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Outline of the Talk

• Hypersonic Re-Entry Problem via fast ELM-based Advantage Actor-Critic
(A2C) Reinforcement Learning

- Problem formulation

- Algorithm description

- Training and Validation

- Results

• Path forward
- Deep Meta-Reinforcement Learning: Current Effort



Reinforcement Learning for Hypersonic
Flight: ELM-based A2C

• The Advantage Actor Critic Algorithm (A2C) is
utilized for generating a policy, 79 , that drive an
unpowered re-entry vehicle towards a target while
avoiding a maximum on heat rate and constrained
control.

• Our A2C algorithm makes use of Extreme
Leaming Machines (ELMs) to train a critic neural
network that approximates the value function, V.

• Use of this ELM rather than deeper neural
networks is beneficial because it greatly speeds up
the run-time of the algorithm while approximating
V well.

http://www.shackletonenergy.com/reentry

Furfaro R., Scorsoglio, A., Linares, R., Massari, M., (2020). Adaptive Generalized ZEM-ZEV Feedback Guidance for Planetary Landing
via a Deep Reinforcement Leaming Approach. Acta Astronautica, Volume 171, June 2020, Pages 156-171.



Problem Setup: Equations of Motion

• State:
- Radius

- Longitude

- Latitude

- Velocity magnitude

- Flight path angle

- Heading angle

• Control:
- Bank angle
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Problem Setup: Aerodynamics

• Angle of attack is specified as a
function of velocity.

• CL and CD are approximated by
fitting the data in the hypersonic L
regime.
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Problem Setup: Boundary and Path Constraints

• An initial and final state to be reached
are specified.

• Bank angle has a minimum and
maximum

• The heat rate of the rlv vehicle must stay
below a certain value.
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ELM-based A2C Algorithm: Basics

• The algorithm is composed of 4 major blocks:
1. Sample trajectory generation with current policy
2. Critic training for estimating V
3. Updating the policy with V estimate
4. Monte Carlo (MC) evaluation

SAMPLE
GENERA.TION

At 1
1. Trajectories are generated based on a stochastic 79u that maps states to controls.

2. Makes use of an ELM to approximate the discounted reward-to-go of states along a
traj ectory.

3. Uses the approximated discounted reward-to-go of the states for all sampled trajectories to
perform a policy update.

4. Performs Monte Carlo analysis on the deterministic 79u after the update to determine

whether to continue iterating.



A2C Algorithm Specifics: Sample Generation

• Trajectories are generated by having the agent
(vehicle) interact with its environment
(EoMs) by instantiating some and the
perturbing initial state.

• Sample trajectories consist of states, bank
angles, and rewards at each timestep
Grip ui,t,

• The policy is described as a gaussian
distribution with fixed std:

u — 70. = Ar(ft,„ (72)
• The mean of the gaussian represents the
output of a neutral net:
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A2C Algorithm Specifics: Critic

• va( 0)   E[Vlopro(ulx)(2 (x, u)1

• E_Q u is very hard to compute, so we approximate Q u) which means we
also approximate V r ekiro)

• The variance of our approximate estimate is greatly reduced by subtracting the value
function from (717 X) = (c).7r (X, ̀a) — (x)

• Thus, we approximate the advantage function:
• Cr (x , u) is a function of the r and V.
• Thus, we just need V (x) which found via an ELM using the following training set:
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A2C Algorithm Specifics: Actor

• Compute the gradient of the performance objective and update
the policy parameters via stochastic gradient ascent:
• Use the ELM-based approximate Value Function to estimate
the Advantage
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A2C Algorithm Specifics: Validation

VALIDATION

• After the policy update we repeat the sample generation step, but set the
variance of the gaussian to zero because we are no exploring the action
space, hence a MC test is performed.

• The cumulative reward of each MC trajectory is found and the mean is
calculated.

• If the difference in the mean of the MC trajectory's cumulative reward
at the current and last epoch is below a tolerance for 5 epochs, learning
is stopped.



Reward Function

• Description of terms:
1. Penalty if maximum heat rate is

exceeded
2. Hints when maximum heat rate is

being approached
Shaping reward that penalizes when
the heading angle is not pointed at
the target
Terminal penalty applied at the final
time based on whether the position
is close to the target

3.

4.

