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Summary: Z data can benchmark models of emission from
2 photoionized accretion-powered plasmas

• Understanding X-ray Binaries and AGN accretion disks requires complex models
that interpret observed spectra
4 These models are largely untested in the laboratory
4 Need benchmark quality data

• A photoionized silicon plasma with a measured drive radiation spectrum, density
and temperature was created on Z
4 the column density is adjustable, testing radiation transport

• Spectral absorption and emission are measured to high reproducibility enabling
benchmark code comparison

• Presently, models do not reproduce neither relative or absolute emission

Experimental developments: 
• First RRC from a photoionized plasma was obtained on Z
• First complete He-like line series
• Ultra high resolution emission spectra
• First Fe spectrum to address the super-solar abundance problem
• Time-resolved emission measurements design work
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Active Galactic Nuclei and X-ray Binaries are revealed
3 through the emission from their accretion disk
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Challenges:
- Line identification
- Blended spectra from multiple elements
- Spatial and temporal integration
- Limited spectral resolution
- Limited signal-to-noise
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Liedahl, X-ray Diagnostics of Astrophysical Plasmas (2005), Ross & Fabian, Nature (2009)
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X-ray spectra are used to access a wide variety of the
4 astrophysical object parameters
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4 composition
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Yet, largely untested physics models are used to interpret the observations
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4 Radiation transport

effects
4 Disk structure

4 General relativity
effects
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Liedahl, X-ray Diagnostics of Astrophysical Plasmas (2005), Ross & Fabian, Nature (2009)



Benchmark experiments do exist for collisional plasmas
5
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Few photoionized plasma experiments exist
6 Absorption Emission 
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• Absorption measurements revealed first photoionized
plasma spectra and allowed test of ionization models.
• Emission spectra was first observed in a laser experiment,
although short timescale and important radiation dilution.



7
Benchmark requirements to emission experiment

Experimental requirements for model benchmarking:
• large volumes for uniformity
• long duration x-ray drive for steady state
• demonstrated reproducibility
• independent diagnosis of plasma conditions and x-ray driving radiation
• demonstrated photoionization regime (CSD vs Te, > 1 erg.cm/s)

Specifically for emission:
• Large column density for high S/N
Since column = density x length , density < 1019e-/cc 4 large —1cm plasma size

Experiments on the Z Facility can meet these criteria.

G. Loisel, J. Bailey, D. Liedahl et al., PRL 119 (2017)



Goal: build a laboratory analog for accretion disk X-ray emission
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Goal: build a laboratory analog for accretion disk X-ray emission

X-ray illumination

Photon ionization and atomic kinetics

Plasma emission

Adva ntages
• study individual process
• single element
• known drive
• controlled uniform plasma size
• higher spectral resolution
• higher signal to noise

Challenges
• dynamic evolution
• ensure higher density doesn't impact results
• measurements accuracy
• residual non-uniformities

laboratory

Temperature Te = 20-40 eV
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All required inputs are obtained on a single Z shot, confirm
the plasma is photoionized and at relevant regime
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G. Loisel, J. Bailey, D. Liedahl et al., PRL 119 (2017)



Ion density is measured from the sample areal mass and sample
14 expansion
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The temperature has been obtained from Li-like absorption from
15 low-lying state assuming partial LTE
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The ratio of lines from ground
state and low lying states is a
temperature diagnostic

I

4 Te= 33 + 7 eV

Z = 10.3 with radiation I

Z= 5.3 without radiation

The plasma is over-ionized compared to collisional plasma at the same temperature



All required inputs are obtained on a single Z shot, confirm
the plasma is photoionized and at relevant regime

X-ray drive, flux and shape

Average charge

Electron density

Photoionization parameter

Column density (adjustable)

Electron temperature
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Z* - 10 , Si+1°

ne = 8 x 101-8 e-/cm3

20-300 erg.cm/s

N i ̂ ' 2.5 - 10 1017 Si/cM2

Te = 26 - 40 eV

Emission spectroscopy

Z-pinch

Imaging

50000x

expansion

Z-pinch

Power, Energy

P'`'220TW

E-11.6MJ

Absorption spectroscopy

G. Loisel, J. Bailey, D. Liedahl et al., PRL 119 (2017)
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Measured relative absorption from different ion stages test ionization
predictions
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Measured relative absorption from different ion stages test ionization
predictions
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The emission data shows contributions from different charge states
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Simultaneous line observation contradicts an assumption used to interpret black hole spectra
= Resonant Auger Destruction (RAD)* is not 100% effective.
*Ross and Fabian, MNRAS, 278 (1996), Loisel et al., PRL 119 (2017)



The emission is not reproduced by any model even with conditions
20 adjusted to match absorption spectra
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Comparison with a Monte Carlo radiation transport code exhibits
21 i m p roved agreement
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Models also disagree with each other
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First improvements to XSTAR to match Z data:
- fine structure oscillator strengths were added for He-like Silicon (update atomic database)
- more accurate description of driving radiation
- identify that radiation transport model can be improved



23 How much of the predictive difficulty is unique to our experiments
and how does it impact astrophysical objects?

Possible needed improvements in understanding the experiment
• Could electron density be higher than the value measured with radiography?
• Transient kinetics appear relatively unimportant, but further evaluation is needed
• The bulk of x-ray drive in 0.1 - 1 keV is measured to ±20%, but accuracy in >1.7keV photon spectrum needs
more evaluation.

