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Progress in MITL modeling with EMPIRE

Accurate modeling of power flow from capacitors to load requires several
different models i

3 ot
Over the lifetime of the GC-LDRD, EMPIRE has made great strides w :
° Transmission line models, bidirectional power flow to the inner section | g f- )]
. . .. Distributed (per length) circuit parameters we’re using for em 3 3 ; . — ] 7
> Wave launching and absorbing boundary conditions P P e e
g capacitons limes lines

o

Current flows into the center section

o

Space Charge Limited particle emission (SCL)

17

o Large electron flux

(o]

Surfaces heat up through ohmic heating and electron bombardment

o Neutrals are created

MITL flow is traditionally modelled using particle-in-cell techniques, which
can be costly due to need to resolve Debye length. Relativistic fluid models
provide an alternative that offer reduced computational cost.
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4 I Overview

* Neumann boundary conditions in EMPIRE-Fluid
» Considerations for inflow boundary conditions

* Mass injection boundary
* Injects a user-specified mass flux I'(t)

» Thermal desorption boundary
* Injects a temperature-dependent mass flux of substance
« Can be used to model thermionic emissions

» Space charge limited (SCL) boundary

* Injects a charged substance so that the electric field at the emitting surface relaxes to nearly zero
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Neumann boundary conditions in EMPIRE-Fluid

The equations for an ideal fluid can written in conservation form,

—

ou

. Fli) =
6t+v (W) =0

Where 7 are the conserved quantities and F is the flux.

For a 2D Newtonian fluid,

U =p (mass density) F,=pv-f (mass flux)

u, = p(v-8&,) (momentumdens.x) F,=p@W-7)w-é,)+p(A-é,) (momentum flux x)
uz =p(v-é,) (momentumdens.y) F3=p @-7)(v-é,)+p(f-eé,) (momentum fluxy)
Uy = Pg (energy density) F,=W-7) (pg +p) (energy flux)

These definitions have been generalized to the relativistic case. See for example Mignone et al. "The
piecewise parabolic method for multidimensional relativistic fluid dynamics.” (2005)

Neumann conditions in EMPIRE-Fluid prescribe a value for the flux F at the boundaries



6 | Considerations for inflow boundary conditions

Given that one desires an inflow mass flux of I'(x, t)
injection velocity v
injection temperature T
one might consider implementing an inflow boundary condition by simply prescribing 13(1“, v,T)

* Unless the flow is supersonic, an ill-posed system results!

- F must account for the outgoing characteristics. We compute F with an approximate
Riemann solver:

F = Fp(dy, up)
Uy is a “virtual state” which we assign
u; is the interior state

* See Mengaldo et al. "A guide to the implementation of boundary conditions in compact high-
order methods for compressible aerodynamics.” (2014)



Mass injection boundary condition |
(Newtonian fluid system)

The applications described later (especially the thermal desorption boundary) require precise
injection of a time-dependent mass flux.

+ As far as we know, existing inflow boundary condition algorithms do not offer precise control of total injected mass as
a function of time

« The following algorithm is somewhat similar to the outflow boundary outlined in Rodriguez et al., "Formulation and
Implementation of Inflow/Outflow Boundary Conditions to Simulate Propulsive Effects.” (2018)

* The user prescribes for a boundary sideset,
o Mass influx T'(t)
o Virtual state temperature Ty,
o Avirtual state “desired” velocity vy,

- Given the current value of the interior state u;, a virtual state uy is constructed so that,



Mass injection boundary condition 2
(Newtonian fluid system)

1. Virtual state velocity, v, = 7 vy, is constructed using a heuristic so that
Vy VU
Cy - Cr
where ¢, and c; are the speeds of sound in the virtual and interior states respectively
v; is the normal flow speed in the interior state

2. Virtual state density is determined by considering the Riemann invariants,

1

g f Y1\ y-1
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_2¢ + 2¢cp + (v —v)y—1) vty ¢ — ¢y
Cp = 4 y UVp = > +




Mass injection boundary condition 3
(Newtonian fluid system)

3.  We then prescribe the numerical boundary flux,
F = F(iiy)

where 1, are the conserved quantities “on the boundary”

* U, can be computed using the quantities c;, p, and v, shown on the previous slide.
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Mass injection boundary condition 4

(Newtonian fluid system)

1.0

Injected Mass [kg/m? x 1012]

0.2 H

0.0

0.8 1

0.6 1

0.4

—— Prescribed
—8— Computed

T T
0.00 0.05

0.10

T
0.15

T
0.20
Time [ns]

T
0.25

0.30

0.35

0.40

Injected mass density [kg/m? x 10%]

1.0

0.8

0.6 A

0.4 1

0.2 A

0.0

0.0

T
2.5

5.0

T T T
7.5 10.0 12.5
Distance from emitter [um]

15.0

T
17.5

20.0

This simple test problem demonstrates the injection of a “tent function” flux that is “on” between

t=0.1 and 0.3 ns. The total mass in the system closely tracks the required total mass (as determined by

the specified injection flux).