(t)

n)



ELM-based A2C Algorithm: Specifics

Algorith A2C for Hyperso c Entry
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for k = 1, , max epochs do
for i = 1, episodes per batch do

. .
for t= 1, ... , time steps per epzsode do
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• BCs and PCs:

• Perturbation
bounds:

Initial state element Value final state element Value Heat rate parameter Value

ro (km) 6478 rf (km) 6408 wQmax (Kw/m2) 1500

00 (deg) 0 Of (deg) 70 tvQmgn (Kw/m2) 1425

00 (deg) 0 Of (deg) 8 amin (deg) -80

Vo (km/s) 7.45 Vf (km/s free amax (deg) 80

'To (deg) 0 tyf (deg) free

IN (deg) 0 fip f (deg) free

Perturbed Parameter Value
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00 (deg)

Oo (deg)

Vo (km/s)

7o (deg)

7.Po (deg)



Numerical Results:
Training

MC Stats per Epoch
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Numerical Results:
ELM Performance

• Average critic training time is significantly less than iteration time.

• Average Critic normalized root mean square error as on an order of 10 2 .

# of
iteration s

Total training
time (hours)

Average
itcration Lime

(5)

Average critic
training time

(20

Average critic
NRM RE

4_77 17_18 1_26 4111 X 10 2



Numerical Results:
Testing
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Meta Reinforcement Learning (M-RL)

• Meta-Learning: Learning to Learn
• Leverage data from previous tasks to acquire a learning procedure that can
quickly adapt to new tasks

• Assumption: draw meta-training and meta-tests from some task
distribution p(T ask)

• Goal: Find a learning procedure .19' = Ltip (DV, 19) that can learn a range of
tasks T from a small dataset DV
• Recurrent-based or gradient-based meta-leaming approach

min ET,
P 
(n[L(Dr,19')] s.t. .0'

194 ltip (DV, 
.0)



Meta Reinforcement Learning for Space Guidance &
Control: Adaptation to Hypersonic G&C

Training signal
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Meta Reinforcement Learning for Space Guidance: Using
Recurrent Policies

Recurrent Neural Network

(xa (x3. y2)

backpropagate

ytest

X tOst

The recurrent model store features of which
environment we are currently in



Deep Meta-Learning with Proximal Policy Optimization
(PPO)

• PPO is a variation of the Trust Region Policy Optimization (TRPO)
• TRPO use a constraint to reduce the size of the gradient step taken at each

iteration
• It uses the Kullback-Leiber (KL) divergence between old and new policy as

constraint

• PPO approximate TRPO process by using a clipped objective function

[7‘9(141)(k),A7 (xk, Ilk)]70.,, (141)(k) w
minimize

e

subject to

J(0) 

------7d4 p(r)

17;(T) [KL Ore (11k 1)(k) , 76101, (1-1kIxk))] 6

CLIPPED COST FUNCTION

'p(T) [min [Pk (0) , clip (13 k (0) , 1 — 6 , 1 + 6)] Allry (xk , Ilk)]

PROBABILITY RATIO
7ro(udxk) 

Pk (0)
71901, (lad )(k )



Image-based Meta RL for Lunar Landing

Sample Generation

Raytracer 1

I(1;lt, 4t, la, 4t-pi)

Environment

t  ) r 

Qi-, , Po , 0

Policy evaluation

Policy update

Image input
(32x32, 8 bit norrnalized grayscale)

1
Convolutional layer 1

Conv2D 1
Filters: 32, Stride: 1

r
Conv2D 2

.. Filters: 32, Stride: 2

1
i-

\_

Convolutional layer 1

Conv2D 1
Filters: 32, Stride: 1

Conv2D 2
Filters: 32, Stride: 2

_1

1

rz ) fz

FC1 — 30

GRU — 73

FC2 — 30

1 r ,
FC3 — 3
 ,

1

 ,1 1.
 ,

 .}

Value function observation:

obsvF = [Verr tgo rz]

Verr )tgo )rz

I

FC1 — 60

1
FC1 — 17

1
FC3 — 5

FC4 — 1

I
Value

Thrust



Results: landing with actuator failure and
uncertain mass and gravity

2500

2000

500

0
500

Trajectory

-  - -
-500 500

Crossrange [m] Downrange [m]

-500 
1000 

-1500

Table 2: Initial states

Position

M Max (m)

Velocity

Min (m/s) Max (m/s)

Downrange -1500 -1000 80 100

Crossrange -200 200 -20 20

Elevation 2300 2500 -30 -20
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1_01

—5000
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20 30

Time

20 30
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Table 3: Target states

Downrange 0 0
Crossrange 0

Elevation 500
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Real-time landing site selection and hazard avoidance:
Architecture and Training

Introduce hazard detection and avoidance into the RL framework automatic landing site selection

• 

Hazard detection/avoidance - Landing site selection
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Policy optimization: networks
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Real-time landing site selection and hazard avoidance:
Testing and Validation
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From Sim to Real: Transfer Learning

• Lunar Landing Simulator: School of Aerospace Engineering, University of Rome
• Cartesian robot installed on a faithful reproduction of the lunar region located at the Mare

Serenitatis (23°Nord, 14°East) with a scale of lcm:2000m.

