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3 | Overview

Real-time remote object detection plays a critical role in Sandia’s Global Security Mission.
" In real-time remote sensing applications, frames of data are continuously flowing into the system.

= The capability of detecting objects of interests and tracking them as they move is critical to many
critical and challenging national missions.

= Some common applications in this field include: home/business surveillance, environmental
monitoring, autonomous sensing, etc..

= This talk will provide audiences a general understanding of the remote object detection problem as
well as provide key algorithms and techniques used to solve these types of problems.




General Framework for Remote Sensing System

Tasking, Collection, Processing, Exploitation, Dissemination (TCPED)
Tasking
‘ Today'’s talk focus

‘ Exploitation

‘ Dissemination

4




s | Artificial Intelligence (Al) Processing

* Machine learning and Deep Learning Techniques YOLO Vehicle Detector
Image — Al Object mmmm) Detected
Frame Detector Objects
(e.g. YOLO)
= Advantages

= Hasy to get started (many tools available: TensorFlow, Catfe,
PyTorch, etc..)

= High accuracy

= Fast decision (operates on one image frame)
* Populate methods: You Only Look Once (YOLO), Mask R-CNN

w r: i
* Disadvantages Results produced by students from UIUC
" Requires a large number training labels (i.e. usually thousands of  during the 2018 SNL/UIUC/ARI internship
examples per target class) program

= Limited explainability
" Vulnerability (pixel attack)




6 | Traditional Detection Processing (today’s main focus)

Image Key Advantages:
‘ = Algorithm does not require pre-trained label
= Explainable (strong mathematic and statistical principles)

Background Estimation

and Subtraction Disadvantages: . .
= May requires multiple frames to drive down false alarm rate

‘ Noise Estimation

Foreground/Background
Discrimination

Additional Filtering - gte)igected
ject




7 | Background Estimation and Subtraction

Let B(t — 1), represents the background image estimated prior to time t, and F(t), represents the image frame at time t.

To detect new energy at time t, subtract from the frame taken at t, an estimate of the “background” energy in the scene
prior to this time

The background subtracted image D(t), is expressed as: D(t) = F(t) —B(t—1)

Raw Image Background Subtracted Image




s I Background Estimation Algorithm — Pixel Based Techniques

= Pixel-based (tracking temporal change of pixels)
= Advantages: fast and scalable, relatively straight forward to understand and implement

= Drawbacks: not very effective in clutter reduction (sensitive to environmental changes, 1.e. illumination)

" Common Methods
= 1st Order Difference — Subtract the current frame from the previous frame

1% Diff (i,j,t)=Frame (i,j,t)—Frame (i,j,t—1)

= Mean Difference — Subtract the current frame from the average of the n previous frames

= l n
F= —Yk=1Fk
Mean Diff (i, j,t) = F(i,j,t) — F(i,j,t — 1)

k < t, where t, correspond to the time at the current frame




9 | Background Estimation Algorithm — Pixel Based Techniques (2)

= Infinite Impulse Response (IIR) Low Pass Filter, also known as exponential smoothing, or gaussian average
model

= Initialization — initialize background with initial n number of frames

= 1
By =F = 52;}:1 Fj
k < t,where t, correspond to the time at the current frame
= Update:

B(i,j,t)=(1-0)F(i,j,t)+(@B{t—1)

where 0<a<1




10 | IR Demonstration
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11 | Background Estimation Algorithm — Subspace Tracking Techniques

= Subspace Tracking

= Advantages: more effectively in tracking environmental changes (i.e. camera drift, illumination changes)

= Disadvantages: requires more complexity in implementation and removing outliers that could make subspace unstable
subspaces

= The goal 1s to capture the covariance structure of a sequence of frames in a low-dimensional, orthogonal
subspace.

" From a sequence of N-dimensional vectors, X(1), X(2), ... X(t), we could (in theory) compute the NXN sample
covariance matrix, CXX(t).

= Let R be the dimension of the subspace representing background energy in the scene of interest
(for jitter, want R = 3).

- W9 1s the NxR matrix whose columns are the basis vector estimates at time #

= Changes that are consistent with those induced by jitter will lie in (close to) the subspace, while anomalous (target)
events will not.



12 | Adaptive Subspace Tracking Technique

*  One approach uses the Fast Approximated Power Iteration (FAPI) algorithm for subspace estimation (Badeau et al., 2005).

¢ Has low computational cost, O(NR), and provides orthogonal basis vectors.

e FAPI tracks the principal subspace of the data covariance, CXX(t), without ever computing, decomposing, or storing this high-
dimensional matrix.

