This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.
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Plasma Transport Models using
the Z-Machine
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2 I This project has been a large interdisciplinary effort

"Diagnostic Development
= B.C. Harding, M. Schollmeier, G.P. Loisel, S.B. Hansen

*Sample Development
= S.B. Hansen, P.J. Christenson, P.F. Knapp, T. Mattsson

=Target Fabrication

= Haibo Huang, Reny Paguio, Brian Stahl
= General Atomics, La Jolla, CA

"Modeling and Source Development
= R. Vesey, P. J. Christenson, T. Mattsson, K. Beckwith, C. Kopenhafer, L. Stanek, R. Clay 1II, M. Murillo

*Multi-species BGK theory and code development
= J. Haack (LANL), L. Stanton (SJSU), M. Murillo (MSU) and C. Hauck (ORNL)
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A correct understanding of the underlying physics means we can

1.) Explain experimental behavior. Why is our yield so low/ high?

FIG. 5. Single effect simulations of
N170601 showing the relative importance
of different degradation mechanisms. The
largest degradation sources are the 3-D x-
ray flux asymmetries and the fill tube
resulting in yield degradations of 3.1 and
2.2 relative to 1-D, respectively. The high-
mode fuel-abaltor mix results in only a 1.6
yield degradation relative to 1-D. When all
effects are combined the yield degradation
relative to 1-D is 4.2 and compares favor-
ably with the experimental total degrada-
tion of 3.9.

Multiphysics codes based on magneto-hydrodynamics++ and beyond play a critical design and
analysis role in ICF.

2.) Optimize target designs to achieve a desirable result. How can we get more yield?

Phys. Plasmas 26, 050601 (2019); doi: 10.1063/1.5091449



Problem with “Predictive” Modelling
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When looking at masstvely integrated quantities (e.g. yield), you can the right answer for the wrong
reasons.

For example, if we downplay mix and pre-heat effects but over-emphasize 3D effects, we can get the
same result for yield with different physical pictures for what’s driving the mechanism.

Each component of our model must be tested and validated. We are going to focus on *transport*
models.



5 8 Understanding Inhomogeneous Material Transport: Interfaces

*How does an interface evolve
macroscopically/microscopically when

¢ Itis driven by a strong shock?
* Itis exposed to an intense radiation environment?
* There are large microfields near the interface?

¢ There are large temperature gradients in the
vicinity?

*How this is described is very important for ICF.
Does the fusion fuel get poisoned by liner material?
Does the presence of turbulence dissipate energy or
hinder the formation of a hotspot?

*Unfortunately fluid models by themselves don’t
account for transport processes well, particularly in
strongly coupled plasmas.

*Use of kinetic models 1s a proposed and promising
way of handling these effects beyond standard
hydrodynamics assumptions.
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See Luke Stanek’s talk

Kinetic Theory for HED Plasma Transport
Y P assessing this with DFT-MD |

and force matching
Many-Body
[Radiation Hydrodynamics ] VS Hamiltonian —
*A natural way to improve transport is to move to v Stanton & Murillo
kinetic theory: [BBGKY ] effective .ion_.ion
* Much more graceful handling of non-diffusive interactions
transport & strongly coupled systems. e
Bolt Equati
* More direct/accurate treatment of atomic level {WO/ BZGm Ka ?)T) e?auti: on J L2
physics.

*How do we know that this is physically the / \

correct thing to do? Do various approximations
in the kinetic theory impact predictions?

Temperature
relaxation

Momentum
relaxation

VS

° Haack et al. (2017b): 10.1103/PhysRevE.96.063310
o Stanton & Murillo (2016): 10.1103/PhysRevE.93.043203



Experimental Test of Transport at HED: Evolution of an Interface
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*We can set up a low Z/high Z interface
*Isochorically heat it to 100’s of eV.

*Watch the evolution of the interface with radiography, and compare to transport models.
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| Plasma Transport Sample and Diagnostic

Concept

Conceptual Sample

Half moon sample allows transmission to be
obtained from the attenuation
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Linear array of High-Z material allows integration
of data along one dimension

Sample heated using Hohlraum from one side

w/Vj

— (Sv]
-~J o]
o o)
1 1

—

oy ]

]
1

Radiation Temperature [eV]
—
S
]
1

T,~200 eV in ~5 ns

10

15 20 25
time [ns]

30

age evolution of high

haterial to allow
ns using K-shell

Transmission

TTerSoc

v

XRS3
spectrometer

R

Sa

hohlraum

Radiography

Experimental Setup

Hohlraum
diagnostics

V4




| Fabrication of the sample required significant R&D by general atomics

metrology
samples

Sample on hohlraum w/ Be tamper attached

Radiation Drive
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*Requirement of sharp interface led to use of lithographic technique

*Significant effort in metrology for areal density, mixture properties, and edge widths

- 30 um Be Tamper !