• The lunar soil simulant is made by sifted basalt powder, while the craters are made by calk using
moulds.

Dimentions

Length: m y-axis

Width: 3 tn x-axis

Heigth: m z-axis

Step motor

Torque: 820 N CM

Accuracy: 64 steps/mm

Min. speed: 2 mmimin

Max. speed: 12 mitnin

Power: 400 W



• Furfaro, R. and Mortari, D., (2020). Least-squares solution of a class of optimal space guidance
problems via theory of connections. Acta Astronautica. Volume 168, Pages 92-103.

• Gaudet, B., Linares, R. and Furfaro, R., (2020a). Deep Reinforcement Learning for Six Degree-of-
Freedom Planetary Landing. Advances in Space Research, 65(7), 1723-1741.

• Gaudet, B., Linares, R. and Furfaro, R., (2020b). Adaptive Guidance and Integrated Navigation with
Reinforcement Meta-Learning. Acta Astronautica. Volume 169, Pages 180-190.

• Gaudet, B., Linares, R. and Furfaro, R., (2020c). Terminal Adaptive Guidance via Reinforcement
Meta-Learning: Applications to Autonomous Asteroid Close-Proximity Operations. Acta Astronautica.
Volume 171, June 2020, Pages 1-13.

• Gaudet, B., Furfaro, R. and Linares, R., (2020). Reinforcement learning for angle-only intercept
guidance of maneuvering targets. Aerospace Science and Technology, Volume 99, p.105746.

• Furfaro R. Scorsoglio, A., Linares, R., Massari, M., (2020). Adaptive Generalized ZEM-ZEV
Feedback Guidance for Planetary Landing via a Deep leinforcement Learning Approach. Acta
Astronautica, Volume 171, June 2020, Pages 156-1T1.

• Scorsoglio, A., Furfaro, R., Linares, R. and Gaudet, B., (2020). Image-based Deep Reinforcement
Learning for Autonomous Lunar Landing. In AIAA Scitech 2020 Forum (p. 1910).



• Gaudet, B., Linares, R., & Furfaro, R. (2020). Six Degree-of-Freedom Hovering over an
Asteroid with Unknown Environmental Dynamics via-Reinforcement Learning. In APIA
Scitech 2020 Forum (p. 0953).

• Holt, H., Armellin, R., Scorsoglio, A., & Furfaro, R. (2020). Low-Thrust Trajectory Design
Using Closed-Loop Feedback=Driven Control Laws and State-Dependent Parameters. In AIAA
Scitech 2020 Forum (p. 1694).

• Furfaro, R., Bloise, I., Orlandelli, M., Di Lizia, P., Topputo, F., & Linares, R. (2018). Deep
learning for autonomous lunar landing. In 2018 AAS/ATAA Astrodynamics Specialist
Conference (pp. 1-22).

• Furfaro, R., Bloise, I., Orlandelli, M., Di Lizia, P., Topputo, F., & Linares, R. (2018). A
recurrent deep architecture for quasi-optimal feedback guidance in planetary landing. In IAA
SciTech Forum on Space Flight Mechanics and Space Structures and Materials (pp. 1-24).

• Furfaro, R., Wibben, D.R., Gaudet, B. and Simo, J., 2015. Terminal multiple surface sliding
guidance for planetary landing: development, tuning and optimization via reinforcement
Iearning. The ,Journat of the Astronautical Sciences, 62(1), pp.73-99.

• Gaudet, B. and Furfaro, R. 2014. Adaptive pinpoint and fuel efficient mars landing using
reinforcement learning. IEEE/CAA Journal gfAutomatica Sinica, 1(4), pp.397-411.



This research was funded by the Sandia National Laboratories Laboratory-Directed Research and Development Program. Sandia National Laboratories is a
multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525


