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• Electromagnetics described on complex geometries
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• 1D Transmission line coupling for end-to-(almost)end simulations
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Figures: E. Waisman et al., Phys. Rev. ST Accel. Beams, Vol. 17, 120401, (2014)



7 Requirements for full physics power flow simulations

• Electromagnetics described on complex geometries

• Symmetry boundary capabilities reduced sim domain

• Relativistic particle dynamics

• 1D Transmission line coupling for end-to-(almost)end simulations

1D BERTHA circuit models (B. Hutsel)
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• Electromagnetics described on complex geometries

• Symmetry boundary capabilities 4 reduced sim domain

• Relativistic particle dynamics

• 1D Transmission line coupling for end-to-(almost)end simulations

• Surface physics:
o Emission:
O Field-emitted electrons — 1013 cm-3 (> 200 kV/cm threshold)
O H20 4 3e- + 2H+ + 0+ plasma emission from cathodes and anodes

dO Ef
E ' 09) = Ed(l — crO)

dt 
/co (T)0 (t)e kBT

Polyani-Wigner rate Temkin isotherm

Fitted parameters from TPD experiments (GCLDRD desorption thrust: S. Simpson et al)



10 I Requirements for full physics power flow simulations

• Electromagnetics described on complex geometries

• Symmetry boundary capabilities 4 reduced sim domain

• Relativistic particle dynamics

• 1D Transmission line coupling for end-to-(almost)end simulations

• Surface physics:
o Emission:
O Field-emitted electrons — 1013 cm-3 (> 200 kV/cm threshold)
O H20 4 3e- + 2H+ + 0+ plasma emission from cathodes and anodes

o Heating:

O Ohmic (EM wave propagation)
O Particle fluxes impacting surfaces ("dE/dx" heating)



Powerflow model building has benefited from pushing tests for
11  each physics module through a pipeline of increasingly complex
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(2D) planar MITL (3D) Half-o-lute 

Idealized single MITL geometry "Half" of an idealized convolute geometry

(3D) Powerflow 18a

Full geometry

Increasing complexity



Powerflow model building has benefited from pushing tests for
each physics module through a pipeline of increasingly complex
MITL systems

(2D) planar MITL 

• Work by N. Hamlin, E. Evstati, K. Beckwith, A.

Robinson, N. Bennett, N. Roberds

• Verification successes:
• EM wave propagation: PECs, symmetry BCs

PIC SCL emission

Thermal desorption models

• Combined physics: EM+SCL+desorp

UQ TPD: subject of following talk N. Hamlin

Idealized single MITL geometry
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Powerflow model building has benefited from pushing tests for
each physics module through a pipeline of increasingly complex
MITL systems

EMPIRE and CHICAGO

comparison work done by

D. Sirajuddin, M. Bettencourt

• Full CHICAGO problem

from D. Rose, D. Welch

(3D) Half-o-lute 

"Half" of an idealized convolute geometry

• Verification successes:
o ENT wave propagation
o Transmission line

verification with static

BERTHA model

WIP: SCL electron

emission, UQ TPD

Increasing complexity
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(Half-o-lute) geometry and tet mesh creation through cubit

o

top view
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Figures: D. V. Rose, E. A. Madrid, D. R. Welch, R. E. Clark, C. B. Mostrom, W. A. Stygar, and
M. E. Cuneo Phys. Rev. ST Accel. Beams 18, 030402

 ►
Z=6.3 cm

Z=4.3 cm

Z=3.3 cm

Z=2 cm

Z=1 cm

Z=-2 cm

Meshing parameterized with vvtest and aprepro
i # import geometry (cub) file
2 open "halfolute-EM -- geometry in mm.cub"
3
# -- Mesh settings

7 # -- scheme
vol all scheme tetmesh

# -- element size adaption (value of 1.0 is - uniform mesh)
vol all tetmesh growth factor 1.0

10
11 # -- what "effort level" should the mesher strive to revaluate
12 # connectivity to improve element quality during mesh generation?
13 # (0 = none, 6 = maximum)
14 set tetmesher optimize level 6
15
# -- Run meshing algorithm in same units as cub file (mm)

1' vol all size {mesh_size * 1.0e3}
1,-, mesh vol all

20 # -- export genesis file in units of meters
21 transform mesh output scale le-3
22 set exodus netcdf4 off
23 set large exodus on
24 export mesh "halfolute-EM {mesh size}m-mesh.gen" dimension 3 block 1 overwrite

Creating a 15 deg simulation volume



1 (Half-o-lute)Verifying EM+branched transmission line coupling
16

Circuit- I Sracddi
VSliccar.A c

ME WM NMI ISM IMENI IMO MEM NM
co 5.7 mg *Ls

1.5531.1
dngirleMC

Circuit B

ITLA

trtitia.!
ing. 3 ma T 1 ra t rlf 0 rs 0.5 rag. D., 114 0225,9

1 Quid 31-1J S 3211J I ILOU 7.207.1 1.1141.1 2.111U 2 525U 2.5584J 2 175U

1•••••410 11.

IMME NEN IRMO tiffi INEI MN WIN
7.7 ng
I emu

3 as
Xili

2 _2 nl
t 424U

input
voltages

ris
T 341.J

02 Its
S

0.3 As
S e271.J

mitbf

111.1

1 nf. 7 11 rh; s rcs I_F reg
13.01J 7 1%IJ 2 411U 2.542117

Ci
0 7,2 U

o 712 U

3 ng. oAn4
719u 2.141u 071U 2.1e1U

la_21311ri

anode
MITL A

MIL cathode
MITL B

anode

CD
,IstIrt1,1 19171.0 lane rq

SEcuit

MEE INZEM MEN MEE MED 1121 NEED 41221 ir:EM liffh 11•122
55.
1

17ns
307U

ns
1 cSOU

32ns 02ns al,.
10.315U co.tru

OA a.
18,170

1 3ns
10.019U

2 B.
3170U

10ns
3 259U

05ns
3 351U

0.4,0
14835)

0.0ns
3 0501!

