SAND2020- 7957PE

Agile Methodologies Redux

David E. Bernholdt
Oak Ridge National Laboratory

IDE -

” productivity
Michael A. Heroux, James M. Willenbring
better Sandia National Laboratories

= LD

ientifi
. |:| D ggf%,:afrg Better Scientific Software Tutorial

- Software Productivity Track
" ATPESC 2020

See slide 2 for
license details

License, Citation and Acknowledgements

License and Citation
 This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).cumemm——tsm—m—s

* The requested citation the overall tutorial is: David E. Bernholdt, Better Scientific Software tutorial, ===
in RF SciDAC 2020 Workshop, Knoxville, Tennessee. DOI: 10.6084/m9.figshare.119183

 Individual modules may be cited as Speaker, Module Title, in Better Scientific Software Tutorial... I

Acknowledgements
- Additional contributors to this this tutorial include: Anshu Dubey, Mike Heroux, Alicia Klinvex, Jared O’Neal, and REtherme
Riley, James M. Willenbring

» This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing
Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security Administration.

» This work was performed in part at the Argonne National Laboratory, which is managed managed by UChicago Argonne,
LLC for the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.

« This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S.
Department of Energy under Contract No. DE-AC05-000R22725.

» This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission
laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525. SAND NO SAND2017-5474 PE

IDEAS | .;C?\)P STEmE

productivity e

Outline

 Refining our Epic

« PSIP: Productivity and Sustainability Improvement Planning

=(C

\\ EXASCAHLE
) COMPUTING
PROJECT

S

More on Epic, Story, Task

. —

E(CP =

IDEAS

productivity

Epic, Story, Task Review

* Break down and refine when and as needed
— Close to when the work will be done
— Only for work that will take place
— Can be valuable for estimating
— There is no “correct” level of granularity

 Epics are very high level objectives

» Stories should represent an increment of value to the customer
— “Definition of Done” — understandable to user

» Tasks are the steps necessary to complete a story
— May not individually provide value to the customer

A ' — ’-.—\‘\ } EXASCALE
I D E 48 e (E\)P COMPUTING

productivity FRRIEET

Definition of Done

« Simplified definition: When all acceptance criteria are met

» Acceptance criteria

— “Conditions that a software product must satisfy to be accepted by a user,
customer or stakeholder.” — Microsoft Press

— "Pre-established standards or requirements a product or project must meet.”
— Google

— Can include functional, non-functional, and performance requirements.

A ' = \ EXASCALE
I D E "N S — (L\) ’E—-’ COMPUTING

productivity PRt

Definition of Done

 Important to establish for a story before estimating or beginning a
task

 Defined by the team, acceptable to customer
— Customer language

« Should not specify an implementation unnecessarily

_

Refining Our Epic

 Epic: Refactor code for enhanced modularity

— Description: The heat equation code needs refactoring to improve modularity.
Specifically, there are utilities that could be generalized and used with for other
applications. Also, the integration function is currently hard-coded. In the future, we
want to use alternative integration functions, so we should generalize the interface for

this function.

— Story 1: Separate out utilities
 Definition of Done
» Task list

— Story 2: Separate out integration function
 Definition of Done
» Task list

IDEAS = (E\\, P 2Eme

productivity —\ FRRIEET

Refining Our Epic

— Story 1: Separate out utilities

 Definition of Done
— Unit tests pass
— Code review completed
— Integration/system tests pass
— Utility performance is at least 95% of pre-separation performance
— Utility usability demonstrated outside of heat equation application

— Story 2: Separate out integration function
« Task 1: Add testing for integration function to protect functionality during refactor
— Needed testing should be specified
» Task 2: Generalize interface to allow alternative implementations
» Task 3: Expose current integration function through the new interface & run tests

A ' —— ’-.—\\ EXASCALE
I D E "\ S — (E\)P COMPUTING

productivity PROJECT

™

Agile Estimation

« Estimating is hard hay concept:
It is easier to accurately
— Requires practice estimate many small tasks than

— With practice, it is still hard to estimate a large epic.

Epic: Huge refactor effort

« Stories are estimated using “story points”
— Relative estimate Tasks:
: : : * Add tests
— Many estimating techniques . Ceneralize interface
— Should NOT map to hours, days, etc * Expose existing interface

— Definition of done needed, tasking not required

 Tasks are estimated in hours
— Absolute estimate

« Useful for planning schedules

IDEAS ”@\,m_: o]

10 productivity FReEeT

How To Get Better

Use iteration and incrementation only for projects you want i
ucceed.

- Adaptation of Martin Fowler quc

Strategy for Incremental Productivity Improvements

* |dentify, analyze, prototype, test, revise, deploy. Repeat.

* Realistic: There is a cost.
— Startup: Overhead
— Payoff: Best if soon, clear

— OId Process
New Process

Cost

|
Start Progress Finish
« Working model:

— Reserve acceptable time/effort for improvement.

— Improve how you do your work on the way to getting it done.
— Repeat.

12

IDEAS

productivity

\\
Nafe

) EXASCAHLE
COMPUTING
PROJECT

13

Productivity and Sustainability Improvement Planning (PSIP)
Examples: EXAALT & MPICH — Add PSIP URL

01 Summarize Curren
Project Practices

07 Assess Progress

06 Execute Plan

02 Set Goals

* |dentify practices ready 03 Construct Progress

for improvement. Tracking Card (PTC)

* Select those with near-
term payoff.

Productivity and

Sustainability Improvement
Planning (PSIPs) Workflow

PTC values

« Define practice improvement

steps.
* Be specific, track issues.

05 Create Plan For Increasing

MPICH PSIP: Onboarding new

team members

. ate Centralized Training Resources
Practice: Cre e

Score
(0-4)
0
1

2
3

Description

Initial Status : No training process in place.
Understand MPICH requirement for developers and
typical challenges for new hires

Review and gather specific training materials

Design “MPICH Training Base" website

Solicit feedback, improve, add and prune content to
ensure effectiveness

&

&
&

2019

PSIP workflow helps a team create user stories,
identify areas for improvement, select a specific
area and topic for a single improvement cycle,
and then develop those improvements with
specific metrics for success.

EXAALT PSIP: Continuous integration
(CI) testing

BSSw blog article: Adopting Continuous Integration for Long
Timescale Materials Simulation, Rick Zamora (Sept 2018)

PSIP Process: Continuous Integration (Cl) PSIP Process: Testing
Target: Implement and document a basic Cl pipeline to act as the Target: Implement and document practical testing examples for
for d build and ity testi ng. ongoing EXAALT development

0. Initial Status. No comprehensive C| framework in place 0. Initial Status. No comprehensive testing framework in place

1. Develop a minimal docker image, with EXAALT dependencies 1. Add 1-3 example tests using the existing CMake infra-
uuuuuuuuu (CTest)

2. Add 1-3 example tests using the ‘Boost Test' library

2. Implement a minimal ‘yml’ script for the Cl pileine
3. Update EXAALT docker image to leverage CMake, and create

a ParSplice-specific image for build testing 3. Integrate the CTest infrastructure with the new Boost tests

SSS S

4. Generate step-by-step "how-to" Docker-image documentation 4. Integrate the Boost-enabled CTest framework into the CI

SE K&SA

S. Extend Cl to automate build and functionality testing with pipeline
both CMake and Boost. 5. Bonus: Work with EXAALT team to add more advanced tests
to improve code coverage
score (0-5): 4 Score (05): 3

IDEAS E\(\E\,p Secns

productivity PROJECT

