model building has benefited from pushing tests for
2 I each physics module through a pipeline of increasingly complex
MITL systems

(3D) Powerflow 18a

* EMPIRE work by D. Sirajuddin, M. Bettencourt
* CHICAGO work by N. Bennett

- Verification successes:
> EM wave propagation
° Transmission line verification
o SCL electron emission

WIP: H,O =2 plasma desorption from electrodes

Full geometry

é

Increasing complexity



(Powerflow18a) geometry and tet mesh creation through cubit
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(Power flow 18a):Verifying EM — measurements at ports
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(Power flow 18a):Verifying EM — measurements across top level
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(Power flow [8a):Verifying EM+SCL electrons

Time: 0.000 ns

E Field Magnitude (V/m) B Field Magnitude (T)
1.0e+02 10000100000 1e+6 le+7 1.0e+09 0.0 a1 1 10

EMPIRE-PIC

' ' | | —



(Power flow 18a):Verifying EM+SCL electrons
Time: 0.000 ns

Time: 0.000 ns




(Power flow 18a):Verifying EM+SCL electrons
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(Power flow [8a):Verifying EM+SCL electrons
9 ;
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(Power flow [8a):Verifying EM+SCL electrons
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(Power flow [8a):Verifying EM+SCL electrons
31 ;
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(Power flow [8a):Verifying EM+SCL electrons
32 i
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33 | Conclusions

* Two exemplar problems (Half-o-Lute and Powerflow 18a) are being developed for the grand challenge LDRD
* Half-o-lute

* EM and branching transmission line coupling has been ~ verified

¢ Currently working on verifying SCL electrons between CHICAGO and EMPIRE implementations

* Powerflow18a
* EM and transmission line coupling verified
* SCL electron emissions shows good agreement between CHICAGO and EMPIRE results

* Currently working on implementing and verifying plasma desorption models for the next step







powerflow model building has benefited from vetting and fine-
3 1 tuning developing code capabilities by pushing tests through a
pipeline of increasingly complex MITL systems

(2D) planar MITL

anode

Idealized single MITL geometry

(to be covered in next talk by N. Hamlin)

(3D) Half-o-lute

“Half” of an idealized convolute geometry

3 simplified MI'TLs =2 single post-hold convolute = load

(3D) Powerflow 18a

Full geometry (CAD)
4 tapered MITLs = double post-hole convolute = load
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Full-featured CAD model
(imported into cubit)

15 deg wedge of full-featured CAD mode
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full-featured hardware

Sim volume =
space in-between
the de-featured
volume




H20 - 3e- + (O+) + 2(H+)

* Magic particles fill the domain:
o count = 1 per cell
o mass =1 kg (so mom. transfer is small - stationary)
o h*sigma chosen to give desired 1 / mfp

Time: 0.0 ns
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I (Power flow 18a):Work-in-progress — plasma desorption model
39
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| (Power flow 18a):Work-in-progress — plasma desorption model
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(Power flow 18a): Work-in-progress — plasma desorption model
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Next step: incorporate

into EMPIRE-PIC model

and troublesooot