* Approximates the principal subspace of a covariance matrix that is recursively updated using exponential weights:

Cy(D) = f Cy(1) + X(9 X7(9

* To track gradual change (pointing drift, cloud motion) the subspace is updated after every frame (can perform less
frequently).

- Parameter 8 [0, 1] controls the rate at which new data are incorporated.
Larger values of 8 give slower update rates.

- Can selectively slow the background update rate for pixels with large detections.




FAPI Background Estimation Example

Slide taken from presentation: Katherine Simonson and Tian Ma, “Real-Time Change Detection for Wide Area Surveillance”, SAND2014-1489C

Expanded View Full Scene

The highlighted pixel lies
along a road, and is subject to
change due to both camera
jitter and passing traffic.

The FAPI background estimate
tracks jitter closely, but gives
large residuals when a dark
vehicle moves through.

Time History, Pixel (256, 54)
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Temporal Noise Estimation

* Motivation: enable “Adaptive” thresholding
* Avoid hard thresholding, (e.g. apply threshold on difference frame)

* Normalization of difference frame relatively to various noise levels in the image

Temporal Variance Update

° Provides statistical measure of variability of a given pixel, one way to estimate temporal variance 1s to use a IIR low pass

filter
var(irjr t) = (1 - Y) D(lr]r t)z + Y var(irjr t— 1)

where Y is the variance update rate [0,1]

Temporal Standard Deviation g, is obtain by:

o = \/var(i,j,t)




15 | Foreground and Background Discrimination

= Recall,
= B(i,j,t — 1) correspond to background estimate, pixel location i, j at time t — 1
= F(i,j,t) corresponds to frame F, pixel location i, j at time t

* 0 (i,j,t — 1) correspond to the temporal standard deviation of pixel location i, j at time t — 1

= Foreground/Background Decision Logic

= Normalize difference frame by its standard deviations

.~ |[F@,Jt)-B(,j,t—-1)|
if,

D) > Threshold = Detection (pixel i,j belong to foreground)

else => No Detection (pixel i,j belong to background)
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Slide taken from presentation: Katherine Simonson and Tian Ma, “Real-Time Change Detection for Wide Area Surveillance”, SAND2014-1489C I

Expanded View Full Scene
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While the decreased intensity due to jitter (pink
arrow) is almost as low as the drop due to a dark
vehicle passing through the pixel (blue arrow),
the detector responds differently to jitter and
signal.



Challenging Problems




Detection in Presence of Jitter

" Sudden Random Jitter (e.g. wind blowing all of sudden!)
" Temporal model estimation becomes insufficient
" Need for a separate spatial statistical model

" Further reading: Katherine M. Simonson and Tian J. Ma, “Robust Real-Time Change Detection in High
Jitter”, SAND2009-5546.
= Sandia was granted a patent for the spatial variance technique. U.S. Patent No. 8,103,161,

K.M. Simonson and T.J. Ma, “Estimating Pixel Variances in the Scenes of Staring Sensors,”
24-Jan-2012.



Kirtland AFB (Presence of Jitter): Single-Model Detections

Slide taken from presentation: Katherine Simonson and Tian Ma, “Real-Time Change Detection for Wide Area Surveillance”, SAND2014-1489C

Detections, Temporal Variances Only

Frames 2400 — 3800
Detection Threshold = 6.0

When only temporal estimates of
pixel variance are available, false
alarms occur at scene edges:
bright clouds, roads, vegetation,
and the horizon.

Detections, Spatial Variances Only

: N g ter A o D AT e N
When background differences are LR SECETaNedRay, | SRS et e

~ e e T . -
normalized with spatial standard s~ e
deviation estimates only, sensor :>

noise induces false alarms in
relatively uniform parts of the
scene.




Kirtland AFB (presence of Jitter) - both temporal and spatial model F

Slide taken from presentation: Katherine Simonson and Tian Ma, “Real-Time Change Detection for Wide Area Surveillance,” SAND2014-1489C

30 Hz video showing various activities near Sandia’s robotic vehicle range.

the dual-variance (spatial & temporal) model.

Red dots show pixels with at least one detection in frames 2400 — 3800, using I

false alarms
(scintillation)



21 I Low Signal and Noise Ratio (SNR) Target Detection

= Low signal-to-noise (SNR) detection

= Requires signal integration over multiple frames to increase target SNR

Simulated Target Target - Frame 1 Target - Frame 2 Target - Frame 3 Signal Integration
(No added noise) (Added noise) (Added noise) (Added noise) (over 3 frames)

Key Challenge: How to do this efficiently on moving target?

