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• Develop a guidance and control algorithm for hypersonic
vehicle flight based on nonlinear optimization achieving:
— Nonlinear system dynamics with uncertainties

— State and control constraints: No-fly zone, waypoints, target, and
limited actuation

— Real-time implementation, stability, and robustness for hypersonic
flight

lmage Credit: Sandia National Laboratories
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Nonlinear Model Predictive Control

• Nonlinear Model Predictive Control (NMPC)
— Constrained optimal control problem over a receding horizon

— Nonlinear system dynamics and constraints integration into NMPC
framework [Findeisen and Allgöwer 2002]
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where J (x(•),u()) = (1)(x(t + N)) + L(x(k), u(k)),
k=t

subject to

x(k +1) = f (x(k),u(k)), f : Rn±m —> Rn,

x(t) = xt,

C(x(k),u(k)) 0,

C(x(k))) 0,

x, E R",

C : R"±"1 —> Ri, k = t,• • • , t + N —1,

C:Rn —>Rq, k=t,•••,t+N.

— Main challenge: computational complexity for real-time implementation
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Method for Real-Time Computation

• Rapid optimization approaches and solvers
— Advantageous for

• Nonlinear systems

• Systems with changing parameters

• Interior Point Optimizer (IPOPT [Wachter & Bigeler 2005]
— Interior Point (IP) Method

• Effective method for solving nonlinear constrained optimization problems

• Directly integrates equality and inequality constraints into objective function
optimization

— Widely available in solvers in commercial and open source spaces
• MATLAB/Simulink

• COIN-OR IPOPT
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Mission Structure

• Hypersonic Glide Vehicle (HGV) governed by 3 degrees-of-freedom
(DoF) equations of motion

• No propulsion power

Mission Structure

1. Hypersonic release (no engine thrust)

2. Hypersonic glide through No-Fly-Zone

corridor (Corridor is 300km in length

and 1km in width)

3. Waypoint 1 at the end of No-Fly-Zone

corridor (altitude decreases)

4. Waypoint following sequence from 1 to

5 decreasing in altitude
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3DoF HGV Model

• Equations of motion [Jorris 2007, Hood et al. 2019]

= Vcos(y)cos(0)

= Vcos(y)sin(19)

h = Vsin(y)

pV2Sq(1+ c?)
=  

4E*m 
gsin(y)

pc1qSVcos(o-) Ssin(o-) gcos(y)
Y  

2m mV V

6 .pciczsysin(a) Scos(u)

2mcos(y) mVcos(y)

-X1-

X2

x3

-x-

y

h
X =

x4 ' u =[co-l] [u11211

x5

_X6_ -e-

Symbol Description Value

State
Variables

x1 x Position in x direction

x2 y Position in y direction

x3 h Altitude

x4 V Velocity

x5 y Flight path angle

x6 19 Heading angle

Control
Input

u1 C1 Coefficient of lift ratio CL/q 0 < c1 < 2

u2 a Bank angle
71" TC

— — < 0- < —
3 — — 3

Constant
Parameters

S Wing reference area 0.458 m2

m Mass 907 kg

E* Max L/D Ratio 3.45

q
Coefficient of lift for
Max L/D Ratio

0.45

*Note: Air density is recalculated at every sampling time
P = Psie
where psi = density at sea level (1.225 :ctq,),

/3 = air density decay factor (-0.14km-1), h = altitude (km) 7
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Optimization Problem

• NMPC problem formulation

Minimize Rx(.),u(.)) = (x(t + N) — x f)T P (x (t + N) — xf)
t+N-1

+ (x (k) — x f)T Q (x (k) — x f) + u(k)T Ru(k) ,

k=t

subject to x(k + 1) = x (k) + T f (x (k), u (k)) ,
x(t) = xi,
0 u1(k) 2,

— u2 (k)
40 < x 2 (k) 41, if 700 x1(k) 1000
x(t + N) = xf x f is updated from waypoints

• Simulation setup
Symbol Parameters Value Symbol Parameters Value

Vi Initial velocity 4.08 km/s (Mach 12) P Terminal cost matrix 2Q

Q Weighting matrix diag([0.0002, 0.033, 0.033, 0, 0, O]) N Prediction horizon 20

R Weighting matrix diag ([1, 1]) T's Sampling time 2 sec
8
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Simulation Results: 5 Waypoint Trajectory (1)

• Compare results by MATLAB fimincon function with results
by IPOPT Simulink

• Trajectory comparison
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Simulation Results: 5 Waypoint Trajectory (2)

• Computation time
— Simulations on a computer with intel(R) Core i7 CPU @ 1.60 GHz
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Simulation Results: 5 Waypoint Trajectory (3)
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Spline Trajectory - Waypoint Reformulation

• Waypoint refined to generate a smother trajectory
— 5 waypoints were used to generate a smooth spline of several dozen
waypoints to enforce strict waypoint following

• Ad-hoc method to generate sub-waypoints
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Simulation Results: Spline Trajectory (1)

• Trajectory comparison
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— Trajectory smoothness greatly improved

— NMPC framework for hypersonic flight works
better with many short-term state objectives
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— Spline model has high accuracy for final
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Simulation Results: Spline Trajectory (2)

y position:

Altitude:

30

O

8 20

15

30

25

20

g 15: 

10

  dal
Spline model 5 WP model

100 200 300 400

Time [s]

100 200 300 400

Time [s]

500 600 700

600 700

3o

10

Waypoir0 1

Waypoint 2

Waypou0 3

•

Waypom I 4

Waypoint 5

50 100 150 200 250 300 350 400 450 500

Time [s]