0.3.
3 9150

03ns
4 109U

01.
192U

lUITID ImaD

g'

V'Staeltrl

Cair 
IEEE INE!I IRMO IN=M WEI MIN 11E7 #1=I ti=l 111=1 11=B Ir=0 11=1 tr=1
In 2/
02SU t 307U

ns
t 48441 t 558U 101251.1 10 :F.- 55. t7U 10.474U 3 309U
3 ns 31 rs ns rs 0.1 1_8 as rts

3 024U 3 407U 1522U 3 210U . 0.2U
1.0 ns ns ns 0.4 ns 0.3 rs 

9'174rU
v•

o6e_

About Chicago-pic sim:

0.98 hours on cee-pp-ldrd01, 14 cpus

Mesh: 64,260 elements
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About empire-pic sim:

1.76 hours on cee-pp-ldrd01, 26 cpus

Mesh: 221,180 elements

Time: 180 ns at 6 ps steps



(Half-o-lute)Verifying EM+branched transmission line coupling
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Time: 0.000 ns
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1 (Half-o-lute)Verifying EM+branched transmission line coupling
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(Half-o-lute)Verifying EM+branched transmission line coupling
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(Half-o-lute) Work-in-progress: SCL electrons, initial comparisons
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Powerflow model building has benefited from pushing tests for
each physics module through a pipeline of increasingly complex
MITL systems

(2D) planar MITL (3D) Half-o-lute 

Idealized single MITL geometry "Half" of an idealized convolute geometry

(3D) Powerflow 18a

Full geometry

Increasing complexity



Powerflow model building has benefited from pushing tests for
each physics module through a pipeline of increasingly complex
MITL systems

(3D) Powerflow 18a

• EMPIRE work by D. Sirajuddin, M. Bettencourt

• CHICAGO work by N. Bennett

• Verification successes:
o EM wave propagation

Transmission line verification

o SCL electron emission

WIP: H20 4 plasma desorption from electrodes

Full geometry

Increasing complexity



(Powerflowl8a) geometry and tet mesh creation through cubit
23

Cut out a 15 deg. symmetric wedge



1 (Power flow I 8a):Verifying EM — measurements at ports
24
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(Power flow I 8a):Verifying EM — measurements across top level
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(Power flow 18a):Verifying EM+SCL electrons

Time: 0.000 ns

E Field Magnitude (Wm) B Field Magnitude (T)
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1 (Power flow I 8a):Verifying EM+SCL electrons
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1 (Power flow I 8a):Verifying EM+SCL electrons
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Power flow I 8a):Verifying EM+SCL electrons

SCL + desorption
Chicago-pic
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Blue = simulated

N. Bennett et al. Phys. Rev.
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Power flow I 8a):Verifying EM+SCL electrons

SCL + desorption
Chicago-pic
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33 Conclusions

• Two exemplar problems (Half-o-Lute and Powerflow 18a) are being developed for the grand challenge LDRD

• Half-o-lute

• EM and branching transmission line coupling has been — verified

• Currently working on verifying SCL electrons between CHICAGO and EMPIRE implementations

Powerflowl 8a

• EM and transmission line coupling verified

• SCL electron emissions shows good agreement between CHICAGO and EMPIRE results

• Currently working on implementing and verifying plasma desorption models for the next step

•



Extras



powerflow model building has benefited from vetting and fine-
tuning developing code capabilities by pushing tests through a
pipeline of increasingly complex MITL systems

(2D) planar MITL 

Idealized single MITL geometry

(to be covered in next talk by N. Hamlin)

(3D) Half-o-lute 

"Half" of an idealized convolute geometry

3 simplified MITLs 4 single post-hold convolute 4 load

(3D) Powerflow I8a

Full geometry (CAD)

4 tapered MITLs 4 double post-hole convolute 4 load



Full-featured CAD model
(imported into cubit)

15 deg wedge of full-featured CAD mode
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De-featured hardware

Sim volume =
space in-between
the de-featured
volume



(Power flow I 8a):Work-i-
38

MAW A Al! MAW I.& M.as l 0.4 oft .o.a. Ns, Nma. ink Enhog.

Developing a fragmentation model via SPIN

H20 4 3e- + (0+) + 2(H+)

• Magic particles fill the domain:
o count = 1 per cell
o mass = 1 kg (so mom. transfer is small 4 stationary)
o n*sigma chosen to give desired 1 / mfp

• Use SPIN module:
o DSMC collisions of desorbing H20 interact with magic

particles with chosen mfp

Time: 0.0 ns
8 b412)
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Time: 0.000 ns
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40 I
k (Power flow 18a):Work-in-progress — plasma desorption model

Peak values
5.5e-5,7.22467e23) Final Time: 200 ns

— H20 Number Density

Exact e-folded value: 7.22467e23 / exp(1) = 2.65782e23 per m3 for a chosen mfp = 0.00125 m

Closest value in sim data: 2.70271e23 per m3 measured z = 0.00126 m

Measured mfp Measured e-folded value 1(

(0.00126, 2.70271e23)

1
1
1
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