Sandia was granted a patent for the multiple hypothesis signal integration technique. U.S. Patent No. 10,032,285, T.J. Ma,
“Multi-Hypothesis Moving Object Detection System,” 24-Jul-2018.




Examples

Examples are taken from presentation:

Katherine Simonson and Tian Ma

“Real-Time Change Detection for Wide Area Surveillance”
SAND2014-1489C



Example 1: KAFB Video with Detections

Slide taken from presentation: Katherine Simonson and Tian Ma, “Real-Time Change Detection for Wide Area Surveillance”, SAND2014-1489C

Red boxes indicate pixel detections; no tracker is applied.




Detecting Birds in Flight

Slide taken from presentation: Katherine Simonson and Tian Ma, “Real-Time Change Detection for Wide Area Surveillance”, SAND2014-1489C

Detected Pixels, frames 2891 - 2900 Frame 2891 Frame 2892 Frame 2893

I B = [ = |

Frame 2894 Frame 2895 Frame 2896 Frame 2897

e ] | i e ]| BT ]

Frame 2898 Frame 2899 Frame 2900

A bird in flight is
detected in seven
frames.




Example 2 - Border Camera Footage

Slide taken from presentation: Katherine Simonson and Tian Ma, “Real-Time Change Detection for Wide Area Surveillance”, SAND2014-1489C

Video from a surveillance camera on the Texas/Mexico border.

- Downloaded from “Virtual Border Watch,” a live video streaming website
operated by the Texas Border Sherriff’'s Coalition and Bluservo.net.

- Network of pole-mounted surveillance cameras operating in the visible during
daytime hours and infrared at night.




Nighttime Scene Along River

Slide taken from presentation: Katherine Simonson and Tian Ma, “Real-Time Change Detection for Wide Area Surveillance”, SAND2014-1489C

10 Hz infrared video sample; nighttime scene.
- In this example, jitter was artificially induced.

- Detector set to find only positive change: new heat sources.

Red dots show pixels with at least one detection in frames 500 — 1500,
using the dual model (temporal & spatial) approach.

B * W re— g | Two dismounts emerge
T—— from the vegetation
along the river, return to
the riverside, re-emerge,
and proceed down the
track and out of the

scene.

i At times, they are lost in
the near-saturated pixels

to the right of the track.

dis_m_ountf
~ activity

Detection threshold = 6.0

Texas Border Sherriff's coalition and www.blueservo.net

I D e



27 | Nighttime Scene Along River — Detection

Slide taken from presentation: Katherine Simonson and Tian Ma, “Real-Time Change Detection for Wide Area Surveillance,” SAND2014-1489C

Texas Border Sherriff's coalition and www.blueservo.net |

Red boxes indicate pixel detections; no tracker is applied.




Example 3 — ZooCam

Slide taken from presentation: Katherine Simonson and Tian Ma, “Real-Time Change Detection for Wide Area Surveillance,” SAND2014-1489C
« 10 Hz video downloaded from the “Bear Cam” at the Woodland Park Zoo.

« Original video was in color — downgraded to greyscale for our analysis.
« Stable camera with no jitter — many moving scene elements (running water).

 Several birds visit the scene — both the birds and their shadows are detected.

time stam
cropped fgr/
analysis

moving water —

small waterfall <




ZooCam Video With Detection Boxes

Slide taken from presentation: Katherine Simonson and Tian Ma, “Real-Time Change Detection for Wide Area Surveillance,” SAND2014-1489C

Frames 3380 — 3700, Threshold = 8.0

Red boxes indicate pixel detections; no tracker is applied.




Bird in Foreground

Slide taken from presentation: Katherine Simonson and Tian Ma, “Real-Time Change Detection for Wide Area Surveillance,” SAND2014-1489C

Frame #3691

In the last 25 frames of the video, a bird flies into the
foreground of the camera. Both the bird and its
shadow are detected.

Detection boxes shown for frame #3691, Dual Model, Threshold = 8.0




Further Readings

= Katherine M. Simonson and Tian J. Ma, “Robust Real-Time Change Detection in High Jitter,”
SAND2009-5546

= Roland Badeau, Bertrand David, and Gael Richard, “Fast Approximated Power Iteration Subspace
Tracking”, IEEE Transaction on Signal Processing, VOL. 53, NO. 8§, AUGUST 2005.

= Katherine Simonson and Tian Ma, “Real-Time Change Detection for Wide Area Surveillance”,
SAND2014-1489C




2 | Questions?