Material provided by Haibo Huang, General Atomics



First plasma transport experiments have been executed on Z
demonstrating the feasibility of the proposed measurement

fabricated sample
Executed two experiments in March testing x-ray heating and \ on Si wafer
diagnostics performance ‘ . G
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Demonstrated good contrast of the sample in the radiographs
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12 1 A closer look at the experimental data
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° The V strips appear to get “squeezed” '
° There is a substantial absorption difference 0.6
(hohlraum emission makes it difficult to assess this)
° The width of the strips is approximately correct,
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Radiation Hydrodynamics: How fast are we heating anyway! E.]

Radiation Drive

400 um 30
mg/cc CH foam
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o ALEGRA Radiation hydrodynamics calculations conducted at
experimental conditions reveal sensitive to CH foam properties

Foam optical depth at experimental densities sufficient to prevent
sample from heating

Radiation shock at late times drives instability on sample surfaces

Lowering effective optical depth of foam allows sample to heat
but exhibits significant expansion




4 | Radiation Hydrodynamics: How fast are we heating anyway!?

Hydrogen Vanadium
C__ Lmiae Number Density [1/cc] 10" Number Density [1/cc] 107
V/Aistipes | 23.40 | B 22.72
oy 14
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. . . . =
sample by integrating simulation oron X \
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along radiation path, over region
adjacent to Vanadium - 20.76 - 20.08
°> Focus attention on low density —— 10,64
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° Plastic appears to compress
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15 | Radiation Hydrodynamics: How fast are we heating anyway!?

( 0.5um top CH )
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° Analyze time evolution of sample by
integrating simulation along radiation

path, over region adjacent to Vanadium 10 -

> Heating strongly dependent on
effective optical depth of foam

> Foam (@30 mg/cc: V & plastic only
heat to 40eV

> Foam (@3 mg/cc: V & plastic heat to
80eV by 10ns and 100eV by 15ns

° Impacts 1onization state achieved
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16 I Kinetic Modeling of V/CH Interface: Electrostatic Fields
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o Utilize electrostatic multi-species kinetic code to study plasma > Electrons temperature derived from 3 mg/cc rad hydro

transport at CHO-V /Al interface
> Thomas-Fermi Average Atom model for ionization state;
Fermi-Dirac statistics for electrons

° Temperature relaxation model for ion-ion collisions ° Electrons remain confined within the Vanadium strip
o Simulation setup: V @90% solid density, 10% Al doping
> Jons initialized at 10eV

o Electric field & electron evolution is qualitatively the same as
before:

o Electric fields ~9x weaker c.f. heating to 200el”



Existing radiography capability can be used to distinguish between kinetic
17 I models
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> Thomas-Fermi Average Atom model for ionization state; . o
Berml-Ditae statiedes for clectrons > In temp. relaxation case Transmission profile deepens

and narrows prior to 8 ns, then widens

o Synthetic radiography:

> Comparing Temperature and momentum relaxation
model for ion-ion collisions

o Simulation setup: V @90% solid density, 10% Al doping
o Tons initialized at 10eV

> In mom. Relaxation case, the profile always widens



Questions that emerged during the experiment/modelling process:

“*How is the sample really heated? How does radiation propagate through the tamper to heat up the
sample?

“*How does the vanadium layer evolve in the transverse direction (i.e. into the tamper). We don’t
want to do a foam experiment.

These are open questions that prevent a direct assessment of transport
models.



Radiation

19 | Experimental Plan Drive
400 um 30
mg/cc foam

October 2020

> 2 shots to test out a new harder X-ray source. The goal 1s
to promote more volumetric heating and to avoid
potential radiation driven shocks.

Quarter 1 2021

30 um Be
Tamper

° 2 shots to quantify sample/tamper dynamics. Edge-on
shots to watch expansion of vanadium in the transverse
direction,

Quarter 3 2021

> 2 shots with optimized target design.




Conclusions

“*The Z-machine plasma transport platform is a unique experimental capability allowing a direct
assessment of transport models.

“*The differences in synthetic radiography produced by different transport models is large enough to
be distinguished based on already demonstrated experimental resolution.

“*The upcoming shot campaign should eliminate known sources of uncertainty, and allow the
clearest test of HED transport models to date.

For more information on work to validate the physics going into the Boltzmann-BGK transport
equations, see Luke Stanek’s upcoming talk.