.1 | Mass injection boundary condition |
(relativistic fluid system)

The user prescribes for a boundary sideset,
o Mass influx I'(t)
o Virtual state temperature Ty,
o Virtual state velocity v,

Then for each boundary mesh face,

1. Avirtual state density p,, is then computed by using the Brent method so that the
relativistic HLL mass flux at the interior boundary is,

Fyrra (dy,u;) =T'(t)

2. Fy (Uy, ;) is then assigned as the boundary flux on that mesh face



., | Mass injection boundary condition 2
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* We converted the test case, considered for the Newtonian boundary condition above, to demonstrate
relativistic mass injection

» The correct amount of mass is injected (less than 1% relative error)

» The relativistic solution differs from the Newtonian solution, probably because of the difference in
the virtual state velocity determination



13 I Mass injection boundary condition, discussion

* The Newtonian and relativistic mass injection boundary conditions take different approaches to accomplish
highly accurate injection of mass flux into the domain from a boundary

* The difference in these approaches is orthogonal to any special considerations for relativistic fluids

* In practice, we found that the approach taken for relativistic fluids resulted in a more robust boundary
condition

* Larger timesteps can be taken with the relativistic fluid mass injection algorithm

* The undesirable “heuristic” virtual state velocity assignment in the Newtonian mass injection algorithm
appears to be required for numerical stability
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Thermal desorption / thermionic emission boundary condition

Ad
. ona
uta’(,\ (ac,e
Comrp peated suf
ove

» Uses the “mass injection” BC framework to
inject a by-mesh-face temperature dependent
flux

* Emission flux model is consistent with,
o Thermal desorption (Temkin, Polanyi-Wignher fluxes)

o Thermionic emission (Richardson-Dushman flux) -
additional work would be needed to prevent over-
injection of thermionic electrons

* 1D heating model applied to each surface
mesh face

* Heating source term Q(x, t) accounts for eddy current
heating (consistent with magnetic field evolution)

Heating model

du dq
E - Q(xl t) - a

B oT
= 0x
u dul

T(u) =f0 )

gqx=0)=0

ulx,t =0) =u,

lim u(x, t) = u,

X—>00

Emission flux model

E
F=vT%6Mexp <_k3—aT>

6 =-T




15 I SCL boundary condition

The SCL boundary condition injects a mass flux of charged substance as a function of the
electric field,

I'(t) = TIgcyL (E (t))

We are currently considering the following model (to be improved upon later if needed),

d(E(t) - 1)
ot

[scr (E (t)) = Yo (E (t) - ﬁ) + 11

The SCL boundary, with appropriate choice of parameters y, and y; will,
- Cause E(t) - fi to relax to zero

+ Adjust the injection flux I'(t) as the solution evolves to maintain E@®)-A~0

Note: Presently SCL uses a simpler, less accurate mass injection algorithm compared to the
one described above



SCL boundary condition, demonstration

(Newtonian fluid system)

* A simple 1D diode problem
demonstrates the effectiveness of the
boundary condition to adjust I' so that
the electric field at the cathode
remains nearly zero

* The electric field is initially zero at the
cathode so that the initial transient is
less violent

* Less well behaved problems, with a
larger 1nitial transient, have not been
observed to cause an issue with the
boundary condition
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SCL boundary condition, simple demonstration problem
(Relativistic fluid system)

Time: 0.000000 ps

electron_rho

Qle-152e-14 b5e-14d 1e-132e-13 He-13 1e-12 2e-12  5e-12 Te-11 2e-11  5e-11 1e-10 4.1e-10

e | L I

o This early demonstration
problem considers SCL
electron emission from a
surface due to a DC transverse
electromagnetic wave

o SCL emission drives the
electric field to nearly zero at |
-4.0e+06 -3e+b 2e+bH -le+b 0 le+é 2e+b 3e+bH 402406

the emission surface ' ' ' | —



18 | SCL boundary condition, simple MITL problem
(Relativistic fluid system)

2.5 cm

BC 1: Drive voltage V(t) = (10 kV)*time/ (0.1 ns), which
launches TEM wave propagating in x-direction, with a
rise time of 0.1ns

BC 2: Reflecting boundary for plasma;

E, = E, =0 for EM

i



19 | SCL boundary condition, simple MITL problem
(Relativistic fluid system)
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20 I Summary

The Newtonian & relativistic mass injection boundary conditions offer precise control over the
amount of substance injected into the computational domain.

The thermal desorption and SCL BCs are built upon these mass injection BCs:

* Thermal desorption
* These boundary conditions self-consistently compute the surface temperature according to Ohmic heating
« A flux of substance is injected at a rate that is determined by the surface temperature

* Newtonian & relativistic SCL

» These boundary conditions inject charged substance at a rate so that the electric field at the emitting surface is
reduced to nearly zero



21 | Extra Slides: Mass injection test problem injection flux

Top: The mass injection
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