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Outline of the Talk

* Hypersonic Re-Entry Problem via fast ELM-based Advantage Actor-Critic
(A2C) Reimnforcement Learning

- Problem formulation

- Algorithm description
- Training and Validation
- Results

* Path forward
- Deep Meta-Reinforcement Learning: Current Effort




Reinforcement Learning for Hypersonic

Flight: ELM-based A2C

* The Advantage Actor Critic Algorithm (A2C) 1s
utilized for generating a policy, g , that drive an

unpowered re-entry vehicle towards a target while
avoilding a maximum on heat rate and constrained
control.

* Our A2C algorithm makes use of Extreme
Learning Machines (ELMs) to train a critic neural
network that approximates the value function, I/.

* Use of this ELM rather than deeper neural
networks 1s beneficial because 1t greatly speeds up htp://www.shackletonenergy.com/reentry
the run-time of the algorithm while approximating

IV well.

Furfaro R., Scorsoglio, A., Linares, R., Massari, M., (2020). Adaptive Generalized ZEM-ZEV Feedback Guidance for Planetary Landing
via a Deep Reinforcement Learning Approach. Acta Astronautica, Volume 171, June 2020, Pages 156-171.
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Problem Setup: Equations of Motion
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Problem Setup: Aerodynamics

* Angle of attack 1s specified as a

function of velocity. 5 _ PV’ AreiCp
* (; and Cp are approximated by 2;
fitting the data in the hypersonic =" 4 2‘“‘%ch

regime. w ' 2
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Problem Setup: Boundary and Path Constraints

* An 1mnitial and final state to be reached O =k~ /o315 <
are specified. @ Q\/ﬁ < Wmas

* Bank angle has a minimum and o c [Umim Gmax]
maximum - ‘
* The heat rate of the rlv vehicle must stay  a(

below a certain value.
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ELM-based A2C Algorithm: Basics

* The algorithm 1s composed of 4 major blocks:
1. Sample trajectory generation with current policy

3. Updating the policy with J estimate

4. Monte Carlo (MC) evaluation

1. Trajectories are generated based on a stochastic g ~that maps states to controls.

2. Makes use of an ELM to approximate the discounted reward-to-go of states along a
trajectory.

3. Uses the approximated discounted reward-to-go of the states for all sampled trajectories to
perform a policy update.

4. Performs Monte Carlo analysis on the deterministic g —after the update to determine

ACTOR

whether to continue iterating.
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A2C Algorithm Specifics: Sample Generation

* Trajectories are generated by having the agent
(vehicle) interact with 1ts environment
(EoMs) by 1nstantiating some and the
perturbing 1nitial state.

* Sample trajectories consist of states, bank
angles, and rewards at each timestep X
(X6, Uit Tie)-

* The policy 1s described as a gaussian
distribution with fixed std:

w =1, =N(ltu,o”)

* The mean of the gaussian represents the

output of a neutral net:

Hu — é(a:)TQu

¢1 (JC) = e_ﬁ llx—cq|? N
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A2C Algorithm Specifics: Critic

» VoJ(mg) = E[Viogmy(u|x)Q™ (2, u)

* E[Q™(x,u)]is very hard to compute, so we approximate Q™ (x,u) which means we
also approximate VoJ (7o)

* The variance of our approximate estimate 1s greatly reduced by subtracting the value
function from A" (u, ) = Q" (x,u) — V" (x)

* Thus, we approximate the advantage function:

* Q" (x,u)is a function of the r and V.

» Thus, we just need V™ (x) which found via an ELM using the following training set:

S P (x) = z B.a(w;x; + b;)
=1
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A2C Algorithm Specifics: Actor

* Compute the gradient of the performance objective and update

the policy parameters via stochastic gradient ascent:
* Use the ELM-based approximate Value Function to estimate
the Advantage




A2C Algorithm Specifics: Validation

» After the policy update we repeat the sample generation step, but set the
variance of the gaussian to zero because we are no exploring the action
space, hence a MC test 1s performed.

* The cumulative reward of each MC trajectory 1s found and the mean 1s
calculated.