• Accounting for geometrical dilution of drive requires attention
• Velocity impact on line optical depths appears small

Scrutiny is required for the models
• Accuracy of the recombination rates? dielectronic recombination rates?
• Is the atomic data complete?
• Are approximations in the radiation transport valid?

e.g. escape factors, escape geometry, self-consistency...
• XSTAR revisions have been carried: angular distribution of the drive, updated oscillator strengths.
• Future: treatment of radiation transport will be scrutinized.
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Benchmark emission data and conclusion on RAD
were first published

PRL 119. 075001 (20i7) PHYSICAL REVIEW LETTERS
week ending
AUG1JST 2.017

Benchmark Experiment for Photoionized Plasma Emission
from Accretion-Powered X-Ray Sources

G. P. Loise1,1 J. E. Bailey,3 D. A. Liedahl,2 C. J. Fontes,3 T. R. Kallrnan,4 T. Nagayarnas
S. B. Hansen,j G.A. Rochau,t R. C. Mancini,5 and R. W. Lee('

The interpretation of x-ray spcctra emerging from x-ray binarics and activc galactic nucici waded plasmas
relies on complex physical models for radiation generation and transport in photoionized plasmas. Thcsc 

models have not been sufficiently expaimentally validatcd. Wc havc developed a highly reproducible
benchmark expaiment to study spectrum formation from a photoionized silicon plasma in a regime

comparable to astrophysical plasmas. Ionization predictions arc higher than inferred from measured absorption
spectra. Self-emission mea.sured at adjustablc column densities tests radiation tranvort etTects, demonstrating

that the resonant Augcr destruction assumption uscxl to interpret black holc actrretion spectra is inaccurate.

• Transmission was measured with 4.7% reproducibility
enabling test of ionization predictions

• Emission is measured down to 5.2% reproducibility and
at three column densities thus enabling test of radiation
transport

• Resonant Auger Destruction is not 100% effective at
quenching L-shell ion K emission
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G. Loisel, J. Bailey, D. Liedahl et al., PRL 119 (2017)
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1 Puzzles drive current and future developments
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Recent work: Emission spectrum can be measured at ultra high spectral resolution
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Recent work: the complete He-like series up to n- I 4 can be
27 obtained for a single target

Silicon closer to the x-ray source

B Be Li Hea
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z3287 z3364 (April 2019)

Extended range XRS3 spectrometer data

The complete He-like series will facilitate the comparison
between data and model for photoionized plasma emission.



Recent work: the high-n lines are not systematically
2 8 decreasing with principal quantum number
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Recent work: First RRC (~10-8 Z-pinch energy) in a photoionized
plasma in a terrestrial laboratory was recorded
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Future work: the Z platform might address the black hole
31 accretion supersolar abundance problem
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Future work: the Z platform might address the black hole
32 accretion supersolar abundance problem
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Preliminary observation: L-shell Fe ions are
created when sample is located closer to the z-
pinch (-3cm).
Paves the way to test Fe emission atomic and
kinetics physics that might be linked to the
supersolar abundance problem.

* Prismspect
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Next work: Could time-dependent effects be part of the
33 difficulty at predicting the measured emission?

0.6

0.5

0.4

0 3

0.2

0.1

Time-evolution of ionization

(a)

95 96 97 98

x-ray peak
a bs. iniegration

99 100

t (ns)

101

2 5x107

VISRAD + HELIOS CR

102

Li

103 104 105

2x10
7

5x 1 06

Absorption spectrum

time dependent

steady state

SPECTR3D

0  
1750 1770 1790 1810 1830

Photon energy (eV)

MONSSTR — time-gated spectrometer

1850 1870 1890

O

4 Rad-hydro simulations predict lag of 3ns of steady-state ionization behind time-dependent ionization
4 Better agreement on the absorption spectrum
4 Also study transient kinetics relevant to astrophysics



Summary: Z data can benchmark models of emission from
34 photoionized accretion-powered plasmas

• Understanding X-ray Binaries and AGN accretion disks requires complex models
that interpret observed spectra
4 These models are largely untested in the laboratory
4 Need benchmark quality data

• A photoionized silicon plasma with a measured drive radiation spectrum, density
and temperature was created on Z
4 the column density is adjustable, testing radiation transport

• Spectral absorption and emission are measured to high reproducibility enabling
benchmark code comparison

• Presently, models do not reproduce neither relative or absolute emission

Experimental developments: 
• First RRC from a photoionized plasma was obtained on Z
• First complete He-like line series
• Ultra high resolution emission spectra
• First Fe spectrum to address the super-solar abundance problem
• Time-resolved emission measurements design work

emission

absorption

Si He-like emission

i

F

G. Loisel, J. Bailey, D. Liedahl et al., PRL 119 (2017)