— Spline model is much improved

— Less slope variation (i.e. smoother trajectory)

— Improvements in efficiency & reduction in structural loading 14
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• Computation time
— Simulations on a computer with intel(R) Core i7 CPU @ 1.60 GHz
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Literature Comparison for 3DoF Model

5 Waypoint Trajectory Full Optimization Trajectory [Hood et al. 2019]
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Summary & Future Work

• Summary
— NMPC control approaches have developed for 3DoF model

— Spline trajectory following strategy has been implemented

— Real-time implementability is verified using Simulink-based simulations

• On-going work
— 6DoF hypersonic glider model formulation

• Control-oriented model & High-fidelity model

— Stability proof for NMPC closed-loop optimization

• Terminal penalty cost function & Terminal constraint region

• Future work
— Development of a rigorous waypoint following strategy

— Implementation of NMPC for 6DoF models

— Development of robust NMPC approaches handling uncertainties
17
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Q&A
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3DoF Motion and State Space Model

Hood Reformulation

= Vcos(y)cos(0)

= Vcos(y)sin(0)

h = Vsin(y)

D
V = — 

m
— — gsin(y)

Lcos(o-) — Ssin(o-) gcos(y)
= mV V

. Lsin(o-) + Scos(o-)
0 = 

mVcos(y)

X =

U =

x-

h
y

0-

Modified Formulation

= Vcos(y)cos(0)

= Vcos(y)sin(0)

h = Vsin(y)

pV2Sq(1+ c?)

4E*m 
 gsin(y)

pc1qSVcos(o-) Ssin(o-) gcos(y)
Y  

2m mV V

6 .pc1c7sysin(a) Scos(o-)

2mcos(y) mvcos(y)

X1 -

x2

x3

x4

x5

X6-

=

x4cos(x5)cos(x6)

x4cos(x5)sin(x6)

x4sin(x5)

pC7Sx,24(1 + uP
gsin(x5)

4mE*
pqSx4u1cos(u2) Ssin(u2) gcos(x5)

2m mx4 x4
_

—

[U11
pqSx4u1sin(u2) Scos(u2)

[U2]
2mcos(x5) mx4cos(x5)

where

L = —
1 

2 
pV2cic'S

1 2 Cal + c?)
D =

2E* S

*Note: Multiple formulations of 3D
model were evaluated. Flight path
angle small angle & Three
waypoints

*Note: Air density is recalculated at
every sampling time

( P = Psie-flh)

psi = density at sea level (1.225 1:7;q3)

)6' = air density decay f actor (-0.14km-1)
h = altitude (km)

Symbol Parameter Value

S
Wing

reference
area

0.458 m2

m Mass 907 kg

E* Max L/D Ratio 3.45

Ci!
Coeff. of Lift
for Max L/D

Ratio
0.45

21
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Aerodynamic Heating

• Formulation for nose heating was
added to the model to guide future
considerations for thermal or structural
constraints

k p V
  n  ) 3

Prnose sl 1/(V 010

—3

BTU • ft 2
where k = 17000  

• Note: 4 is calculated in BTU/s and
converted to Watts afterwards

[Jorris 2007]

Symbol Parameter

k
Heating
constant

rnose
Radius of

aircraft nose

P
Local air
density

Psi
Sea level air

density

V Velocity

go Earth Gravity

rc, Radius from
earth center

22



NM Simulation Parameters 5 Waypoints

MATLAB fmincon Implementation

Optimization Parameters

ns = 6 - Number of State Variables
n, = 2 - Number of Control Variables
Tla = 8 - State and Control Variables
n, = - Number of Constraints
TS = 2 - Sampling Time [sec]
N = 20 - Prediction Horizon

Weighting matrices
Q = diag[ 0.005, 0.03, 0.03, 0, 0, 0 ]
R = [1,1]
P = 2 • Q

For waypoint 4 to 5 P = 3

Initial Conditions

x1 (x-pos) initial = 1000 km
x2 (y-pos) initial = 40.5 km
x3 (z-pos) initial = 30 km
x4 (V) initial =4.08 km/s (Mach 12)
x5 (y) initial = 0 rad (0 deg)
x6 (0) initial = 7 rad (180 deg)

Waypoints (Target)

WP1: (700, 40.5, 23) [km]
WP2: (500, 35, 18) [km]
WP3: (300, 20, 10) [km]
WP4: (100, 10, 6) [km]
WP5: (0, 0, 0) [km]
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MATLAB fmincon Implementation

Optimization Parameters

ns = 6 - Number of State Variables
n, = 2 - Number of Control Variables
Tict = 8 - State and Control Variables
n, = 7 - Number of Constraints
TS = - Sampling Time [sec]
N = 20 - Prediction Horizon

Weighting matrices
Q = diag[ 0.0002, 0.25, 0.25, 0, 0, 0 ]
R = [1,1]
P = 2 • Q

Initial Conditions

x1 (x-pos) initial = 1000 km
x2 (y-pos) initial = 40.5 km
x3 (z-pos) initial = 30 km
x4 (V) initial =2.72 km/s (Mach 8)
x5 (y) initial = 0 rad (0 deg)
x6 (0) initial = 7 rad (180 deg)

Waypoints (Target)

33 Sub-waypoints from end of
No-Fly-Zone (700, 40.5, 25) to
old Waypoint 5 (0,0,0)
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Spline Trajectory Results

• Velocity is well
maintained despite
lower initial velocity and
constant cl control input

• Aerodynamic heating
reaches a maximum of
approx. 60 kW

• Control input in constant
fluctuations with no
maximum constrained
inputs
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