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Preheat energy is a limiting factor on MagLIF
performance
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LASNEX optimized yields
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• Optimizing MagLIF yields at
Bz=3O T takes LOTS of preheat
energy

• Our best warm experiments
couple < 2kJ of energy — this
limits potential performance
• Operate at lower currents

• Reduce preheat energy density
increasing stagnation CR

• MagLIF preheat focus: Increase
coupled energy through LEH
foil mitigation

Current (MA)



Deposited preheat energy is measured in offline
"PECOS" experiments
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• We cannot measure mix in these experiments — done in integrated experiments
M. Geissel et al., Physics of Plasmas 25, 022706 (2018)

A. Harvey-Thompson et al., Physics of Plasmas 26, 032707 (2019)



We can not reach >2 kJ preheat without window
mitigation or a bigger laser

High energy warm target experiments
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• We are limited to "70% coupling
efficiency by losses
• LPI backscatter
• Energy loss to LEH foil

• We are working to mitigate losses in
two ways:
• Cryogenic cooling allowing for thinner
windows

• Laser-gate which "pops" the LEH foil
before the main pulse

• Mitigation enables 1.5 mm spots —
prevents overshooting

• We could increase laser energy
• Transmission into PECOS is <80%
• More laser energy! (additional amplifiers

are being installed)



Cryogenic cooling enables >2 kJ preheat

• Hydra suggests 2 kJ in 1 mg/cc fuel is
possible with cryo cooling (0.5 p.m foil)[11

• To implement cryo cooling we need to:
• Perform offline cryogenic experiments

• Have an effective integrated cryogenic
platform

• Cryogenic cooling is *nearly* ready on
PECOS (just waiting on targets)

• Cryogenic cooling capabilities may
enable other new laser experiments

[1] M. R. Weis et al., in preparation
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Advanced cryogenic cooling improves
temperature control in integrated experiments

Test hardware for bottom side cooling
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• Recent cryogenic experiments returned
neutron yields comparable to warm targets
• Z3500: 3.08e12 ±30.9%

• Z3501: 3.02e12 ± 30.4%

• Current delivery was nominal

• Temperature uncertainty was high ±25% (no
insulating breaks)

• Goals for December series:
• Demonstrate >2 kJ preheat energy in the fuel

• <10% temperature uncertainty at <80 K (requires
bottom-side cooling)



Laser-gate removes the LEH foil without need
for cryo cooling

Low energy cross pattern "pops" the window before the main pulse Conchas: Large suite of diagnostics fielded
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• Preliminary results from 8 shots suggest that Lasergate:
• Successfully removes the LEH window

• Data suggests increased total energy deposition
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Experiments using one Quad of the NIF significantly reduce
scaling risk by demonstrating at-scale preheat for MagLIF

NIF quad (up to 30 kJ)
Magnetized target Cryogenic target

(hydrocarbons) (dense D2)

N

c

0.2

0.8

12

X-ray imaging shows rad-hydro
simulations correctly capture laser
coupling dynamics on the NIF
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Bz = 12 T, 18.3 kJ

■ Experiments have demonstrated —20 kJ coupled into gas. Minimal LPI backscatter.

■ CY21-22 focus on magnetization, cryogenic cooling, energy deposition measurements and mix