* If the difference in the mean of the MC trajectory’s cumulative reward
at the current and last epoch 1s below a tolerance for 5 epochs, learning
1s stopped.




Reward Function

* Description of terms:

1. Penalty if maximum heat rate is

2.

exceeded

Hints when maximum heat rate 1s
being approached

Shaping reward that penalizes when
the heading angle 1s not pointed at
the target

Terminal penalty applied at the final
time based on whether the position
1s close to the target




ELM-based A2C Algorithm: Specifics

Algorithm 1: A2C for Hypersonic Entry

1/ for k=1,..., max epochs do
2 for : =1,..., episodes per batch do
3 for t =1,..., time steps per episode —1 do
4 | Sample policy © — u;
5 generate samples (X; ¢, Ui ¢, 741 );
6 fit V() to sampled reward-to-go

{%‘,zﬁ: Zg—t (’Yfmt’f'l (mi.}t’ 3 ui,t’) T ’}’g"t’f‘z (mé,t’ 3 %i,tf) };
7 for : =1,..., episodes per batch do

for t =1,..., time steps per episode —1 do
evaluate Ag (2by ¢, 505 1] =

‘ I i___ N
Z:f;:t (’Yf iy 1 (xz’?t’:uig,t’) + ’Yé t’f‘z(wigw ué,t’)) — Vﬁ(mi,t)E

10 evaluate VJ(my) ~ % Zﬁ__l fol Vglogmy (U@tlwi;t)ﬁ(ui;h Tit);
11 update policy 01 = 0 + aVeJ(my, );

12 test new policy mg, — perform M.C. to obtain mean cumulative
reward mean(Ry) = ~ Eé\;@ EZ;O (251, Uit);
13 calculate average change, F, in mean(R) among last 5 epochs;

14 if ¥ < e then
15 [_ break




Numerical Results: Simulation Setup

* BCs and PCs:

e Perturbation
bounds:

Initial state element | Value | final state element | Value | Heat rate parameter | Value
ro (km) 6478 r¢ (km) 6408 wg,.... (Kw/m?) 1500
6y (deg) 0 0r (deg) 70 WQ,pn (KW/m?) 1425
o (deg) 0 ¢5 (deg) 8 Omin (deg) -80
Vo (km/s) 7.45 Vi (km/s free Omax (deg) 80
Yo (deg) 0 vs (deg) free
Yo (deg) 0 Yy (deg) free

Perturbed Parameter | Value
ro (km) +1

0o (deg) + 0.1

oo (deg) + 0.1

Vo (km/s) + 0.05

Yo (deg) + 0.1

o (deg) + 0.1
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Numerical Results:

Training

Reward

MC Stats per Epoch
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Numerical Results:

ELM Performance

* Average critic training time 1s significantly less than iteration time.

* Average Critic normalized root mean square error as on an order of 1072,

# of Total traimne ANETIEE Average crilic Average cnbic
. . e = iteration time lramming hme g =
ILlerations time (hours) <) i:;, NEMSE
E 5)

000 477 17.18 1.26 3.11 % 102




Numerical Results:

Testing

M.C. Runs (Altitude)
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Meta Reinforcement Learning (M-RL)

* Meta-Learning: Learning to Learn

* Leverage data from previous tasks to acquire a learning procedure that can
quickly adapt to new tasks

* Assumption: draw meta-training and meta-tests from some task
distribution p(Task)
* Goal: Find a learning procedure 0" = uy, (D5, 9) that can learn a range of

tasks T from a small dataset D"
* Recurrent-based or gradient-based meta-learning approach

I}glill? Er o[ L(DF5,9)]  s.t. 9 = uy (DY, 9)




Meta Reinforcement Learning for Space Guidance &

Control: Adaptation to Hypersonic G&C

- B
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Meta Reinforcement Learning for Space Guidance: Using A

Recurrent Policies

Recurrent Neural Network

Yiest
A
I || || -]
B | _
(X1,0) (X2, Y1) (X3, Y2) Xtest

The recurrent model store features of which
environment we are currently in




Deep Meta-Learning with Proximal Policy Optimization A

(PPO)

* PPO 1s a variation of the Trust Region Policy Optimization (TRPO)
* TRPO use a constraint to reduce the size of the gradient step taken at each
iteration

* It uses the Kullback-Leiber (KL) divergence between old and new policy as
constraint

* PPO approximate TRPO process by using a clipped objective function

- mo(ug|xy)
| TT0,14 (uk‘xk)

subject to 4:p(7.) [KL (Wg(uk‘Xk), 0,14 (uk|Xk))] < 0

A@ (Xka uk)

... n
mmlemlze p(T)

PROBABILITY RATIO
Wg(uk|Xk)

pr(0) =

k( ) 7THold(uk‘Xk)

CLIPPED COST FUNCTION
J(0) = Epry |min |pg(0), clip(pr(0),1 — €, 1 4 €)| A, (xx, ug)]
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Image-based Meta RL for Lunar Landing

Value function observation:

\ J
| —
Image input . 0 b SVF — [ve rr tg (0) 7"'Z ]
(32x32, 8 bit normalized grayscale) 7,17
Sample Generation Convolutional layer 1 [ FCL— 30 J . t .
Conv2D 1 err»*~go ‘'z
[ Filters: 32, Stride: 1 ] 1
Policy evaluation [ Conv2D 2 ]
Filters: 32, Stride: 2
[ FC1 -60 J
Raytracer Critic 1
Convolutional layer 1 1
[ Conv2D 1 ]
( |—_é|,tv Ei',tv @t’ |—_é|,t+1) Filters: 32, Stride: 1 [ FC1-17 J
i Conv2D 2
D( |—_éD [ Filters: 32, Stride: 2 ] 1
I *
FC3-5
[ GRU -173 ]
_ Act . 1
ctor
(00 [ Fe2 -39 J [ FC4-1 ]
Policy update :
[ FC3 3 | |
1 Value

Thrust



Results: landing with actuator failure and

uncertain mass and gravity

Table 2: Initial states

Position Velocity

Position

Trajectory

~o

2500 —

2000

-

(¢)]

o

o
1

1000

Altitude [m]

500 —

Thrust

0 -
500 1000 -1500

0 -500 :
500 500 ° ' ' !
0 10 20 30 40 50

Crossrange [m] Downrange [m]

Table 3: Target states

Position (m) Velocity (m/s)
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Real-time landing site selection and hazard avoidance: A

Architecture and Training

Introduce hazard detection and avoidance into the RL framework — automatic landing site selection

Hazard detection/avoidance - Landing site selection

Sample Generation

Critic
(xi,tr Uit Tits xi,t+1)
)

Environment




Policy optimization: networks

Hazard Detection Network

input
imapge > o [ . output
tile T || segmentation
2 2 2 map
, 1.

1 -

"D"D 3 U}'D*D =» conv 3x3, ReLU
M3 §oc

copy and crop

;" 512 512 1024 512
D.;D.{:] g - § max pool 2x2
8 2§ qom g & & 4 up-conv 2x2
[:]* i =» conv 1x1
Input image Real Mask Predicted Mask

ED:IF.

Reinforcement learning networks

Actor Network Critic Network
7y LPy, LP, r, i LP,, LP,

l l
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N T T T
0 20 40 60 0 20 40 60

GRU — 73 } GRU — 73
v

FC2 - 30 } FC2 -30

FC3 -3 ] [ ECoE

Thrust V(x)



Real-time landing site selection and hazard avoidance: JA\
Testing and Validation

True 1image Safe/hazard mask Hazard map




From Sim to Real: Transfer Learning

* Lunar Landing Simulator: School of Aerospace Engineering, University of Rome
* Cartesian robot installed on a faithful reproduction of the lunar region located at the Mare

Serenitatis (23°Nord, 14°East) with a scale of 1cm:2000m.
* The lunar soil simulant 1s made by sifted basalt powder, while the craters are made by calk using
moulds.

Length: 4 m y-axis
Dimentions Width: 3 m x-axis
Heigth: 2 m z-axis

Torque: 820 N cm
Accuracy: 64 steps/mm
Step motor | Min. speed: 2 mm/min
Max. speed: 12 m/min

Power: 400 W
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